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Introduction

Ovarian cancer is the fifth leading cause of cancer death 
in women in the United States with a 5-year survival of 
only 30% in patients with advanced stage disease (1,2). For 
more than a decade, the standard treatment for advanced 
ovarian cancer has been optimal surgical debulking 
followed by a paclitaxel/platinum regimen. Attempts to 
improve on outcomes by adding cytotoxic therapies have 
only resulted in increased toxicity without significant 
benefit (3-7). Other pursuits such as intraperitoneal 
(IP) drug delivery, optimization of the platinum/taxane 
schedule, and consolidation with anti-angiogenic drugs, 
such as bevacizumab, or with poly-ADP-ribose polymerase 
(PARP) inhibitors, have been met with limited success 
and often increased toxicity (8-13). Given ovarian cancer’s 
lethality, yet elusiveness to current treatments, the need for 

expanded, targeted therapies for this disease is crucial. This 
review will focus on various emerging molecular targets and 
therapeutic options that are being explored in combination 
with taxanes and platinums, including selective and multi-
targeted tyrosine kinase inhibitors, Src kinase inhibitors, 
and histone deacetylase inhibitors (HDACi).

Tyrosine kinase inhibitors

With imatinib revolutionizing the treatment of chronic 
myelogenous leukemia (CML) in the late 1990s, interest and 
research dedicated to investigate its utility in solid tumors 
ensued (14). Imatinib is a tyrosine kinase inhibitor, which is 
specific for the ABL domain, c-KIT, and the platelet-derived 
growth factor receptor (PDGFR). Its mechanism of action 
prompted exploring its role in ovarian cancer (15). Of note, 
platelet derived growth factor (PDGF) and PDGFR-alpha (α) 
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have poor prognostic value in ovarian cancer and PDGFR is 
active in tumor-associated endothelial cells and presumably 
contributes to tumor angiogenesis (16,17). This pre-clinical 
data led to several clinical trials of imatinib in ovarian cancer. 
Schilder et al. performed a phase II trial evaluating single agent 
imatinib in patients with recurrent or persistent epithelial 
ovarian or primary peritoneal carcinoma. Fifty-six patients 
received imatinib 400 mg twice daily. Imatinib had minimal 
activity and the median progression free survival (PFS) and 
overall survival (OS) were 2 and 16 months, respectively. Nine 
patients were progression free for at least 6 months, including 
one patient who had a complete response (CR). Imatinib was 
well tolerated; the most common grade 3 and 4 toxicities were 
neutropenia, gastrointestinal, dermatologic effects, pain and 
electrolyte disturbances. Biomarker analysis failed to identify 
any predictive markers of imatinib activity (18). In another 
phase II trial of single agent imatinib in 13 patients with 
recurrent, platinum-resistant low-grade serous carcinoma of 
the ovary, peritoneum, or fallopian tube, there were no CRs 
or partial responses (PRs) seen. In contrast to the previous 
trial, patients received imatinib 600 mg daily. The median 
PFS and OS were 1.3 and 4.9 months, respectively. Imatinib 
was well tolerated but again had no activity as a single agent 
in this population (19). Alberts et al. conducted a phase II 
trial of imatinib 400 mg daily in recurrent ovarian cancer in 
patients with biomarker positive c-Kit (11%) and PDGFR 
(89%). Of the 19 eligible patients, there were no objective 
responses. The median OS was 10 months and notably, 
32% of patients came off study within the first month due 
to adverse events. Eleven percent of patients had grade 4 
hematologic and 37% had grade 3 non-hematologic toxicity. 
Not only did this trial show a lack of activity in patients with 
imatinib specific mutations, but it also differed from the 
previous two in that there were significant adverse events (20).

