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Tubulin

Composition

Microtubules, which are mainly composed of α- and β-tubulin, 
are highly conserved and ubiquitous in eukaryotic cells (1). 
α- and β-tubulin consist of 450 amino acids, and both have a 
40% amino acid sequence homology, which makes their three-
dimensional structures similar. Microtubules all have a hollow 
tubular structure that consists of a positive end and a negative 
end (2). The positive end provides a faster growth speed and 
a slower dissociation speed; meanwhile, the negative end 
provides a slower growth speed and a faster dissociation speed. 
The negative end is usually fixed, while the positive end enters 

the surrounding cytoplasm by adding subunits that bind to 
guanosine-5'-triphosphate (GTP) (3). Besides the major α- and 
β-tubulins, seven tubulins have been identified in eukaryotes, 
namely α-, β-, γ-, δ-, ε-, ζ-, and η –tubulin (3,4). γ-tubulin exists 
mainly around centrioles, promoting nucleation of intracellular 
microtubules, and controlling the replication process of the 
mitotic spindles (5). ε- and δ-tubulin, as newly discovered 
members of the centrosome tubulin superfamily, maintain the 
microtubule cytoskeleton structure (6).

Dynamics

The microtubules in the cell can be rapidly aggregated and 
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deaggregated. This characteristic is known as the dynamic 
or dynamic instability of the microtubules, and mainly 
occurs on the ends of the microtubules (7). Therefore, 
this dynamic instability refers to the depolymerization and 
growth changes of the microtubule ends. The dynamics 
and the specific functions of microtubules are regulated 
primarily by microtubule-binding proteins, tubulin post-
translational modifications, and tubulin subtypes (8,9). 
Among them are microtubule polymerase, microtubule 
depolymerase, acetylation, tyrosination/detyrosination, 
depolymerized proteins, and microtubule splicing proteins 
(10,11). GTP hydrolysis is an energy source that regulates 
the dynamic instability of microtubules. When tubulin is 
added to the end of the microtubule, the tubulin-bound 
GTP is hydrolyzed into tubulin-GDP and inorganic 
phosphate Pi (12). The Pi is then dissociated from the 
microtubules, leaving a microtubule core composed 
of GDP and microtubules (13). Microtubule ends that 
contain the tubulin-binding GTP or GDP-Pi are stable for 
depolymerization. At the same time, the release of tubulin-
GDP and inorganic phosphate Pi induces the change in 
conformation of the tubulin molecules, allowing for the 
creation of the microtubule polymer. The polymer created 
by this is unstable, which causes the microtubules to be 
damaged or shortened (14). The conformational changes 
of microtubule ends that are driven by GTP hydrolysis 
provide an ideal structure for various microtubule-binding 
proteins to precisely regulate the dynamic instability of the 
microtubules (12).

Mechanism of action

When the cell is in the pre-division phase, the microtubules 
present in the cytoplasm and depolymerize to form tubulin 
and enter the nuclear region of the cell to polymerize into 
a spindle (15). The spindle can then pull the chromosome 
to the two poles of the two daughter cells during mitosis, 
completing cell proliferation. Tubulin regulators can 
affect the dynamic properties of microtubules, promote 
the polymerization of microtubules,  or cause the 
depolymerization of microtubules, interfering with the 
mitosis of the cells and inhibiting cell proliferation (16). It 
is because of these dynamic characteristics of disintegration 
and aggregation in microtubules that eukaryotic cells can 
complete mitosis. Disrupting the dynamic circulation of 
microtubules will affect the mitotic process of tumor cells, 
inhibiting the growth of tumor cells or inducing their 
apoptosis (17). Therefore, microtubules have become 

important targets for anticancer drugs.

Tubulin modulators

Various tubulin inhibitor drugs use dynamic properties 
of microtubules. The colchicine compounds and various 
compounds acting on the colchicine-binding site and the 
vinblastine compounds and various compounds acting on the 
vinblastine-binding site can be reversely combined with tubulin 
to form a complex (18,19). The formed complex hinders the 
polymerization of other tubulins and inhibits the formation of 
microtubules. At the same time, microtubule polymerization 
inhibitors can also inhibit the formation of spindles by 
inducing the depolymerization of microtubules, arrest cells in 
the M phase, and eventually induce apoptosis. For example, 
compounds such as paclitaxel, epothilone, and laulimalide all 
promote microtubule polymerization, inhibit cell division, stop 
cell division in the mitotic phase (G2/M phase), and eventually 
cause tumor cell death by apoptosis (20).

Paclitaxel binding domain

Paclitaxel

Paclitaxel was the first member of the taxane family to be 
used for cancer chemotherapy (21). Paclitaxel has been widely 
accepted as a chemotherapeutic agent in patients with cancer 
and various other kinds of solid tumors. However, paclitaxel 
has obvious toxicity. For example, it can cause bone marrow 
suppression and peripheral neuropathy (22). However, in 
a first-line study of non-small cell lung (NSCLC), nab-
paclitaxel combined with carboplatin was used, and the results 
showed that the combination could reduce cytotoxicity (23). 

