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Background: Long-term observations and studies have found that the occurrence and development of 
lung adenocarcinoma (LUAD) is associated with certain metabolic changes and that metabolic disorders are 
directly related to carcinogenic gene mutations. We attempted to establish a prognostic model for LUAD 
based on the expression profiles of metabolic genes. 
Method: We analyzed the gene expression profiles of patients with LUAD obtained from The Cancer 
Genome Atlas (TCGA). Univariate Cox regression was used to assess the correlation between each metabolic 
gene and survival. The survival-related metabolic genes were fit into the least absolute shrinkage and 
selection operator (LASSO) to establish a prognostic model for LUAD. After 100,000 times of calculations 
and model construction, we successfully established a prognostic model consisting of 16 genes that can 
classify patients with LUAD into high-risk and low-risk groups. Further, the protein-protein interaction 
(PPI) network was built to determine the hub gene from16 metabolic genes. Finally, the top one hub gene 
was validated by real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR) and 
immunohistochemistry in our 50 paired LUAD and adjacent tissues, and the prognostic performance of 16 
metabolic genes was validated in GEO LUAD cohorts.
Results: Univariate Cox regression analysis and LASSO regression analysis results showed that the 
prognostic model established based on 16 metabolic genes could differentiate patients with LUAD with 
significantly different overall survival (OS) and that the prognosis of the high-risk group was worse than 
that of the low-risk group. In addition, the model can independently predict the OS of patients in both the 
training cohort and the validation cohort (training cohort: HR =2.44, 95% CI: 1.58–3.74, P<0.05; validation 
cohort: HR =2.15, 95% CI: 2.52–2.70, P<0.05). The decision curve analysis further showed that the 
combination use of the prognostic model and clinical features could better predict the survival of patients and 
benefit patients. In addition, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analyses revealed several basic signaling pathways and biological processes of metabolic genes in 
LUAD. Combined with the clinical features and metabolic gene characteristics of patients with LUAD, we 
also constructed a survival nomogram with a C-index of 0.701 to predict the survival probability of patients. 
The calibration curve confirmed that the nomogram predications were consistent with the actual observation 
results. The top one hub gene was TYMS, which was determined by PPI. TYMS levels in LUAD were 
detected by RT-qPCR and the expression of TYMS was significantly up-regulated in the LUAD tissue of all 
50 pairs (t=11.079, P<0.0001). Simultaneously, the correct of the prognostic model was validated, based on 
the data in GSE37745.
Conclusions: We constructed and validated a new prognostic model based on metabolic genes. This model 
could provide guidance for the personalized treatment of patients and improve the accuracy of individualized 
prognoses for patients with LUAD.
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Introduction

Lung cancer is one of the most common malignancies 
and seriously threatens human life and quality of life. The 
morbidity and mortality of lung cancer ranks first among 
all cancers in the world, showing an increasing trend year 
by year (1). Lung cancer can be divided into small cell 
lung cancer and non-small cell lung cancer (NSCLC). 
NSCLC accounts for approximately 2/3 of the total cases 
of lung cancer. Lung adenocarcinoma (LUAD) is a major 
pathological subtype of NSCLC. The incidence of LUAD 
is higher than that of squamous cell lung cancer (2). Since 
the early onset of LUAD is relatively occult, most patients 
are in advanced stages with extensive surrounding tissue 
invasion and lymph node metastasis at the time of diagnosis. 
Patients often receive treatments that include surgery, 
radiotherapy, chemotherapy and targeted therapy; however, 
due to the lack of effective biomarkers for diagnosis and 
patient prognosis, most patients still have a high risk of 
tumor recurrence and spread, and only 15% of patients 
survive more than 5 years (3,4). Previous risk assessments 
and treatment plans for patients with LUAD were mostly 
based on risk factors such as tumor size, stage and lymph 
node metastasis (5). However, these clinicopathological risk 
factors cannot clearly distinguish high-risk patients and 
low-risk patients. Therefore, to reduce mortality in patients 
with LUAD, good prognostic indicators must be established 
to guide treatment and clinical management.

Depending on cellular functional requirements and 
metabolic capacity, cells can use various metabolic pathways 
for energy production and biosynthesis (6). As an important 
feature of tumors, changes in cell metabolism are causally 
related to tumorigenesis (7,8). As early as 1924, Otto 
Warburg discovered that compared with normal mature 
cells, tumor cells generate energy to meet the requirements 
of rapid growth by absorbing more glucose with higher 
efficiency. Even in aerobic conditions, tumor cells 
breakdown excess glucose mainly through glycolysis, which 
is accompanied by the production of a large amount of lactic 
acid. This is known as the Warburg effect (9). The extensive 
application of modern molecular biology technologies has 

greatly promoted the development of tumor metabolism 
research, and the connotation of the Warburg effect has 
been further expanded. At present, the Warburg effect is no 
longer limited to changes in glycolysis and the tricarboxylic 
acid cycle. The Warburg effect now also includes many 
metabolic pathways, such as fatty acid metabolism, 
glutamine metabolism, serine metabolism, one-carbon 
metabolism and choline metabolism (10). Abnormal tumor 
cell metabolism mainly manifests as glucose decomposition 
by aerobic glycolysis; reduced oxidative phosphorylation; 
enhanced pentose phosphate pathway activity, active 
glutamine catabolism, de novo fatty acid synthesis and active 
β-oxidation (11). 