While imatinib has limited activity as a single agent, 
a synergy between imatinib and paclitaxel has been 
hypothesized. Circulating endothelial progenitors (CEP) are 
mobilized after paclitaxel administration. CEPs assist tumor 
cell proliferation and angiogenesis, counteracting the effects 
of paclitaxel. However, imatinib dampens the CEP response 
by inhibiting PDGFR and subsequently, prevents additional 
tumor growth (16,21). Safra et al. evaluated intermittent 
imatinib in combination with paclitaxel in 14 patients with 
recurrent or persistent epithelial ovarian, fallopian tube, or 
primary peritoneal carcinoma. Imatinib 300 mg twice daily 
was given for 4 consecutive days each week in combination 
with weekly paclitaxel at a dose of 80 mg/m2 for a median of 
5.7 cycles (range <1 to 12.3). Of 12 evaluable patients, nine 

were progression free at 12 weeks, and four had a PR [two 
by Response Evaluation Criteria in Solid Tumors (RECIST) 
and two by CA-125]. A PFS of longer than 6 months was 
seen in five patients and PFS of more than 12 months in 
two patients. Toxicities included grade 3 diarrhea (resolving 
after imatinib dose reduction), and two patients with grade 
3 neutropenia or neutropenia/thrombocytopenia (resolving 
after paclitaxel dose reduction). Although it was a small 
trial, the combination was tolerable and demonstrated anti-
tumor activity (22).

Docetaxel has also been studied in combination with 
imatinib. In a phase II study conducted by Matei et al., 
23 patients with advanced, platinum-resistant or refractory 
epithelial ovarian cancer and a median of 3 prior treatments 
received imatinib 600 mg daily with docetaxel 30 mg/m2 
weekly (weeks 1-4 of every 6-week cycle). The objective 
response rate (ORR) was 21.7%. Responses included one 
CR, three PRs, and three patients with stable disease (SD) 
at 4 months. Most adverse effects (AEs) were grade 1 or 
2 and included fatigue, nausea, diarrhea, anorexia, and 
edema (23). Non-taxane agents are also being combined 
with imatinib. A trial of imatinib and gemcitabine has been 
completed and results are awaited (24).

Pazopanib is a multikinase inhibitor, which has multiple 
targets including PDGFR and vascular endothelial growth 
factor receptor (VEGFR). It has been studied in both 
recurrent ovarian cancer and as maintenance therapy. 
Friedlander et al. conducted a phase II trial of pazopanib 
monotherapy in 36 patients with low-volume recurrent 
epithelial ovarian, fallopian tube, or primary peritoneal 
carcinoma. All had received initial platinum-based 
chemotherapy with a complete CA-125 response. Upon 
elevation of CA-125 to >2× the upper limit of normal, 
patients were treated with pazopanib 800 mg daily until 
progression of disease or unacceptable toxicity. ORR was 
18% (95% CI, 4-43%) in patients with measurable disease 
at baseline. Thirty-one percent of patients had a CA-125 
response and PFS at 6 months was 17%. Twenty-eight 
percent of patients experienced toxicity requiring pazopanib 
discontinuation. Only one grade 4 AE was seen (peripheral 
edema), but there were multiple grade 3 toxicities (56%), 
which included fatigue, diarrhea, aspartate aminotransferase 
(AST) or alanine aminotransferase (ALT) elevation, and 
γ-glutamyl transpeptidase (GGT) elevation (25).

More recently, the Arbeitsgemeinschaft Gynaekologische 
Onkologie (AGO) studied pazopanib as maintenance 
therapy for 2 years vs. placebo in 940 patients with stage II-
IV ovarian, fallopian tube, or primary peritoneal carcinoma 
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after initial debulking and at least five cycles of platinum-
taxane chemotherapy. Patients had no evidence of disease 
progression after primary therapy and were randomized 
1:1 to receive pazopanib 800 mg daily or placebo for up to 
24 months. The primary endpoint was PFS. Maintenance 
pazopanib resulted in a significant improvement in PFS 
when compared to placebo (17.9 vs. 12.3 months; HR 0.77; 
95% CI, 0.64-0.91; P=0.0021). There were significantly 
more AEs leading to treatment discontinuation in the 
pazopanib arm (33.3%) when compared to the placebo 
arm (5.6%). Grade 3/4 toxicities included hypertension, 
neutropenia, liver related toxicity, diarrhea, fatigue, 
thrombocytopenia, and palmar-plantar erthrodysesthesia. 
Unfortunately, there was no survival benefit between 
pazopanib and placebo (HR 1.08; 95% CI, 0.97-1.33; 
P=0.499) (26). Additional studies of pazopanib with 
topotecan, doxorubicin, cyclophosphomide, or paclitaxel in 
refractory or recurrent ovarian cancer are ongoing (27-30). 
Given the trials described above, future studies of pazopanib 
will certainly need to balance efficacy with toxicity.

