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Introduction

Tongue squamous cell carcinoma (TSCC) is one of the 
most common malignant tumors in the head and neck, 
accounting for 3% of all malignant tumors (1). It has high 
malignancy, easily develops early metastasis; its overall 
5-year survival rate ranges between 45–55% (2), which 
has hardly changed during the past 30 years (3,4). Surgical 
treatment predominates, and the available adjuvant 
therapies include radiotherapy and chemotherapy. Although 
the surgical techniques have remained unchanged for 
many years, every doctor strives to improve the quality of 

surgery. A new study found that an ultrasonic coagulation 
device was effective in providing safe and adequate margins 
in operations for carcinoma tongue (5). Due to the lack of 
highly effective treatment options, most TSCC patients 
experience recurrence and metastasis after operation and 
those in the advanced stage have lower survival. 

Hepatitis  B X-interacting protein (HBXIP), an 
oncoprotein encoded by 91 amino acids, can decrease the 
activity of HBX by binding to the terminal C of HBX, 
thereby altering the replication cycle of hepatitis B virus 
(HBV) (6). Moreover, it can inhibit the transactivation 
of HBX by binding to the promoters or enhancers of 
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activator protein 1 and endogenous HBV, thereby affecting 
the replication cycle of HBV (7,8). It has been recently 
discovered that HBXIP mRNA expression is present in the 
myocardium, skeletal muscles and uteruses of human fetuses 
and mice, and HBXIP can promote the proliferation and 
migration of liver and breast cancer cells (9-15). There have 
been no reports on the correlation between HBXIP and 
TSCC or the mechanism thereof.

S100 calcium-binding protein A4 (S100A4), a gene 
closely related to tumor metastasis, is a member of the S100 
calcium-binding protein family that interacts with other 
proteins in a calcium-dependent manner (16), and has a low 
molecular weight of 10–12 kDa (17,18). S100A4 is largely 
involved in diverse cellular functions, such as cell growth and 
differentiation, cell metabolism, cell cycle regulation, signal 
transduction and so on (19,20). Recent studies have suggested 
that S100A4 is associated with infiltration and metastasis in 
breast cancer, pancreatic cancer, colorectal cancer, bladder 
cancer, ovarian cancer, thyroid cancer and brain cancer (21-29),  
there only a few reports describing its relationship with 
TSCC (30,31). The phosphoinositide 3-kinase (PI3K)/
Akt signaling pathway plays an important role in the 
occurrence, development, and treatment of malignant 
tumors and participates in cellular growth, proliferation, 
and differentiation signaling pathways (32). Furthermore, 
PI3K/Akt phosphorylation can activate the aforementioned 
differentiation signaling pathway (33). This study aimed 
to explore the effects of HBXIP mRNA on the biological 
functions of TSCC cells and the possible mechanisms 
thereof. HBXIP may be a new target for treating TSCC.

Methods

Eukaryotic expression vector and cell strain

The eukaryotic expression vector pEGFP-N1, liposome 
2000 and the TSCC cell line were purchased from the Cell 
Collection Center of Wuhan University (Wuhan, China).

Primer design

The primers designed for HBXIP nucleotide sequence 
(NM_006402) were: HBXIP-F, 5'-GGAGCAGCACT 
TGGAAGACA-3'; HBXIP-R, 5'-TCAGTGGGGTC 
AGAGGTTAG-3'. The primers designed for β-actin 
were :  β -ac t in-F,  5 ' -CTTAGTTGCGTTACACC 
CTTTCTTG-3'; β-actin-R, 5'-CTGTCACCTTCAC 
CGTTCCAGTTT-3'. All primers were synthesized by 

Shenyang Wanlei Biological Co., Ltd (Shenyang, China). 