In previous studies, researchers found that to better 
adapt to the fluctuation of oxygen supply in the tumor 
growth environment, obtain raw materials required for 
growth and division, resist oxidative stress and trauma, 
thereby facilitating their own survival and metastasis, tumor 
cells must change their original metabolic model, i.e., the 
Warburg effect must be initiated (12). In fact, the metabolic 
changes in tumor cells are closely related to various stages of 
tumor occurrence and development. Overcoming telomere 
replication restrictions, reprogramming intracellular gene 
expression, resisting apoptosis, achieving immune escape 
and enhancing neovascularization all affect tumor cell 
metabolism to varying degrees (13). With the development 
of research techniques in cancer biology, the theory that 
metabolic abnormalities precede the occurrence and 
development of tumors has gradually been experimentally 
confirmed. Yun et al. found that glucose deficiency 
promoted the acquisition of mutations in KRAS and its 
signaling molecules in KRAS wild-type cells, indicating 
that abnormal cell metabolism can lead to proto-oncogene 
mutations (14), and Hu et al. used 13C-labeled pyruvate 
molecular imaging technologies in animals and found that 
metabolic changes in glycolysis preceded the formation and 
regression of c-Myc-induced tumors (15). In addition, Xu 
et al. also found that α-ketoglutarate exhibited competitive 
inhibition of various α-ketoglutarate-dependent dioxygenase 
activities to induce cancers (16). These experiments 
highlight the important role of abnormal cell metabolism 
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in the occurrence and development of tumors and in the 
prognosis of patients with tumors, indicating that metabolic 
genes may serve as prognostic markers for lung cancers.

However, metabolism is a complex biological process 
involving hundreds of molecules. Therefore, compared to 
a single metabolic gene, a comprehensive model consisting 
of multiple metabolic genes can improve the accuracy of 
patient prognosis. Different from traditional prediction 
indicators composed of a single molecule, models composed 
of multiple genes have higher accuracy in predicting the 
prognosis of patients. Taking this into consideration, we 
used univariate Cox regression analysis to screen and 
identify prognosis-related metabolic genes from a training 
cohort consisting of 288 patients with LUAD. Then, the 
obtained genes were subjected to least absolute shrinkage 
and selection operator (LASSO) regression to establish 
an optimal risk model to calculate the risk score for each 
patient. According to the median value of the calculated 
risk scores, the patients were divided into a high-risk group 
and low-risk group. The prognostic value of the model was 
assessed through survival analysis and further validated in 
a validation cohort consisting of 189 patients with LUAD. 
Moreover, a nomogram combining clinical features with 
the prognostic model was established to predict individual 

survival probability. Finally, we find a representative hub 
gene and carry on experiments to confirm it.

Methods

LUAD database and the clinical information of the 
patients

Metabolic gene expression profiles from 535 LUAD cases 
and 59 nontumor tissue samples as well as the clinical 
information of 522 patients with LUAD were downloaded 
from the official The Cancer Genome Atlas (TCGA) 
website (https://gdc-portal.nci.nih.gov/). After excluding 
patients with incomplete clinical data and patients with 
survival times less than 30 days, this study included data 
from 477 patients for analysis. The relevant clinical data 
included overall survival (OS), age, sex, TNM staging 
and pathological grade. The 477 patients were randomly 
divided into two groups based on a 3:2 ratio; among them, 
288 patients were included in the training cohort for 
constructing the prognostic model, while the remaining 
189 patients belonged to the validation cohort to validate 
the prognostic ability of the model. Furthermore, the 
prognostic gene signature was verified in the independent 
LUAD cohorts (GSE37745) (17). Table 1 provides detailed 

Table 1 Clinical characteristics of patients with LUAD in the present study

Characteristics Training cohort (n=288) Verifying cohort (n=189) TCGA total cohort (n=477) GSE37745 (n=105)

Vital stat 

Alive 186 119 305 29

Dead 102 70 172 76

Age (years) 

<65 129 92 221 52

≥65 159 97 256 53

Sex 

Female 159 97 256 60

Male 129 92 221 45

Stage 

I 158 109 267 70

II 67 40 107 18

III/IV 63 40 103 17

LUAD, lung adenocarcinoma.
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information for the datasets used in this study.

Acquisition and processing of the metabolic gene expression 
profiles of patients with LUAD 

The keyword “metabolism” was inputted into the 
GENECARDS website (https://www.genecards.org/) to 
search metabolic genes. Correlation coefficients were used 
to indicate the degree of the correlation between genes and 
metabolism, ranging from 0 to 100; the higher the score 
was, the closer the correlation. Genes with a correlation 
coefficient greater than 10 were used as candidate metabolic 
genes. R software (Version 3.6.0; https://www.R-project.
org) was used to retrieve the expression profiles of 1062 
metabolic genes from TCGA. Subsequently, the R software 
package “Limma” (18) was used for log2 conversion of 
mRNA sequencing. The absolute values of log2FC >1 
and adjusted P<0.05 were used as the threshold values 
for normalization and differential expression analysis. To 
explore the potential biological relevance of differentially 
expressed genes, the DAVID bioinformatics tool was 
used (https://david.ncifcrf) for  Gene Ontology (GO) 
enrichment analysis of coexpressed genes. Using the 
entire human genome as the background, the KO-based 
annotation system bioinformatics tool (http://kobas.cbi.pku.
edu.cn/) was applied for Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway analysis of metabolic genes. 
Functional enrichment analysis results (P<0.05) were used 
to determine potential biological functions. Clustering 
and visualization of functionally similar GO and KEGG 
enrichment analyses were performed using the R software 
package “ggplot2”.

Construction of a predictive model of metabolic genes 

Univariate Cox regression analysis was performed to 
evaluate the relationship between the expression of various 
differentially expressed genes and the OS of patients with 
LUAD. Considering the number of selected metabolic 
genes and their relationship with prognosis, genes with 
P<0.05 were identified as candidate genes. The candidate 
genes were further subjected to LASSO regression analysis. 
Lasso regression is a punishment strategy suitable for high-
dimensional data that can prevent overfitting (19). In this 
study, we used 10-fold cross-validation to determine the 
value of λ, and we choose λ with the least biases of partial 
likelihood as the optimal λ. Then, we used the identified 
predictive genes to construct a risk prediction model based 

on gene expression, as shown below.

