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Introduction

Multiple myeloma (MM) could cause multi-organ 
damage, such as the hemopoietic system, bones, and 
kidneys. The reasons are uncontrollable monoclonal 
plasma cell proliferation and the secretion of monoclonal 
immunoglobulin (1). Although there are many different 
treatment options, most patients will have a good outcome 
in case of receiving an early treatment. However, after the 
continuous treatment of either chemotherapy, or radiation 
therapy, some patients will relapse due to acquired drug 

resistance. Hence, MM remains as an incurable disease (1,2). 
Therefore, the study of its mechanism of resistance has 
great significance in the research of new drugs, prolonging 
the survival time of patients, and improving the prognosis. 

Cancer is a chronic disease that is widespread worldwide. 
Mostly, the high mortality from cancer correlates with the 
lack of clear symptoms, which results in late diagnosis for 
patients, and consequently, advanced tumor disease with 
poor probabilities for cure, because many patients will 
exhibit chemo- and radio-resistance. Several mechanisms 
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have been studied to explain chemo- and radio-resistance 
to anti-tumor therapies, including cell signaling pathways, 
anti-apoptotic mechanisms, stemness, metabolism, and 
cellular phenotypes. Interestingly, the presence of cancer 
stem cells, which are a subset of cells within the tumors, has 
been correlated to therapy resistance (3-8).

In our study, we aim to explore the mechanism of drug 
resistance in multiple myeloma (MM).

Methods

Cells culture

The Roswell Park Memorial Institute (RPMI) 1640 medium 
(Gibco BRL) and 10% fetal calf serum (Gibco BRL) was 
used to culture cells (37 ℃ in a 5% CO2 atmosphere). The 
RPMI-8226 cell lines were acquired from the Chinese 
Academy of Sciences. Cells were observed, and received 
radiation doses of 6 Gy in the logarithmic growth phase. 
For the Cell Counting Kit 8 (CCK-8) CCK-8 assay, 2×104 
cells that received radiation or did not receive radiation were 
separately seeded per well in a 96-well plate. Each plate was 
added with 100 μL of cell culture medium and bortezomib 
at different concentrations (Xian Janssen). At 48 hours later, 
these cells were incubated with 10 μL of Cell Counting Kit 
(CCK) solution (Dojindo) for 1–4 hours. The absorbance 
was measured by microplate autoreader (BIO-RAD). 

Flow cytometry

For the cell cycle distribution assay, cells were fixed with 
70% ethanol (Sigma) at −20 ℃ overnight, and washed 
with phosphate buffered saline. Then, these cells were 
resuspended in phosphate buffer saline (PBS), concomitantly 
treated with Rnase A (Sigma), and stained with 50 μg/mL of 
propidium iodide (PI; KeyGEN BioTECH) for 15 minutes. 
Afterwards, cell apoptosis was assessed using an Annexin V 
staining Kit (KeyGEN BioTECH). Next, cells were washed 
twice with PBS and resuspended in binding buffer before 
incubation with Annexin V and PI for 15 minutes at room 
temperature. The cell cycle distribution and apoptosis were 
analyzed using BD FACSCanto.

Western blotting

Cells were lysed in Radio Immunoprecipitation Assay 
(RIPA) buffer, 1 mM salt of sodium (NaF), 10 mM Na3VO4, 
1 mM Phenylmethylsulfonyl fluoride (PMSF), and a 

protease inhibitor cocktail (Roche, Indianapolis, IN, USA). 
After incubation at 4 ℃ for 30 minutes, the lysate was 
centrifuged at 15,000 g for 10 minutes at 4 ℃. The protein 
concentration was determined using a bicinchoninic acid 
(BCA) assay (Pierce, Rockford, IL, USA). The samples 
were denatured for five minutes at 95 ℃ and subjected 
to 10% SDS⁄PAGE. Then, the separated proteins were 
transferred onto a polyvinylidene fluoride (PVDF) 
membrane (Millipore, Bedford, MA, USA). Afterwards, the 
membrane was blocked in 5% (w⁄v) skim milk-Tris-Buffered 
Saline Tween-20 (TBST) (10 mM Tris, 150 mM NaCl, and 
0.05% Tween 20, pH 8.3) solution, followed by incubation 
with the primary antibodies diluted in skim milk-TBST 
solution overnight at 4°C. Subsequently, the membrane was 
incubated with the corresponding horseradish peroxidase-
conjugated secondary antibody (Cell Signaling) for one 
hour at room temperature, and the immunoreactive protein 
bands were visualized by enhanced chemiluminescence 
reagents (Millipore).