Reagents

RPMI-1640 culture medium was obtained from Gibco 
(Thermo Fisher Scientific, Waltham, MA, USA); fetal bovine 
serum (FBS) was obtained from HyClone Laboratories (Logan, 
UT, USA); the eukaryotic expression vector pEGFP-N1 and 
liposome 2000 were obtained from Invitrogen (Carlsbad, 
CA, USA); Super Moloney murine leukemia virus (M-MLV) 
reverse transcriptase was obtained from BioTeke (Beijing, 
China); RNA Simple Total RNA Kit and Total RNA 
Extraction Kit were obtained from Tiangen Biotech (Beijing, 
China); MTT reagent was obtained from Sigma-Aldrich (St. 
Louis, MO, USA); NP-40 lysis buffer, bicinchoninic acid (BCA) 
Protein Assay Kit and phenylmethylsulfonyl fluoride (PMSF) 
were obtained from Beyotime Biotechnology (Jiangsu, China); 
and electrochemiluminescence (ECL) luminescence reagent 
from 7sea Biotech (Shanghai, China). 

Cell culture

TSCC cells were cultured with RPMI-1640 culture 
medium containing 10% FBS, 100 U/mL penicillin and  
100 μg/mL streptomycin sulfate in a 37 ℃, 5% CO2 incubator. 

Construction of the eukaryotic expression vector

The eukaryotic expression vector pEGFP-N1-HBXIP was 
constructed using HBXIP mRNA as the template and by 
embedding pEGFP-N1 using recombination. pEGFP-
N1-HBXIP was transfected into competent cells and then 
positive clones were screened, followed by vector analysis 
using restriction endonucleases and sequencing. 

Transient transfection

The pEGFP-N1-HBXIP plasmid was constructed by 
Shenyang Wanlei Biological Co., Ltd. TSCC cells were 
transiently transfected with pEGFP-N1-HBXIP plasmid 
to serve as the experimental group and with pEGFP-N1 
to serve as the vector group, and untransfected cells served 
as the control group. The transfection procedure was 
performed using Lipofectamine2000 according to the 
manufacturer’s instructions. Briefly, cells were passaged 24 h 
before transfection, the culture medium in the 6-well plate 
was replaced with the serum-free minimal culture medium 
to treat the cells for 1 h, and then the transfection was 
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conducted. Successful transfection was detected using an 
electronic microscope and immunofluorescence techniques. 
Forty-eight hours after transfection, the cells in various 
groups were collected from the 6-well plates for mRNA and 
protein analysis.

HBXIP mRNA and protein expression levels in TSCC cells 
(RT-PCR)

Total RNA was extracted from the transfection, non-
transfection and vector groups with TRIzol reagent, and its 
concentration was measured by UV spectrophotometry. First-
strand cDNA was synthesized with Super M-MLV reverse 
transcriptase, then PCR was performed using the cDNA 
as template, and the non-transfection and vector groups 
served as references. The PCR products were subjected to 
agarose gel electrophoresis and evenly stained with Gold 
View stain, and then the stained gel was photographed using 
a gel imaging system. The experiment was repeated three 
times, densitometry analysis was performed using Quantity 
One software, and the HBXIP mRNA expression levels were 
compared between the groups. 

Effects of HBXIP overexpression on the growth of TSCC 
cells (MTT assay)

Twenty-four hours after transfection, the cells from each 
group were counted and seeded into a 96-well plate at a 
density of 2×103 cells/well. Five replicate wells were seeded 
per group, and zeroing wells (culture medium, MTT, and 
DMSO) were added. Then, the cells were cultured in a 37 ℃,  
5% CO2 incubator for 24, 48, 72 or 96 h, and an MTT 
assay was performed. MTT (0.2 mg/mL) was added to 
the appropriate wells at the corresponding time points and 
then the plates were incubated in a 37 ℃ incubator for 4 h. 
After the supernatant was carefully removed 200 μL DMSO 
were added to dissolve the purple crystals formed by cells, 
and the optimal density (OD) was measured at 490 nm  
by a microplate reader. The measurement was repeated five 
times and the measurement results were averaged for analysis. 