=1
Risk Score = ( )

N

i i
i

Exp C∗∑

where N is the number of genes, Expi is the expression 
level of the gene, and Ci is the regression coefficient 
obtained from the LASSO regression analysis in the training 
cohort. The C-index was calculated to preliminarily assess 
the prediction accuracy of the model. Here, we propose 
that a C-index greater than 0.7 in the training cohort and 
the validation cohort indicates that the prognostic model 
is reliable and stable. The above method was implemented 
using GLIME and Hmisc in the R software package.

Analysis of protein-protein interaction (PPI) networks and 
find the hub gene

The Search Tool for the Retrieval of Interacting Genes/
Proteins (STRING) (https://string-db.org/cgi/input.pl) 
provides experimental and predicted proteins which are 
interacted with each other. STRING analysis was executed 
to form a PPI network, with the criterion of a combined 
score of >0.4. Besides, the 16 metabolic genes in the 
prognostic model were used as queries in the STRING 
database and the resultant PPI network was subsequently 
visualized by Cytoscape software. The top one hub gene 
was found by Cytoscape software with CytoHubba which is 
a plug-in in Cytoscape software.

Expression level of the hub gene (TYMS) by reverse 
transcription quantitative polymerase chain reaction  
(RT-qPCR) and immunohistochemistry

A total of 50 patient data with LUAD were collected (30 
females and 20 males; composite life was 64.55 years; 
range, 36 to 82 years), with both LUAD and adjacent lung 
tissue obtained through surgery and provided by Second 
Affiliated Hospital of the Guangxi Medical University and 
Chengdu Medical College, from May 2013 to July 2019. 
The experiments were approved by the Ethical Committee 
of the two hospitals and written informed consent was 
signed by each participant. Total RNA was isolated from 
the lung tissue using the Trizol reagent (ThermoFisher, 
the United States) according to the kit instructions, 
and a PCR amplification kit (ABI, Life, Technologies, 
the United States). Synthesis of cDNA was implement 
using the Superscript first strand cDNA synthesis kit 
according to the manufacturer’s protocol. RT-qPCR was 

https://www.genecards.org/
https://www.R-project.org
https://www.R-project.org
https://david.ncifcrf
http://kobas.cbi.pku.edu.cn/
http://kobas.cbi.pku.edu.cn/
https://string-db.org/cgi/input.pl
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carried out using ABI 7500 Prep-Station and the SYBR®-
Green PCR Master Mix. PCR was performed first with a  
10 minutes hot start, followed with 95℃ for 15 seconds, 
and 60 ℃ for 30 seconds for 40 cycles. The specific 
primers used were the following: TYMS forward:5'-
G G C A C C C T G T C G G TAT T C G - 3 ' ,  a d v e r s e : 5 ' -
CCCTTCCAGAACACACGTT-3' and β-actin (internal 
control) forward, 5'-CATCCTCACCCTFAAGTA-3', and 
reverse, 5'-ACACGCAGCTCATTGTAG-3'. The results 
were normalized to β-actin expression and calculated by 
the 2−∆Cq method. All RT-qPCR reactions and test were 
executed at least three times, repeatedly.

In the present study, TYMS protein expression was 
detected by immunohistochemistry (IHC) with TYMS 
antibody (Abcam, the United States). SPlink Detection kits 
(Biotin-Streptavidin HRP Detection Systems; SP-9000; 
Beijing, China) was applied to the IHC.

Sections were blocked with 10% goat serum for 
20 minutes at indoor temperature. Next, the primary 
antibody was added and incubated for one hour at indoor 
temperature. 

Additionally, 100 μL of the secondary antibody (Goat 
Anti-Rabbit Immunoglobulin G) which is also included 
in the SPlink Detection kits was added for incubation 
that lasting 15 minutes. All the experimental procedures 
must follow the kit instructions. Five random images 
were captured with a light microscope. The percentage 
of positive TYMS staining was evaluated by 0−4 scores, 
which suggested to ≤10, >10 to ≤25, 25 to ≤50, 50 to ≤75 
and 75 to ≤100%, respectively. The weak, moderate and 
strong intensities of TYMS staining were scored using 1, 2 
and 3, respectively. The scoring criteria were examined by 
two independent pathologists. if the score was >2, positive 
TYMS staining would be confirmed; if the score was ≤2 
negative TYMS staining would be confirmed.

Statistical analysis 

After modeling 10 million times, a prognostic model 
consisting of 16 metabolic genes was successfully 
established. The model was used to calculate a risk score 
for each patient with LUAD. Based on the median risk 
score, the included patients were divided into a high-risk 
group and a low-risk group. Next, we performed time-
dependent ROC curve analysis and calculated the area 
under the curve (AUC) with different survival times to 
measure the prediction accuracy of the established model. 
To further evaluate whether this model has advantages over 

other commonly used clinical parameters and whether this 
model is worthy of clinical application, we used decision 
curve analysis (DCA) to evaluate the prognostic model. The 
decision curve was plotted using the R software package 
“Decision Curve”. Next, we performed multivariate Cox 
regression analysis based on relevant clinical information 
such as age, sex, and pathological staging to verify 
whether the predictive power of the constructed model 
was independent of other clinical factors and whether the 
model could become an independent predictive factor. 
Multivariate regression analysis was performed to calculate 
regression coefficients and to plot a nomogram. The 
bootstrap method was used to evaluate the performance of 
the nomogram using the C-index. A calibration curve was 
used for visualization. In all analyses, P<0.05 was considered 
statistically significant. Statistical analysis was performed 
using SPSS 20.0 software, and GraphPad Prism 8.0 was 
used to plot the results of paired T test.