Src kinase inhibitors

Src kinase is a non-receptor tyrosine kinase that is 
overexpressed and activated in late stage ovarian cancer (31). 
Src activation supports vascular endothelial growth factor 
A (VEGF-A) expression and inhibits transforming growth 
factor beta 1 (TGFβ1), a protein that modulates cancer-
associated fibroblasts in the ovarian cancer microenvironment 
(32-34). In ovarian cancer models, the activation of Src 
prevents microtubule assembly and stabilization, leading to 
taxane resistance (35,36). In these models, inhibiting Src can 
reverse the taxane resistance (37). The mechanism of the 
resensitization to taxanes is unclear; however, it may be that 
Src inhibition decreases the concentration of intracellular 
paclitaxel required to disrupt microtubule dynamics (38).

Saracatinib (AZD0530), an oral inhibitor of Src kinase, 
was shown in vitro to reduce Src phosphorylation and 
prevent cell migration (39). In a phase I study done in 116 
patients with multiple solid tumors, including 16% with 
ovarian cancer, patients were treated with saracatinib (once 
daily oral dosing from 125-300 mg) in combination with 
carboplatin and/or paclitaxel. Objective responses were 
seen in 5/44 of patients receiving saracatinib (125-300 mg), 
carboplatin, and paclitaxel every 3 weeks; two of those were 
in ovarian cancer patients. In those getting saracatinib and 
paclitaxel weekly, objective responses were seen in 5/24 
patients (one was ovarian) (40). This then led to a phase II/

III study where 107 patients with platinum resistant ovarian, 
fallopian, and primary peritoneal cancer were randomized 
to receive weekly paclitaxel 80 mg/m2 with or without 
saracatinib 175 mg daily. There was no difference in PFS 
(4.7 vs. 5.3 months; HR 1.00; 95% CI, 0.65-1.54; P=0.99) 
or OS (10.1 vs. 12.3 months; HR 1.01; 95% CI, 0.56-1.58; 
P=0.81). Grade 3 and 4 toxicities attributed to saracatinib 
were abdominal pain and febrile neutropenia (41). Another 
phase II study of saracatinib, carboplatin and paclitaxel in 
advanced ovarian cancer has been completed and results are 
awaited (42).

Despite the lack of efficacy thus far with saracatinib in 
ovarian cancer, other Src kinase inhibitors, such as dasatinib, 
have been evaluated. In a phase I dose escalation study of 20 
patients, dasatinib at doses of 100, 120, or 150 mg daily, was 
combined with paclitaxel 175 mg/m2 and carboplatin area 
under the curve (AUC) 6 every 3 weeks. The recommended 
phase II dose (RP2D) of dasatinib was determined to be 150 
mg. The median PFS and OS were 7.8 months and 16.2 
months, respectively (43). Dasatinib will be in investigated 
in a phase II trial, GOG028, which was activated in 
February 2014 (44). Given the expression of Src in clear 
cell carcinoma (CCC), this clinical trial projects to enroll 
ovarian CCC patients recurred after initial platinum/
taxane treatment. The patients will receive dasatinib 160 
mg daily. Patients must be Wilms tumor 1 (WT1) and 
estrogen receptor (ER) negative by immunohistochemistry 
(IHC). The negative WT1 and ER expression are used 
to differentiate clear cell from epithelial ovarian tumors. 
ARID1A mutation status will be assessed in enrolled 
patients (44). ARID1A is the most frequently mutated gene 
in ovarian CCC, found in 46-75% of CCC. Loss of this 
gene’s function is associated with a shorter PFS, worse OS, 
and greater chemotherapy resistance (45). The ARID1A 
gene codes for the BAF250a protein. This protein is part 
of a chromatin modeling family that binds to DNA and 
has roles in DNA repair (46,47). The expectation is that 
those patients that have the ARID1A mutation will be 
hypersensitive to dasatinib. ARID1A mutation status will be 
assessed using next-generation and exon-capture sequencing 
and will be tabulated to determine the correlation between 
BAF250a IHC and ARID1A mutations. This will help to 
identify whether IHC is predictive for better responses to 
the inhibitor.