Scratch test

Twenty-four hours after transfection, the cells from each 
group were enumerated and seeded into 3 replicate wells of 
a 6-well plate at a density of 2×103 cells/well. After vertically 
scratching the monolayers with a 200 μL pipette tip, serum-
free culture medium was added and the cells were cultured 

in a 37 ℃, 5% CO2 incubator for 16 h. The cells were then 
photographed; the photography and distance measurements 
were repeated three times at 0 h and at 16 h, and the results 
were averaged for analysis. 

Transwell assay

Twenty-four hours after transfection, the cells in each 
group were enumerated and diluted with serum-free culture 
medium at a ratio of 1:10, then suspensions of 100 μL 
Matrigel and 100 μL cells were added into the upper chamber 
of a Transwell insert in a 24-well plate. After 24 h culture 
in the 37 ℃, 5% CO2 incubator, the cells were removed 
from the upper chamber, the membrane was excised, and 
cells adhering to the bottom surface of the membrane were 
detected. The experiment was repeated five times and the 
results were averaged for analysis. 

Western blotting

The protein expression levels of HBXIP, AKT, p-AKT, PI3K, 
p-PI3K and S100A4 were determined in each group. NP-40 
lysis buffer was thawed at room temperature in advance and 
then mixed into PMSF to a final dilution of 1% for use. The 
cells were added to the corresponding volume of NP-40 lysis 
buffer and vortexed to suspend the cells. The cell suspension 
was then incubated on ice for 5 min and centrifuged at 12,000 
rpm and 4 ℃ for 10 min, and the supernatant was collected 
for quantitative analysis. Total protein (40 μg) was subjected 
to 10% SDS-PAGE electrophoresis and then transferred 
onto a PVDF membrane. The PVDF membrane was blocked 
with 5% (M/V) skim milk powder and incubated at room 
temperature for 2 h; thereafter, it was incubated with primary 
antibody overnight at 4 ℃ and washed with TTBS. Next, it 
was incubated with donkey anti-goat IgG-HRP (HBXIP) or 
goat anti-rabbit IgG-HRP (AKT, p-AKT, PI3K, p-PI3K, and 
S100A4) at 37 ℃ for 45 min, washed with TTBS, then exposed 
to enhanced ECL reagent and developed in a dark room. The 
experiment was repeated three times, the films were scanned, 
and the optical densities (ODs) of target bands were analyzed 
using a gel image processing system (Gel-Pro-Analyzer 
software, Beijing Liuyi Biotechnology CO., WD-9413B).

Statistical analysis

SPSS 18.0 statistical software was used for analysis, and the 
data are presented as x±s. Inter-group comparisons were 
performed using the Student’s t-test. P<0.05 indicated that a 
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difference was statistically significant.

Results

HBXIP expression in TSCC cells

The PCR results showed that HBXIP expression was 
detected in the experimental group and the control groups 

(vector group and non-transfection group), the relative 
expressions were 3.01, 0.96 and 1.00, respectively, the 
difference was statistically significant (P<0.01, Figure 1). 
HBXIP expression was also detected by western blotting, 
and its relative expression level was 3.51 in the experimental 
group, which represented a statistically significant difference 
from the control groups (0.88, 1.00) (P<0.01, Figure 2). 

Figure 1 Expression of HBXIP mRNA in the experiment and control groups. (A) The expression of β-actin mRNA in three groups; (B) The 
mRNA level of HBXIP was examined by RT-PCR analysis after overexpression in three groups. **, P<0.01 vs. control groups. Student’s t-test. 
HBXIP: transfection group, TSCC cells were transfected with pEGFP-N1-HBXIP; vector, vector group, TSCC cells with pEGFP-N1 
only; TSCC: non-transfection group, only with non-transfected TSCC cells. TSCC, tongue squamous cell carcinoma cells; HBXIP, 
hepatitis B X-interacting protein.
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Figure 2 Protein expression of HBXIP, AKT, p-AKT, PI3K, p-PI3K and S100A4 by western blotting. (A) Protein expression of HBXIP in 
the experiment and control groups after HBXIP overexpression. (B) Protein expression of AKT and p-AKT. (C) Protein expression of PI3K 
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The effects of HBXIP mRNA overexpression on the 
proliferation of TSCC cells