Results

Patient characteristics 

The flowchart for the study is shown in Figure 1. Table 1  
summarizes the common clinical characteristics of the 
patients. A total of 477 patients with LUAD were included 
in this study, including 288 in the training cohort and 189 
in the validation cohort.

Differentially expressed metabolic genes 

A total of 1,062 metabolic genes were obtained from the 
website GENECARDS. After differential expression 
analysis, we obtained 455 differentially expressed genes, 
125 of which were upregulated and 330 of which were 
downregulated [Figures 2,3 (volcano plot and heat map)]. 
Table 2 lists the top ten differentially expressed genes. We 
further performed a series of GO enrichment analyses and 
KEGG pathway analyses to further study the biological 
functions of these metabolic genes in the development 
and progression of LUAD. GOplot analysis showed that 
these genes are all related to metabolism and biosynthesis 
in biological processes, as shown in Figure 4. In terms 
of cellular components, these genes are involved in the 
mitochondrial outer membrane and RNA core complex, 
as shown in Figure 4. Regarding molecular function, 
these genes also play an indispensable role in coenzyme 
binding, as shown in Figure 4. In addition, KEGG pathway 
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Figure 1 Study flow chart for our analysis. TCGA, The Cancer 
Genome Atlas; LUAD, lung adenocarcinoma; ROC, receiver 
operating characteristic analysis; DCA, decision curve analysis.

Obtain Metabolism-related gene 
expression in TCGA microarray dataset

Gene selection with Univariate Cox 
algorithm

Union the genes from above algorithm as 
candidates for model construction

Construction of a prognosis risk score 
model using LASSO Cox analysis 

(randomly assigning 60% of the TCGA 
LUAD patients to the training set, and 

40% to the validation set)

Analysis: Survival analysis; Heat map; 
ROC; Cox regression

Nomogram and calibration curve for 
predicting prognosis; DCA to explore the 

potential clinical translational value

Functional annotation

enrichment analysis indicated that these genes are mainly 
enriched in purine metabolism and related pathways, as 
shown in Figure 5.

The construction and validation of a prognostic model of 
LUAD using the training cohort

First, univariate Cox regression of the training cohort was 
performed to analyze the 455 differentially expressed genes. 
A total of 59 metabolic genes were selected as candidate 
genes associated with prognosis (P<0.05). To avoid 
overfitting, these candidate genes were subjected to LASSO 
regression analysis. After the construction of the model 
(50,000 times), we successfully extracted 16 key metabolic 
genes and constructed a reliable and stable risk scoring 
model based on the regression coefficients generated by 
LASSO regression analysis, as shown in Figure 6A,B and 

Table 3. The C-index of the model was 0.815 and 0.794 
for the training cohort and validation cohort, respectively. 
Based on the expression levels of the 16 genes, a risk score 
was assigned to each patient, and then the patients were 
divided into a high-risk group (136 cases) and a low-risk 
group (152 cases) using the median risk score of 2.764. 
Kaplan-Meier survival analysis showed that the median 
survival time was 1.27 years in the high-risk group, which 
was significantly lower than that in the low-risk group 
(1.92 years) (P=2.183E-5) (Figure 7A). The 3- and 5-year 
survival rates for the high-risk group were 41.2% and 
29.5%, respectively. The 3- and 5-year survival rates for 
the low-risk group were 73.7% and 43.2%, respectively. To 
further validate the applicability and stability of the model, 
we performed the same analysis using the validation cohort 
and found that the median risk score was 3.125 for the 
189 patients with LUAD. According to this median score, 
the 189 patients were also divided into a high-risk group, 
with 102 patients, and a low-risk group, with 87 patients. 
Kaplan-Meier survival analysis showed that the OS of these 
two groups was significantly different. Specifically, the 
median survival time of the patients in the high-risk group 
was 1.51 years, which was significantly lower than that in 
the low-risk group (2.01 years) (P=5.83E-5). The 3- and 
5-year survival rates for the high-risk group were 39.6% 
and 20.5%, respectively, and the 3- and 5-year survival 
rates for the low-risk group were 74.6% and 44.6%, 
respectively, as shown in Figure 7B. The time-dependent 
ROC curve plotted using the prognostic model consisting 
of 16 metabolic genes predicted AUC values of 0.732 and 
0.69 for the 3- and 5-year survival rates, respectively, for the 
training cohort, indicating that the prognostic model had 
excellent reliability in predicting survival. The ROC curve 
is shown in Figure 8A. The predicted AUC values for the 3- 
and 5-year survival rates were 0.703 and 0.703 respectively, 
in the validation cohort, which was basically consistent with 
the training cohort, as shown in Figure 8B. Figure 9A,B,C 
show the risk score distribution, survival status, and heat 
map of the expression profiles of 16 metabolic genes of 288 
patients with LUAD in the training cohort. The ALDOA, 
LDHA, and PTGES genes showed high expression in the 
high-risk group, while these genes showed low expression 
in the low-risk group. The risk score distribution, survival 
status and gene expression profile heat map of the validation 
cohort were consistent with those of the training cohort 
(Figure 9D,E,F). Univariate analysis was performed on the 
models consisting of 16 metabolic-related genes in the 
training and validation cohorts. The results suggested that 
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Figure 2 Heat map of differentially expressed genes. Heat map of differentially expressed genes between LUAD tissues and matched normal 
tissues. The orange column represents cancer tissues, and blue column represents matched normal tissues. LUAD, lung adenocarcinoma.
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Figure 3 Volcano map of differentially expressed genes between 
LUAD tissues and matched normal tissues. The red dot represents 
up-regulated genes, and green dot represents down-regulated 
genes. LUAD, lung adenocarcinoma.

this model was closely related to the survival of patients 
with LUAD (training cohort: HR =2.34, 95% CI: 1.64–3.26, 
P<0.05; validation cohort: HR =2.58, 95% CI: 1.86–3.83, 
P<0.05). Table 4 provides more detailed results.