Histone deacetylase inhibitors (HDACi)

Histones are proteins composed of positively charged 
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amino acids. They are bound to negatively charged DNA 
and are regulators of gene expression. Modification of the 
histone proteins controls gene transcription, replication, 
and DNA repair. Methylation of histones turns off 
gene transcription, while histone acetylation, which 
occurs mostly on lysine residues, is associated with a 
morphology that facilitates transcription (48). HDACi, 
enzymes that remove an acetyl group from the histone 
protein and prevent gene transcription, have been shown 
to induce apoptosis, promote cell differentiation, and 
inhibit cancer cell growth (49). HDACi reduce the 
expression of homologous recombination genes, such as 
BRCA 1 and 2 (50). Additionally, in ovarian cancer cells, 
the overexpression of HDAC is associated with cisplatin 
resistance (51). In vitro, HDACi have reversed cisplatin 
resistance and induced apoptosis (52,53). The inhibitors 
result in a depletion of HDAC, which leads to a decreased 
expression of chromatin maintenance proteins. Without 
these structural anchors, the chromatin’s morphology 
transforms into a more receptive conformation, allowing for 
chemo-sensitization (54).

Currently available HDACi are vorinostat, belinostat, 
and romidepsin. HDACi as single agents for recurrent or 
persistent ovarian cancer have shown minimal efficacy. In 
a phase II study of 27 women with recurrent or persistent 
ovarian or primary peritoneal carcinoma, patients received 
vorinostat 400 mg daily and continued until disease 
progression or unacceptable toxicity. Of the 24/27 patients 
eligible for evaluation, only 1 had a PR, 9 had SD and 14 
progressed within 2 months. Toxicity was minimal with 10 
patients getting ≥3 cycles of treatment and only two grade 
4 AEs (neutropenia and leukopenia) (55). In a phase II 
combination study vorinostat was used with paclitaxel and 
carboplatin as primary induction therapy in 18 patients with 
advanced stage ovarian cancer after cytoreductive surgery. 
Patients received a median of six cycles; there were two PRs 
and seven CRs. Unfortunately, there were significant AEs, 
resulting in early termination of the study. Three patients 
had either gastrointestinal perforation or fistula formation 
(notably, these patients all had bowel reanastomosis as part 
of their initial cytoreductive surgery). There were also 
significant hematologic toxicities (56).

In contrast,  a combination study of belinostat, 
carboplatin, and paclitaxel in a phase I/II study had more 
promising results. Belinostat was given at 1,000 mg/m2 
daily for 4 days with carboplatin AUC 5 and paclitaxel 
175 mg/m2 on days 3 and 21. Of the 35 heavily pre-treated 
patients, 15 patients had a PR and 3 had a CR. The ORR 

was 43% among platinum resistant patients and 63% 
among platinum sensitive patients. There were no non-
hematologic grade 4 toxicities but several episodes of grade 
4 neutropenia (57). The difference in ORR between the 
platinum sensitive and resistant groups suggests that further 
studies need to separate these subtypes. However, a phase 
II study of belinostat with carboplatin (without paclitaxel) 
was terminated early for lack of activity (58). It is unclear if 
this finding of increased toxicity with vorinostat compared 
to belinostat was due to increased total dose, differing 
stages of therapy, a specific drug effect, or small sample 
sizes. Although current results with HDACi added to 
chemotherapy in ovarian cancer have yielded contradictory 
data, further investigations of these agents to reverse 
platinum resistance are not generating enthusiasm because 
of tolerance issues in platinum pretreated patients.

Other agents to reverse platinum and taxane 
resistance

Buthionine sulfoximine, an inhibitor of glutathione 
synthetase, was studied as a potential agent to reverse 
platinum resistance by down regulating intracellular thiols. 
However, in spite of strong in vitro data, the complexity of 
mechanisms associated with platinum resistance, interest 
in the development of buthionine sulfoximine and other 
intracellular thiol manipulations have not been pursued 
beyond phase I (59-61).