Results

The bortezomib 48-hour IC50 of RPMI-8226

MM cell RPMI-8226 exhibited a significant change in 
morphology and drug sensitivity after radiation treatment. 
As shown in Figure 1, cells without radiation treatment grew 
suspended and exhibited normal morphology (Figure 1A). 
Cells with radiation treatment had a partly adherent growth, 
irregular membrane shape, and larger nucleolus (Figure 1B). 
The bortezomib 48-hour IC50 of cells without radiation 
treatment was 29.9 nmol/L, while the bortezomib 48-hour 
IC50 of cells after radiation treatment was 89.5 nmol/L. 
The NVP-BEZ235 for the 48-hour IC50 of RPMI-8226 
was 8.3×106 mol/L, and cells were finally treated with 1/2 
48-hour IC50 (4×106 mol/L).

Cell cycle

The cell cycle analysis of RPMI-8226 by flow cytometry 
revealed that 16.74% of cells without irradiation or 
bortezomib treatment were in the G0/G1 phase (Figure 2A), 
36.10% cells were in the G0/G1 phase after bortezomib 
was added at 48 hours before irradiation (Figure 2B), and 
24.11% cells were in the G0/G1 phase after bortezomib 
was added at 48 hours after irradiation (Figure 2C). These 
indicate that the induction of the G0/G1 cell cycle arrest 
by bortezomib on radiation-treated cells was significantly 
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Figure 2 Cell cycle distribution of RPMI-8226 cells by flow cytometry. (A) The ratio of the G0/G1 phase without bortezomib or radiation 
treatment; (B) the ratio of the G0/G1 phase with bortezomib, but without radiation treatment; (C) the ratio of the G0/G1 phase with 
bortezomib treatment after radiation; (D) the ratio of the G0/G1 phase in response to bortezomib after radiation treatment; (E) the ratio of 
the G0/G1 phase after radiation treatment, in response to bortezomib and NVP-BE235; (F) Student’s t-test was used to calculate P values. *, 
P<0.05. A representative example of more than five experiments is shown.

Figure 1 Morphological features of RPMI-8226 cells after radiation treatment. (A) Normal RPMI-8226 cells; (B) RPMI-8226 cells after 
radiotherapy. Original magnification: ×100. A representative example of more than five experiments is shown.
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Radiation-treated cells were divided into group A and 

group B. Group A was added with 1/2 48-hour IC50 of 
bortezomib, and the cell cycle was tested after 48 hours. 
The ratio of the G0/G1 phase was 26.59% (Figure 2D). 

Group B was added with 1/2 48-hour IC50 of bortezomib 
and 1/2 48-hour IC50 of NVP-BEZ235, and the cell cycle 
was tested after 48 hours. The ratio of the G0 phase cells to 
G1 phase cells was 43.54% (Figure 2E). These suggest that 
NVP-BEZ235 could contribute in significantly improving 
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Figure 3 Apoptosis analysis of RPMI-8226 cells by flow cytometry. (A) The ratio of apoptosis in response to bortezomib, but without 
radiation treatment; (B) the ratio of apoptosis in response to 48-hour culture with bortezomib after radiation treatment; (C) the ratio of 
apoptosis in response to 1/2 48-hour IC50 of bortezomib after radiation treatment; (D) the ratio of apoptosis in response to 1/2 48-hour 
IC50 of bortezomib and NVP-BE235 after radiation treatment; (E) Student’s t-test was used to calculate P values. *, P<0.05. A representative 
example of more than five experiments is shown.
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the effect of inducing the G0/G1 cell cycle arrest by 
bortezomib on radiation-treated cells (Figure 2F).

Apoptosis of cells

The apoptosis analysis by flow cytometry revealed that after 
adding bortezomib at 48 hours before irradiation, early 
apoptosis cells + late apoptosis cells accounted for 53.73% 
(Figure 3A), while after radiation-treated cells were added 
with bortezomib at 48 hours, early apoptosis cells + late 
apoptosis cells accounted for 31.25% (Figure 3B). These 
indicate that the apoptotic induction effect of bortezomib 
on irradiated cells was significantly attenuated.

Group A was added with 1/2 48-hour IC50 of 
bortezomib, and apoptosis was tested after 48 hours. The 
rate of apoptosis was 33.13% (Figure 3C). Group B was 
added with 1/2 48-hour IC50 of bortezomib and 1/2  
48-hour IC50 of NVP-BEZ235, and apoptosis was tested 
after 48 hours. The rate of apoptosis was 66.14% (Figure 3D). 
These indicate that NVP-BEZ235 could significantly increase 
the apoptotic induction of bortezomib on cells (Figure 3E).

Stem cell markers and the PI3K pathway

The protein expression of cells with radiation treatment 
was detected by Western blotting. It was revealed that the 
expression levels of stem cell markers (CD44, Oct4, and 
Sox2) were higher after radiation treatment (Figure 4A). 
However, when cells with radiation treatment were added 
with NVP-BEZ235, the expression levels of thse stem cell 
markers (CD44, Oct4, and Sox2) decreased (Figure 4B,C).