The prognostic model consisting of 16 metabolic genes was 
an independent predictor of survival 

Multivariate Cox regression analysis was performed on 
the prognosis model in the training and validation cohorts 
to assess whether the predictive power of the model was 
independent of other clinical factors, such as age, sex and 
pathological stage. In the multivariate Cox regression 
analysis, OS was used as the dependent variable, and other 
clinical factors were used as the covariates. The results 
showed that after adjusting for other clinical factors, the OS 
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Table 2 Top 10 differentially expressed genes

Gene symbol logFC P value fdr Regulation 

CA4 −4.19382 3.12E-34 2.05E-32 Down 

ALAS2 −3.84285 7.46E-26 5.92E-25 Down 

GPD1 −3.78296 7.28E-33 2.72E-31 Down 

CYP1A2 −3.59665 2.04E-33 1.04E-31 Down 

OTC −3.52038 4.27E-33 1.90E-31 Down 

INMT −3.33088 8.52E-35 8.11E-33 Down 

ADCY8 −3.18507 2.99E-32 8.12E-31 Down 

FMO2 −3.09618 5.14E-35 6.52E-33 Down 

ADH1B −3.07807 4.72E-34 2.77E-32 Down 

ACADL −2.98845 1.16E-34 8.82E-33 Down 

AOC1 5.078884 9.26E-17 2.92E-16 Up 

AKR1C4 5.140016 0.006155 0.007552 Up 

ITPKA 5.280638 3.94E-28 4.62E-27 Up 

CA9 5.652221 1.57E-25 1.16E-24 Up 

GPX2 6.013781 1.91E-08 3.41E-08 Up 

PLA2G2F 6.121566 3.79E-19 1.48E-18 Up

UGT2B15 6.158543 3.85E-08 6.78E-08 Up 

PAH 6.237651 1.97E-11 4.31E-11 Up 

AKR1B10 7.530102 3.24E-14 8.50E-14 Up 

UGT2B11 7.79052 1.73E-09 3.28E-09 Up 

of patients with LUAD were significantly correlated with 
the prognostic model in the training cohort and validation 
cohort (training cohort: HR =2.44, 95% CI: 1.58–3.74, 
P<0.05; validation cohort: HR =2.15, 95% CI: 1.52–2.70, 
P<0.05) (Table 4, Figure 10A,B).

After assessing the prediction accuracy and independence 
of the model, we focused on whether a tool combining this 
model with commonly used clinical factors could benefit 
patients with LUAD in clinical practice. Therefore, we 
performed a DCA on the prognostic model to assess the 
net benefits that the patients might obtain, as shown in 
Figure 11. The results showed that the combination of the 
model with age, sex and staging can better predict survival 
of patients with LUAD in the training cohort and the 
validation cohort.

The establishment of the nomograph 

To develop a clinically applicable method to predict the 

OS of an individual patient, we plotted a nomograph using 
the prognostic model. The nomograph was plotted after 
multivariate analysis of the patients with LUAD, as shown 
in Figure 12. The calibration curves for the 3- and 5-year 
OS rates suggest that the model has excellent predictive 
ability for the prognosis of patients with LUAD (3-year 
survival, 0.701, 5-year survival, 0.685) (Figure 13).

Validation of the prognostic model in the independent 
LUAD cohorts

We next assessed the predictive power of the prognostic 
model in the independent LUAD cohorts from the 
GSE37745 database. In GSE37745, patients were separated 
into low and high-risk groups based on the calculated risk 
score, and the OS of the two group was compared. Patients 
at low risk survived significantly longer than those in high 
risk (P=0.036, and maximum AUC =0.672). Moreover, the 
prognostic model consisting of 16 metabolic genes was also 
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an independent predictor of survival in GSE37745 (Table 4, 
Figure 14A,B).

Up-regulation of TYMS mRNA by RT-qPCR

Mapping of PPI networks allowed the construction of a 
landscape showing how the proteins produced by the genes 
in our prognostic model. By mapping the whole network, 
we identified TYMS as the top one hub gene (Figure 15). 
We analyzed the differential expression of TYMS in 50 
LUAD and para-carcinomatous tissue sample pairs through 
RT-qPCR (Table 5). Expression of TYMS was significantly 
up-regulated in LUAD tissue of all 50 pairs (9.121±2.543, 
t=11.079, P<0.001) (Figure 16). Quite notably, expression of 

TYMS in advanced LUAD was higher than in early stage 
LUAD (t=−3.584, P=0.001). 

Experimental evidence of TYMS at the protein level by 
IHC

The staining status of the TYMS antibody was evaluated 
by an IHC assay and the images of IHC are presented in  
Figure 17. In 50 LUAD tissues, the number of positive 
TYMS tissues (68%) was higher than the negative tissues 
(32%). In the 50 non-cancerous tissues, the number of 
negative TYMS tissues (70%) was higher than the number 
of positive tissues (30%). A significant difference in TYMS 
expression was found between LUAD and non-cancerous 
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Figure 5 KEGG pathway map. KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Table 3 Functions of 16 genes from the prognostic gene signatures