Another potential agent for reversal of platinum resistance has 
been bortezomib, presumably by interfering with ubiquination of 
copper transporter (CTR) 1, the CTR, which is also responsible 
for the influx of cisplatin and carboplatin (62). A phase I by 
Aghajanian et al. suggested activity of the combination of 
carboplatin and IV bortezomib. Here, the ORR was 47% 
with two CR and five PR. The recommended phase II dose 
of bortezomib was 1.3 mg/m2 (63). More recently, in a phase I 
GOG study by Jandial et al., responses were seen in platinum 
resistant patients receiving IP bortezomib and increasing 
doses of IP carboplatin. When IP bortezomib was given 
before IP cisplatin, platinum accumulation was increased in 
peritoneal tumors by 33% (P=0.006) (64). Cyclosporine has 
also been used for this purpose, although the mechanism of 
potentiation with platinum compounds is unclear (65,66). 
Finally, other DNA damaging chemotherapies, such as 
topoisomerase I or II inhibitors, may prove to be synergistic 
with cisplatin or carboplatin in a schedule dependent manner, 
as seen in preclinical studies and in the phase I study of the 
combination of topotecan and cisplatin (67). Unfortunately, 
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the phase III GOG study 182 used the less toxic but 
also less effective schedule of topotecan on days 1-3 and 
carboplatin on day 3. There was no difference in PFS or OS 
when compared to the standard taxane-platinum doublet (3). 
By contrast, an IP schedule in a phase I study of IP cisplatin 
50 mg on day 1 and escalating doses of topotecan on days 1-5 
resulted in a PFS of 13 months for patients who had minimal 
or no disease at the end of induction. Five patients were alive 
at 4 years. Even given this considerable activity, these results 
have not been studied further (68).

With respect to paclitaxel resistance, the focus has been 
on inhibiting P-glycoprotein. P-glycoprotein is an efflux 
membrane pump that brings intracellular drugs, including 
chemotherapies such as paclitaxel, out of the cell. This process 
reduces the drug’s intracellular concentration, and therefore 
its effect and toxicity (69). In a phase III study employing 
the inhibitor, valspodar (PSC-833) vs. placebo in first-line 
treatment of ovarian cancer, no advantage was seen (70).

Targeting the folate receptor

The folate receptor-α (FRA) is present on ovarian cancer but 
not in benign ovarian tissues (71,72). The function of this 
receptor is unknown as folate transport is mediated primarily 
by the highly-affinity reduced folate carrier (RFC). However, 
FRA may be a reasonable target for delivery of anticancer 
drugs via receptor-mediated endocytosis. The humanized 
monoclonal antibody, farletuzumab (MORAb-003), has been 
developed as a potential anticancer drug. In a phase I trial of 
single agent farletuzumab arm in 25 patients with platinum-
refractory or platinum-resistant epithelial ovarian cancer, 
farletuzumab was generally safe and well-tolerated. Thirty-
six percent of patients had SD but there were no objective 
responses (73). In a phase II study, farletuzumab was studied 
as a single agent or in combination with carboplatin and a 
taxanes in 54 patients with first-relapse, platinum-sensitive 
ovarian, fallopian tube, and primary peritoneal cancers. 
Patients with asymptomatic CA-125 relapse received single 
agent farletuzumab and could receive chemotherapy + 
farletuzumab upon single agent progression (n=28). Twenty-
six subjects who had symptomatic relapse entered on the 
combination arm. Farletuzumab was well-tolerated as a 
single agent and there was no additional toxicity when it was 
combined with chemotherapy. Of 47 patients who ultimately 
received farletuzumab with chemotherapy, 80.9% normalized 
CA-125 levels. The complete or partial ORR was 75% with 
combination therapy (74). The results of this phase II trial 
were promising, leading to evaluation in phase III. However, 

a phase III study in platinum-resistant ovarian cancer was 
terminated at interim analysis because it did not meet pre-
specified criteria for continuation after futility analysis (75). 
A similar phase III study in platinum-sensitive ovarian cancer 
was halted given failure to meet pre-specified criteria for 
significant PFS, the study’s primary end point (76,77).