The cell proliferation rate in the experimental group and 
the control groups were detected via MTT assay. After each 
experiment was repeated five times, the average value was 
determined. The results showed that, at 24, 48, 72, and 96 h  
after transfection, the OD average value was 0.472±0.059, 
0.911±0.094, 1.400±0.142, and 1.522±0.156, respectively, 

in the experimental group (Figure 3). The vector group 
(0.415±0.054, 0.691±0.082, 1.122±0.135, 1.202±0.125) and 
untransfected group (0.429±0.068, 0.710±0.087, 1.143±0.138, 
1.238±0.142), respectively, in the control groups; at 48, 
72 and 96 h, the difference between the experimental and 
control groups was statistically significant (P<0.05). 

Effects of HBXIP mRNA overexpression on the migration 
of TSCC cells

The results of the scratch test indicated that, after 
16 h of observation, the cell migration average rates 
in the experimental group (transfection group), the 
vector control group and the non-transfection control 
group were 41.22±4.80, 24.97±3.10 and, 21.14±2.95, 
respectively; the differences among the three groups were 
statistically significant (P<0.01) (Figures 4,5). After each 
experiment was repeated three times, the average value 
was determined.

Effects of HBXIP mRNA overexpression on the invasion of 
TSCC cells

As shown by the results of the Transwell assay, the average 
numbers of invading cells in the experimental group 
(transfection group), the vector control group and the 
non-transfection control group after 24 h of observation 
were 137.60±14.01,  91.00±10.84 and 92.00±9.70, 
respectively; the differences between the experimental and 
the control groups were statistically significant (P<0.001) 
(Figures 6,7). After each experiment was repeated five times, 
the average value was determined.

Effects of HBXIP mRNA overexpression on the PI3K/Akt 
signaling pathway (Western blotting)

The protein expression levels of HBXIP, AKT, p-AKT, 
PI3K, p-PI3K, and S100A4 in the experimental and 
control groups were detected by western blotting. The 
results of the relative protein expression demonstrated that 
HBXIP protein expression was significantly higher after 
HBXIP mRNA overexpression than before transfection; 
after HBXIP mRNA overexpression, the relative protein 
expression levels of p-AKT, p-PI3K and S100A4 in the 
experimental group were 1.60, 2.46 and 1.72, which were all 
increased, and the differences were statistically significant 

Figure 3 Cell proliferation in the experiment and control groups at 
24, 48, 72, and 96 h by MTT assay. The y-axis represents the OD 
value and the x-axis represents time. Cell growth was determined 
via MTT assay at 24, 48, 72, and 96 h. *, P<0.05 and **, P<0.01 
vs. control groups. Student’s t-test. Each experiment was repeated 
five times, the average value was determined. OD, optimal density; 
MTT, micro-culture tetrazolium.
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Figure 4 The cell migration rates in the experiment and control 
groups at 16 h by scratch test. The y-axis represents the cell 
migration rate and the x-axis represents the experiment and control 
groups. Cell migration was determined via scratch test at 16 h. **, 
P<0.01 vs. control groups. Student’s t-test. Each experiment was 
repeated three times, the average value was determined. 
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Figure 5 Comparison of cell migration between the experiment group and the control groups using an electronic microscope. (A) Control 
group (non-transfection group), 0 h; (B) control group (non-transfection group), 16 h; (C) control group (vector group), 0 h; (D) control 
group (vector group), 16 h; (E) experiment group (transfection group), 0 h; (F)** experiment group (transfection group), 16 h. Student’s t-test. 
**, P<0.01 vs. control groups. Each experiment was repeated three times, the average value was determined. 

(P<0.05) (Figure 2).

Discussion

HBXIP was first cloned from HepG2 cells by Melegari et al. 
in 1998 (6). Previous studies have shown that HBXIP can 
promote the proliferation and migration of tumor cells via 
various pathways and mechanisms, and that it plays a role in 
regulating the cell cycle and forming protein complexes. It 

may be a candidate molecular prognostic marker for ESCC 
(34-36).