No. Gene symbol  Full name Function Coefficient of risk 

1 TYMS Thymidylate Synthetase Fluoropyrimidine activity and metabolism of 
nucleotides 

0.012000842

2 GNPNAT1 Glucosamine-Phosphate 
N-Acetyltransferase 1 

Synthesis of substrates in N-glycan biosynthesis 0.02509742

3 LPGAT1 Lysophosphatidylglycerol 
Acyltransferase 1 

Glycerophospholipid biosynthesis 0.010592199

4 INPP4B Inositol Polyphosphate-4-Phosphatase 
Type II B 

Inositol phosphate metabolism 0.029983089

5 MAOB Monoamine Oxidase B Super pathway of tryptophan utilization −0.013252539

6 MTHFD2 Methenyltetrahydrofolate 
Cyclohydrolase 

Nucleotide metabolism and selenium micronutrient 
network 

−0.005686523

7 ADCY9 Adenylate Cyclase 9 Adenylate cyclase inhibition −0.020756554

8 PTGIS Prostaglandin I2 Synthase Prostaglandin 2 biosynthesis 0.008160885

9 ALOX12B Arachidonate 12-Lipoxygenase, 12R 
Type 

Arachidonic acid metabolism and prostaglandin 2 
biosynthesis 

0.110691209

10 GSTA3 Glutathione S-Transferase Alpha 3 Glutathione metabolism and platinum drug resistance −0.08312793

11 LDHA Lactate Dehydrogenase A Pyruvate metabolism and citric acid (TCA) cycle 0.00196183

12 UCK2 Uridine-Cytidine Kinase 2 Fluoropyrimidine activity and metabolism of 
nucleotides 

0.027401706

13 ENTPD2 Ectonucleoside Triphosphate 
Diphosphohydrolase 2 

Metabolism of nucleotides 0.035619134

14 PTG level Prostaglandin E Synthase Arachidonic acid metabolism 0.001613886

15 NT5E 5'-Nucleotidase Ecto Metabolism of nucleotides and NAD metabolism 0.003867883

16 ALDOA Fructose-Bisphosphate Aldolase A Innate immune system and carbon metabolism 0.000733303

lung tissues through Pearson chi-square (χ2=14.44, 
P=0.0001). 

Discussion

Unlimited rapid proliferation is one of the most important 
biological characteristics of lung cancer cells. To meet the 
needs of rapid proliferation, tumor cells exhibit metabolic 
characteristics that are different from those of normal cells: 
(I) under both oxygen-rich or hypoxic conditions, glycolysis 
is used as the main energy production mode; (II) a large 
number of lipids are synthesized to meet the needs of the 
formation of organelle biofilms in tumor cells and their 
own special biological functions; and (III) a large number of 
protein substances are produced to maintain the structure 
and function of the cells (20,21). In recent years, increasing 

evidence has indicated that the abnormal expression 
of metabolic genes is involved in the development and 
progression of lung cancer. Guo et al. (22) performed high-
throughput sequencing of blood samples from patients 
with LUAD and detected mutations in a large number 
of metabolic genes. These genes included metabolite 
transporter genes (CD98 and MCTs), key genes of the 
tricarboxylic acid cycle (SDH, IDH, and FH), key genes 
in glucose metabolism (GLUT1 and GPI) and nucleotide 
anabolism genes (TYMS and RRM2B). In addition, Guo  
et al. also found that mutations of these metabolic genes 
were associated with the progression of NSCLC. Pérez-
Ramírez et al. (23) also showed that NSCLC patients with 
MDM2 mutations had a shorter OS. To date, hundreds of 
proteins have been considered to be involved in metabolic 
processes. Given the importance of metabolic genes in lung 
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Figure 7 Kaplan-Meier analysis of LUAD patients stratified by the median risk score. Survival analysis of the training cohort (A) and 
validation cohort (B). The high-risk scores were related to poor overall survival in TCGA-LUAD. LUAD, lung adenocarcinoma; TCGA, 
The Cancer Genome Atlas.

cancer, we speculate that metabolic genes may have certain 
importance in patient prognosis and can be used as ideal 
markers for prognoses. 

In this study, we analyzed the mRNA expression of 455 
metabolic genes in the TCGA dataset. Among them, 59 
genes were associated with the survival of patients with 
LUAD. We established a prognostic model consisting of 
16 genes using LASSO regression. The risk scores for each 
patient were calculated by integrating the mRNA expression 
levels and regression coefficients of selected genes. The 
prognostic model divided the patients with LUAD into a 
high-risk group and a low-risk group, and the OS for the 

high-risk and low-risk groups was significantly different. 
More importantly, the prognostic model composed of the 
above 16 genes was also validated in a validation cohort 
with 189 patients. Over the past decade, many researchers 
have developed prognostic models related to clinical disease 
outcomes. These models, also known as classifiers, are 
often used to predict the prognosis of patients with various 
diseases (24-26). Some models are even better than TNM 
staging in predicting prognosis. Currently, prognostic 
models based on metabolic genes have been reported in 
liver cancer and breast cancer. For example, Liu et al. (27) 
recently reported a predictive prognostic model consisting 
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of four metabolic genes (ACAT1, GOT2, PTDSS2 and 
UCK2) to predict OS in patients with hepatocellular 
carcinoma (HCC). This prognostic model successfully 

separated patients with significantly increased early 
recurrence risk from patients with low risk. Comparing the 
model established in this study with the model developed 
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Table 4 Univariate and multivariate Cox regression analysis in each cohort

Variables
 Univariate analysis  Multivariate analysis 

 HR 95% CI P value  HR 95% CI P value 

(I) Training cohort (n=288)

Risk score for 16 metabolism-related 
genes (high/low risk)

2.34 1.64–3.26 <0.001 2.44 1.58–3.74 <0.001

Age (≥65/<65 years) 1.24 0.82–2.20 0.19 1.11 0.89–1.73 0.87

Sex (female/male) 0.99 0.52–1.32 0.21 1.03 0.69–1.52 0.91

Stage

II vs. I 1.72 1.11–2.92 0.04 1.74 1.21–3.24 0.03

III/IV vs. I 2.74 1.87–4.45 <0.001 2.53 1.63–4.83 <0.001

(II) Verification cohort (n=189) 