The results of Western blotting revealed that the 
expression levels of p110, p85, p-AKT and p-mTOR were 
higher after radiation treatment, indicating that radiation 
treatment may activate the PI3K/AKT/mTOR signaling 
pathway (Figure 5A). When cells with radiation treatment 
were added with NVP-BEZ235, the expression of p110, 
p85, p-AKT and p-mTOR decreased (Figure 5B,C).

Discussion

MM stem cell has become a popular topic (9-11). This 
study aims to investigate the relationship among stem cell 
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markers, drug resistance and the PI3K signaling pathway in 
MM cell line RPMI-8226.

A previous study presented that the combined evaluation 
of Nanog, Oct4, Sox2, PCNA, Ki67 and E-cadherin was 
valuable for patients with gastric cancer (12). The high level 
of stem cell markers Sox2 and Oct4 was associated with 
poor prognosis: later stage, poorer disease-free survival, and 
overall survival. Evidence has indicated that most tumors 
contain a small population of cells, and these are called 
“cancer stem cells”. Because these share several markers 
of normal stem cells. These cells display chemotherapy 
resistance, thereby causing the relapse of cancer (13). One 
of the characteristics is the overexpression of stem cell-

specific transcription factors, such as Nanog, Oct4 and Sox2. 
These factors could sustain pluripotency of embryonic stem  
cells (14). The clinical data demonstrated that gene 
expression signatures associated with the “stemness” state 
of a cell are informative as molecular predictors of cancer 
therapy outcome, and can help to identify cancer patients 
with therapy-resistant tumors. Furthermore, Nanog, 
Oct4 and Sox2 can stimulate cancer cell growth and anti-
apoptosis, thereby making it critical in carcinogenesis 
(15,16). Nanog, Sox2, or Oct4 has been reported to lead 
to the activation of growth factors, promoting cellular 
proliferation and metastasis in several types of malignancies.

The present study mainly investigated MM cell line 

Figure 4 Western blot analysis of the changes of stem cell markers. (A) CD44, OCT4 and SOX2 expression in RPMI-8226 cells in response 
to radiation treatment; (B) CD44, OCT4 and SOX2 expression in RPMI-8226 cells after radiation treatment in response to NVP-BEZ235; 
(C) Student’s t-test was used to calculate P values. *, P<0.05. A representative example of more than five experiments is shown.
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Figure 5 Western blot analysis of the expression of the PI3K/AKT/mTOR pathway in RPMI-8226 cells. (A) The expression of the PI3K/
AKT/mTOR pathway in RPMI-8226 cells in response to radiation treatment; (B) the expression of the PI3K/AKT/mTOR pathway in 
RPMI-8226 cells after radiation treatment in response to NVP-BEZ235; (C) Student’s t-test was used to calculate P values. *, P<0.05. A 
representative example of more than five experiments is shown.
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RPMI-8226. After receiving radiation dose of 6 Gy in the 
logarithmic growth phase, these RPMI-8226 cells exhibited 
changes, in terms of cell morphology, cell cycle, apoptosis, 
and stem cell markers, and changes in signaling pathways. 
It was considered that these MM cells that survived the 
radiotherapy, might have obtained some stemness, and had 
the ability to resist bortezomib. Compared with untreated 
cells, RPMI-8226 cells had higher levels of PI3K pathway 
protein which activated the PI3K pathway. 

The PI3K/AKT/mTOR signaling pathway plays a role in 
the resistance to several existing therapies (17). Hsu et al. (18) 
reported that AKT phosphorylation was significantly higher 
in D-S III stage MM patients (49%) than D-S phase (9%) 
patients and asymptomatic MM patients (6%). Besides, 
AKT phosphorylation could independently contribute to 
the survival of MM cell. 

Drug resistance and relapse remain as the major factors 
that limit the survival of MM patients. However, the 
mechanism remains unknown which correlated to P53 
mutation, and the activation of NF-kB, IL-6, CD44 and 
MM cell differentiation. It has been reported that AKT 
phosphorylation can inhibit MM cell apoptosis (17,19,20). 
NVP-BEZ235 can inhibit all PI3K isomers and mutant 
PI3K, as well as mTOR. This phenomenon was observed 
when the PI3K/AKT/mTOR signaling pathway was 
blocked by NVP-BEZ235. The combination of NVP-
BEZ235 and bortezomib can increase the apoptotic rate of 
RPMI-8226 cells that survive the radiotherapy. When the 
PI3K/AKT/mTOR signaling pathway was blocked, the 
expression of stem cell markers CD44, Oct4 and Sox2 is 
downregulated. In addition, the expression of p85, p110, 
p-AKT and p-mTOR are also downregulated.

Therefore, to some extent, the present study revealed 
that the stemness of RPMI-8226 cells that survive the 
radiotherapy decreased, and the sensitivity of cells to 
bortezomib partially recovered after blocking the PI3K/
AKT/mTOR signaling pathway by NVP-BEZ235. In 
the future, there is a need to use more kinds of MM cells, 
especially in clinical practice, in order to further verify these 
above results and assumptions.
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