Vintafolide (EC145) is a folate antibody vinca alkaloid drug 
conjugate. In a phase II study, 149 patients with platinum-
resistant ovarian cancer were randomized to pegylated 
liposomal doxorubicin (PLD) 50 mg/m2 every 4 weeks with 
or without vintafolide at a dose of 2.5 mg intravenously three 
times weekly during weeks 1 and 3 on a 4-week cycle. The PFS 
was 5.0 months in the combination therapy arm as compared 
to 2.7 months in the PLD group (P=0.031). However, when 
patients’ tumors were selected for folate receptors with EC20 
imaging [a (99m)Tc-based folate peptide chelator that binds 
to folate receptor positive cells and tissues, making it useful 
for radiodiagnostics], PFS was non-significantly improved in 
the folate receptor positive group (median PFS 7.0 months; 
HR 0.873; 95% CI, 0.334-2.277; P=0.79) compared to the 
non-folate receptor positive group (median PFS 5.4 months; 
HR 1.806; 95% CI, 0.369-8.833; P=0.468). There was no 
significant difference in AEs (78). A randomized phase III 
study of PLD ± vintafolide has completed recruiting and 
results are pending (79).

MEK inhibitors

The mitogen activated protein kinase/extracellular signal-
regulated kinase (MAPK/ERK) pathway is a signal 
transduction pathway that regulates cellular growth and 
survival. In normal cells, an extracellular ligand is required 
to activate this pathway. After initiation, the signal is 
potentiated intracellularly via several activating kinases, 
communicating with various transcriptional factors 
to promote cell growth. However, in malignant cells, 
mutations in this pathway lead to constitutive activation 
and uninhibited growth. Multiple targets exist within the 
pathway, including MEK [also known as mitogen-activated 
protein kinase kinase (MAPKK)], which is a tyrosine/
threonine kinase. While MEK inhibitors, such as trametinib, 
have seen success in BRAF mutated melanoma, their utility 
in other tumors is yet to be proven (80). A phase II study 
of single-agent selumetinib, a MEK inhibitor, in low-
grade serous ovarian cancer was performed in 52 patients. 
ORR was 15% and an additional 34 patients (65%) had 
SD (81). These results demonstrate that MEK inhibition 
may have some effect in ovarian cancer. Combination with 
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chemotherapy may improve the efficacy of these targeted 
agents. However, there is only one pending combination 
study of a MEK inhibitor (MEK162) and paclitaxel that 
is currently enrolling (82). A trial comparing MEK162 to 
chemotherapy of the physicians’ choice in low grade serous 
ovarian cancer is also currently recruiting (83).

Methylnaltrexone

Opiate antagonists, specifically methylnaltrexone, have 
been shown to inhibit VEGF-induced angiogenesis (84). 
In fact, a synergistic effect between methylnaltrexone, a 
mu-opioid receptor antagonist, 5-fluorouracil (5-FU), and 
bevacizumab has been shown in preclinical models. This 
synergy is likely induced by the varied targets of these drugs. 
While bevacizumab inhibits VEGF binding to receptors, 
5-FU inhibits Akt activation of VEGF, and methylnaltrexone 
simulates receptor protein tyrosine phosphatase mu (RPTPµ) 
activity that prevents VEGF induced Src activation (85). 
A phase I trial of dasatinib, bevacizumab, paclitaxel ± 
methylnaltrexone in advanced cancer is ongoing (86). It will 
ultimately be interesting to compare methylnaltrexone’s 
capacity to inhibit tumor growth.

Conclusions

Given the grim prognosis in ovarian cancer, much effort 
has been dedicated to identify targeted therapies that 
may improve outcomes in combination with the standard 
chemotherapy ‘backbone’ of platinum and taxane agents. In 
this review, we discuss the conducted and ongoing studies of 
tyrosine kinase inhibitors, Src kinase inhibitors and HDACi. 
We also briefly discuss other targets including bortezomib, 
the folate receptor, MEK inhibitors, and methylnatrexone. 
Clinical trials of these agents have yielded mixed results 
ranging from differing efficacy data and issues with drug 
tolerance Future clinical trials and studies on drug and 
pathway resistance will pave the way to our understanding 
and use of these agents in ovarian cancer.
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