The development of nanoparticle-bound albumin paclitaxel 
can reduce the combination of paclitaxel and the solvent, 
reducing the related toxicity from the mode of administration. 
The incorporation of d-α-Tocopheryl polyethylene glycol 
(TPGS) into nanocarriers from TPGS-nanoparticles can 
further promote the delivery of multidrug resistance (MDR) 
and improve cancer treatment by changing its inherent 
physical and chemical properties (24). In addition to the 
combination of PTX and DOX, a co-encapsulated nano-
drug delivery system is also used and has the potential to 
resolve multidrug resistance caused by a single drug without 
significantly affecting normal cells and tissues (25). For 
example, paclitaxel and gemcitabine are used in combination 
and administered by preparing liposomes (26). These methods 
provide greater flexibility for paclitaxel treatment.
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Docetaxel

Docetaxel has the same effect as paclitaxel. It is an M-phase 
cycle-specific drug that promotes the assembly and stabilization 
of microtubules, preventing their disaggregation (27).  
However, docetaxel can cause side effects such as bone 
marrow suppression and allergic reactions. 

In recent years, immunotherapy has shown great 
practical value in tumor treatment. The combination of 
docetaxel and PD-L1 antibodies through nanotechnology 
can improve the therapeutic effects and reduce systemic 
toxicity. Nanomedicine is a solution with great potential 
that can eliminate the above disadvantages and facilitate 
drug delivery through proper biodistribution (28).

 Docetaxel therapy is the first treatment to show survival 
rate benefits in patients with castration-resistant prostate 
cancer (CRPC) (29). In prostate cancer the combination 
of histone deacetylase inhibitors (HDACIs) and docetaxel 
can synergistically inhibit the growth of cancer cells (30). 
The combination of gemcitabine and docetaxel has also 
been shown to be effective against various types of solid 
tumors, including sarcomas (31). Many studies have 
found that docetaxel promotes nuclear translocation of 
the transcription factor EB (TFEB) and increases its 
transcriptional activity. TFEB is a key nuclear transcription 
factor that controls lysosomal biogenesis and functions. 
These findings provide new insights into the regulatory 
mechanisms of docetaxel on lysosomes and may help 
to develop new potential cancer therapeutics through 
lysosomal inhibition (32). 

Epothilones

Epothilone is  a newly developed antitumor drug. 
Epothilone has many analogs, such as epothilone B, 
epothilone D, ixabepilone, sagopilone, 21-amino epothilone 
B, and KOS-1584 (33). Epothilones are effective in cells 
due to their ability to bind equally to b-tubulins I and III, 
giving them an advantage over taxanes (34). However, the 
dose-limiting toxicity of epothilone is usually accompanied 
by neurotoxicity and neutropenia. Ebomycin has been 
studied in cancer treatment and has appeared in more than 
20 different studies. It has been shown to have significant 
activity in breast, lung, and prostate cancer and good 
efficacy in hormone-refractory metastatic prostate cancer 
and taxane-refractory ovarian cancer (35). Epothilone and 
its analogs will continue to play a crucial role in the future 
of cancer therapy (36). 

Vinblastine binding domain

Vinflunine

Vinflunine belongs to the vinca alkaloids, and works by 
disrupting microtubule dynamics in the cell cycle. It has 
been approved in Europe as a second-line treatment for 
advanced urothelial advanced transitional cell carcinoma 
(TCCU). The long-term use of vinflunine can cause toxic 
accumulation, anemia, and neutropenia. Studies have found 
that in patients with advanced urothelial cancer Changchun 
Fluinin combined with other drugs is the best treatment 
option (37). Currently the most common choices for first-
line chemotherapy with advanced urothelial cancer are 
vinflunine-gemcitabine and vinflunine-carboplatin (38). 
Furthermore, in patients with colon cancer, the combination 
of oxaliplatin and vinblastine can induce cytogenetic damage 
and inhibit survivin expression (39). 

Vincristine

Vincristine, a natural alkaloid, was first obtained from 
Vinca in 1961 and was approved by the Food and Drug 
Administration (FDA) for clinical cancer treatment in 1963. 
Vincristine is highly cytotoxic during treatment (40); in an 
Omani study, vincristine was shown to cause neuropathy in 
pediatric patients of acute lymphocytic leukemia, frequent 
autonomic nerve attacks, and more severe cranial nerve 
involvement (41). Vincristine-loaded liposomes prepared 
by ion-pairing technology can enhance their chemical 
stability (42). Vincristine and β-vincristine-loaded PLGA-
b-PEG nanoparticles can promote cell uptake and reduce 
cytotoxicity (43). Vincristine, when combined with 
quercetin, can be more effective in treating lymphoma 
through co-delivery mechanisms via nanocarriers (44). 