In our preliminary study, we detected HBXIP protein in 
several cell lines derived from oral and maxillofacial tumors 
and found that it was expressed at a low level in the TSCC 
cell line. Based on this preliminary study, the present study 
aimed to further clarify the effects of HBXIP on TSCC cells 
and to specifically investigate the effects of HBXIP mRNA 
overexpression on the proliferation, invasion, and metastasis 
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A
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Figure 6 Comparison of cell invasion between the experimental group and control groups in the transwell test. (A) Control group (non-
transfection group); (B) control group (vector group); (C)** experiment group (transfection group). **, P<0.001 vs. control groups. Each 
experiment was repeated five times, the average value was determined. Diff-Quick stain. 
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Figure 7 Comparison of the numbers of invading cells between 
the experiment group and the control groups at 24 h. The y-axis 
represents the number of invading cells and the x-axis represents 
the experiment and control groups. The number of invading cells 
was determined by transwell test after 24 h. **, P<0.001 vs. control 
groups. Student’s t-test. Each experiment was repeated five times, 
the average value was determined.

of TSCC cells and on the PI3K/Akt signaling pathway. In 
the present study, plasmid construction and cell transfection 
were first performed, and then the cells were divided into 
the experimental group (transfected with pEGFP-N1-
HBXIP), the control group (non-transfected) and the vector 
control group (transfected with pEGFP-N1). HBXIP 
expression was determined by RT-PCR in the experimental 
and control groups, and the ability of HBXIP to promote 
TSCC cell proliferation was measured via MTT assay, 
which showed that HBXIP overexpression could promote 
cell proliferation. Furthermore, the ability of HBXIP to 
promote the migration and invasion of TSCC cells was 
detected by scratch test and transwell assay, respectively, 
and the results suggested that HBXIP overexpression could 
promote cell migration and invasion. The above findings 
indicate that HBXIP overexpression can facilitate the 
biological behaviors (proliferation, migration, and invasion) 
of TSCC cells. Some studies have demonstrated that 
HBXIP promotes the proliferation and migration of breast 
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cancer cells, pancreatic cancer, and also oral squamous cell 
carcinoma by regulating S100A4 expression (17,21,37). In 
this study, HBXIP enhanced cell migration by increasing 
S100A4 protein expression. 

Since the gene regulatory process in cells is a complex, 
dynamic network, we tried to identify the mechanisms by 
which HBXIP regulates PI3K/Akt. HBXIP was able to 
active AKT signaling in HepG2 cells (32). Wang found that 
activation of the PI3K/Akt signaling pathway is involved in 
S100A4 and induces viability and migration in colorectal 
cancer cells (37). The PI3K/Akt signaling pathway is 
activated by AKT phosphorylation; total AKT protein is 
constant in cells, and only its phosphorylation level varies. 
AKT is the core effector of the PI3K/Akt signaling pathway, 
while PI3K is an important upstream protein that plays a role 
in several biological processes, including cell metabolism, cell 
cycle regulation, cell growth, and apoptosis. In this study, we 
detected the protein expression levels of AKT, p-AKT, PI3K 
and p-PI3K by western blotting and found an remarkable 
increase in phosphorylation; the differences were statistically 
significant. These findings reveal that HBXIP overexpression 
can promote the phosphorylation of AKT and PI3K, the 
activation of PI3K/Akt signaling pathway, and the biological 
activities of TSCC cells. 

Collectively, our results indicate that HBXIP can influence 
the biological functions of TSCC cells by activating the 
PI3K/Akt signaling pathway via phosphorylation of pI3K 
and AKT and by inducing S100A4 protein expression. This 
study provides an important experimental foundation for the 
targeted treatment of TSCC.

Conclusions

HBXIP mRNA overexpress ion can inf luence the 
proliferation, invasion, and migration of TSCC cells and 
promote their proliferation and migration by increasing the 
protein expression levels of p-AKT, p-PI3K and S100A4.
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