Risk score for 16 metabolism-related 
genes (high/low risk)

2.58 1.86–3.83 <0.001 2.15 1.52–2.70 0.001

Age (≥65/<65 years) 1.20 0.88–1.67 0.41 1.54 0.79–2.24 0.15

Sex (female/male) 0.87 0.68–1.32 0.21 0.83 0.58–2.43 0.42

Stage

II vs. I 1.85 1.82–2.93 0.02 1.89 1.64–3.35 0.02

III/IV vs. I 4.24 2.55–7.32 <0.001 4.42 2.64–8.21 <0.001

(III) GSE37745 (n=105) 

Risk score for 16 metabolism-related 
genes (high/low risk)

2.25 1.37–3.61 0.001 1.80 1.35–2.47 0.001

Age (≥65/<65 years) 1.21 0.92–1.65 0.112 1.02 0.76–1.43 0.82

Sex (female/male) 0.91 0.68–1.32 0.21 0.86 0.53–2.28 0.38

Stage

II vs. I 1.98 1.44–2.83 0.002 1.56 1.24–2.47 <0.001

III/IV vs. I 2.88 1.53–4.76 <0.001 2.33 1.33–3.91 <0.001

by Liu, we found that the UCK2 gene appeared in both 
models, indicating that the UCK2 gene plays a role in both 
HCC and LUAD. UCK2 is a pyrimidine nucleotide kinase 
capable of phosphorylating uridine and cytosine to uridine 
monophosphate and cytidine phosphate monophosphate. 
UCK2 is the rate-limiting enzyme in the salvage pathway 
of pyrimidine nucleotides. When a tumor develops, various 
physiological functions of the body become disordered, and 
the normal de novo synthesis of nucleotides may be affected 
to some extent. Therefore, the amount of generated 
nucleotides cannot satisfy the rapid proliferation and 
strong metabolism of tumor cells. The existence of salvage 
pathways meets the needs of tumor proliferation. Therefore, 

the expression of UCK2 was elevated in both HCC and 
LUAD. Huang et al. (28) also showed that UCK2, as an 
oncogene, promoted the proliferation and invasion of HCC 
cells. Knocking out UCK2 inhibited the proliferation and 
colony formation ability of tumor cells. Wu et al. (29) also 
showed that UCK2 promoted the proliferation of LUAD 
cells and might be involved in the MTOR1 signaling 
pathway or interacts with the MYC or E2F genes.

To evaluate the prediction accuracy of the prognostic 
model, we performed time-dependent ROC curve analysis 
and calculated the AUC values at different cut-off times. 
The AUC value of the 3-year survival rate was predicted 
to be 0.732, and the AUC value of the 5-year survival rate 
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Figure 10 Multivariate Cox regression analysis of the training cohort (A) and validation cohort (B). Forest plot of the relationship between 
risk factors and the survival rate of patients with LUAD. LUAD, lung adenocarcinoma.
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was 0.69 in the validation cohort. The above results are 
consistent with those in the training cohort, demonstrating 
excellent prediction accuracy of the model. However, AUC 
only focuses on the prediction accuracy of the model and 
does not suggest whether the model is worthy of clinic 
application. DCA is a statistical method that contains 
results and thus can provide information for whether the 
model can be used in the clinical practice (30). We applied 
DCA to evaluate our prognostic model and found that 
the combination of the prognostic model with clinical 
parameters such as age, sex and staging can benefit patients 
with LUAD the most.

Using the prognostic model, we found that the 
expression of ALDOA, LDHA, PTGES, and MTHFD2 
was relatively high in high-risk patients and that the 
expression of the above genes was low in low-risk patients. 
ALDOA is a glycolytic enzyme and an essential enzyme 
for ATP synthesis that can promote the invasiveness of 
tumor cells by regulating the wnt signaling pathway (31). 
LDHA is associated with the progression of breast cancer, 
lung cancer, and glioma (32,33). Wang et al. (34) found 
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Yellow and Red represent for up-regulated genes. PPI, protein-
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that PTGES, a key enzyme that synthesizes PGE2 in 
the arachidonic acid pathway, is highly downregulated in 
NSCLC. The abnormal expression of PTGES is critical for 
the promotion of lung cancer cell migration and metastasis. 
This is related to the imbalance of protein stability by 
the deubiquitinating enzyme USP9X. MTHFD2 is a 
bifunctional enzyme located in mitochondria and is 
overexpressed in various malignant tumors. Yu et al. (35) 
showed that MTHFD2 knockout inhibited the proliferation 
of lung cancer cells by mediating the inhibition of cell cycle-
related genes, providing a new basis for targeted therapy of 
NSCLC.

Bioinformatics studies showed that the 16 genes in 
the LUAD prognostic model were mainly related to 
purine metabolism, pyrimidine metabolism, glycolysis 
and other signaling pathways, indicating that multiple 
metabolic pathways undergo significant changes during cell 
malignant transformation. The involved pathways are the 
tricarboxylic acid cycle, oxidative phosphorylation, amino 
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Table 5 Relationship between TYMS expression level and clinicopathological parameters in LUAD based on RT-qPCR 

Clinicopathological features N TYMS expression (mean ± SD) T P

Tissues 11.079 <0.001

Non-cancerous 50 4.11±2.255

LUAD 50 9.121±2.543

Size 1.866 0.068

≤3 cm 16 8.681±2.689

>3 cm 34 10.075±1.948

TNM −3.584 0.001

I–II 24 7.917±2.606

III–IV 26 10.232±1.937

Sex −0.503 0.617

Male 26 8.946±2.577

Female 24 9.311±2.546

Age −1.514 0.137

≤65 years 21 8.489±2.864

>65 years 29 9.579±2.223

LUAD, lung adenocarcinoma; RT-qPCR, reverse transcription quantitative polymerase chain reaction.
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Figure 16 Differential expression levels of TYMS in LUAD and 
non-cancerous lung tissue. LUAD n=50, non-cancerous lung tissue 
n=50. LUAD, lung adenocarcinoma. 

acid metabolism, fatty acid metabolism and nucleic acid 
metabolism. Cell malignant transformation is therefore 
also known as reprogramming of energy metabolism in 
tumor cells, usually caused by gene mutations (36,37). 
Interestingly, this study found that metabolic genes also 
play roles in tumor drug metabolism pathways, suggesting 

that metabolic genes may be associated with antitumor 
drug resistance. This study also found that a large number 
of metabolic genes are involved in the glycolysis pathway. 
Glucose metabolism is the main energy source of cells. 
Warburg confirmed that due to the rapid growth of tumor 
cells, glycolysis can still be used for glycolysis in the 
presence of adequate oxygen. Complex factors such as the 
microenvironment and gene mutations can cause changes 
in glucose metabolism in tumor cells. First, it can cause the 
upregulation of glycolysis-associated enzymes and GLUT; 
on the other hand, the tricarboxylic acid cycle is inhibited, 
and the aerobic oxidation of mitochondria is weakened, 
resulting in increased glycolytic activity (38). Zhang et al. (4)  
suggested that glycolytic genes were associated with the 
poor prognosis of patients with LUAD, which is consistent 
with the findings of our study.

It is worth noting that purine nucleotide metabolic 
pathways are the most closely related to metabolic genes, 
indicating the imbalance of purine nucleotide metabolism in 
the process of lung cancer occurrence. Rampazzo et al. (39)  
showed that the antitumor mechanisms of gemcitabine 
involve competitive inhibitory effects on metabolic enzymes 
that interfere or inhibit the synthesis of purine nucleotides. 
A large amount of CN-II enzymes on the surface of tumor 



3536 He et al. Construction of a prognostic model for LUAD based on bioinformatics analysis of metabolic genes

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2020;9(5):3518-3538 | http://dx.doi.org/10.21037/tcr-20-1571

cells can cause the dephosphorylation of nucleoside analogs 
and thus drug resistance. Yuan (40) suggested that serum 
uric acid plays an antioxidant role but that increased serum 
uric acid is correlated with an increased risk of lung cancer 
and mortality. Uric acid has complex biological functions in 
lung cancer. The prognostic model developed in this study 
also included the ADCY9 gene, which is involved in purine 
metabolism. ADCY9 is a member of the membrane-bound 
adenylate cyclase family and plays an important regulatory 
role in cell proliferation and differentiation. Tan et al. (41) 
showed that ADCY9 gene mutations reduced the amount 
of mitochondrial DNA, suggesting that ADCY9 plays a role 
in providing dNTPs for mitochondrial DNA synthesis, thus 
affecting the proliferation and metastasis of lung cancer. 
However, the specific mechanisms and pathways that affect 
the proliferation and metastasis of LUAD by ADCY9 still 
require further basic research.

Finally, we developed a nomograph to predict the OS 
of an individual patient. A nomograph is a stable and 
reliable tool for quantitative analysis by combining and 
depicting risk factors. It has been widely used to assess the 
prognosis of various diseases, including lung cancer (42). 
A nomograph generates a statistical prediction model that 
is presented as a graph to assign values to specific clinical 
factors (e.g., age, sex and staging). By summarizing all the 
points, a nomograph can provide an individual patient with 
a digital display of prognoses, such as OS, time to relapse, 
and interval of acute exacerbation. In addition to traditional 
clinical features (TNM staging, tumor size and target gene 
mutations), risk scores calculated using prognostic models 
can also be included in predictive nomographs to better 
predict prognosis. Li et al. (19) reported a nomograph 

for predicting the 1-, 3-, and 5-year OS of patients with 
LUAD. The risk score was calculated based on gene 
expression in the model. The results suggested that the 
combination of risk scores and traditional prognostic 
factors can more accurately predict prognosis, which is 
consistent with the findings of our study. The calibration 
curve established in this study showed that the nomograph 
combining the prognostic model consisting of metabolic 
genes and conventional prognostic factors could accurately 
predict the 3- and 5-year survival of patients with LUAD. 
When the same prognostic model was used to calculate risk 
scores in GSE37745, we found that this model also could 
provide with high prediction ability.

In order to further verify the accuracy of the model, we 
choose TYMS gene as a representative metabolic gene using 
PPI network. Then, we verify the expression of TYMS in 
LUAD tissues by RT-qPCR and immunohistochemical 
staining. Expression of TYMS was significantly up-regulated 
in LUAD tissue of all 50 pairs. Moreover, expression of 
TYMS in advanced LUAD was higher than in early stage 
LUAD. A significant difference in TYMS expression was 
also found between LUAD and non-cancerous lung tissues 
using immunohistochemical staining. TYMS is the enzyme 
which catalyze the reaction that provides the sole de novo 
intracellular source of thymidylate, which is important for 
Folic acid metabolism and DNA synthesis. Elevated TYMS 
expression or activity may play a part in the proliferation 
and metastasis of lung cancer.

In summary, based on the TCGA dataset, we constructed 
a prognostic model consisting of 16 metabolic genes. 
This model represents an independent prognostic factor. 
The nomograph combining the prognostic model and 

A B

Figure 17 IHC staining of TYMS expression in lung adenocarcinoma and non-cancerous lung tissue. (A) IHC of non-cancerous lung tissue 
(magnification, ×100). (B) IHC of lung adenocarcinoma (magnification, ×100). IHC, immunohistochemistry.
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conventional prognostic factors could accurately predict the 
3- and 5-year survival of induvial patients with LUAD. This 
study may provide guidance for the individualized treatment 
of patients with lung cancer.
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