Vinorelbine

Vinblastine is a semi-synthetic derivative of vinblastine, 
inhibits the polymerization of tubulin and stops cell division 
in the middle stage of mitosis, and is a cell cycle-specific 
drug. Patients receiving vinorelbine are at risk of venous 
stimulation, and vinorelbine can induce the extravasation 
of the chemotherapy port, causing infection (45). 
Bendamustine combined with vinorelbine is an effective 
treatment for autologous stem cell transplantation before 
the induction chemotherapy for relapsed or refractory 
Hodgkin’s lymphoma. A study found that vinorelbine, 
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combined with pertuzumab for the first-line treatment of 
patients with HER2-positive locally advanced or metastatic 
breast cancer, also has high safety and effectiveness (46). At 
present, erlotinib and vinorelbine combined with cisplatin 
have been used as adjuvant treatment for patients with stage 
IIIA estimated glomerular filtration rate (EGFR) mutation-
positive non-small cell lung cancer (EVAN) (47). 

Dolastatin 10

Dolastatin 10 is a highly effective cytotoxic microtubule 
inhibitor. Natural synthetic analogs of dolastatin 10 have 
attracted great interest in cancer due to their strong in vitro 
activity and payload capacity for antibody drug conjugates 
(adc) (48). Studies have found that the 10-terminal thiazole 
moiety of dolastatin has functional group analogs. These 
functional groups include amines, alcohols, and thiols, 
which are representative structures in known conjugated 
drugs. These new analogs show good titers in tumor cell 
proliferation assays (49). After conducting a combined 
drug experiment on colon cancer cells, the combination 
of largazole and dolastatin 10 can inhibit the growth of 
HCT116 cancer cells, showing a synergistic effect (50,51). 

Colchicine binding domain

Colchicine

Colchicine is a tricyclic alkaloid extracted from the 
colchicine binding site. It is an anti-inflammatory drug that 
primarily prevents the activation of inflammatory bodies 
by blocking the ability of tubulin to polymerize (52). In 
addition, colchicine interferes with multiple inflammatory 
pathways; for example, it plays a role in neutrophil adhesion 
and recruitment, superoxide generation, inflammasome 
activation, the RhoA/Rho effect kinase (ROCK) pathway, 
and tumor necrosis factor-alpha (TNF-α). The induction 
of nuclear factor kappa (NF-κ) pathway was found to 
reduce inflammation (53), while other research discovered 
that colchicine can also be used as a primary compound 
in potential anticancer drugs (54). Liu et al. found that 
colchicine reduced the stability of the cell skeleton in liver 
cancer cells and significantly reduced the ability of cells 
to deform. These changes make it helpful for monitoring 
the potential metastatic cancer cells and improving the 
diagnosis of cancer (55). Although colchicine works on 
various diseases, its use may be limited by its side effects and 
toxicity (52). It is advisable to carefully administer the drug 

before prescribing colchicine. Pharmacokinetics should be 
emphasized to avoid any harmful interactions by looking for 
alternatives or adjusting the colchicine dose. 

Podophyllotoxin

Podophyllotoxin is an effective cytotoxic agent and can 
be used as a primary compound for the development of 
antitumor drugs (56). However, its therapeutic efficacy is 
often limited due to side effects and developed resistance. 
A peptide-based podophyllotoxin conjugate has been 
found to have been used in treating multidrug-resistant 
breast cancer with the highest efficacy and minimal 
toxicity to solve this (57). Nanostructured lipid carriers 
carrying podophyllotoxin for skin targeting are also being 
studied in vivo and in vitro (58). Earlier studies have found 
that 4β-1,2,3-triazole derivatives of podophyllotoxin 
have stronger anticancer activity and better binding on 
topoisomerase II than etoposide. However, the effects of 
dimerization on such derivatives in anticancer activity have 
not been studied well. Other emerging derivatives, such as 
the new podophyllotoxin derivative 4β-(1,3,4-oxadiazole-
2-amino-5-methyl)-4-deoxypodophyllotoxin (OAMDP) 
has shown to have effective antitumor activity. OAMDP 
can induce autophagy, cause cell-cycle arrest, and induce 
apoptosis (59).

Noscapine

Noscapine is a phthalo-isoquinoline alkaloid that can 
easily cross the blood-brain barrier. It has been used as an 
antitussive medicine for many years and is highly safe (60). In 
recent years, noscapine has been reported to be an anticancer 
drug. Its anticancer effects come from its ability to force 
the microtubules to spend more time in the paused state, 
stopping mitosis and later inducing mitotic slip or mitotic 
mutation apoptosis. Noscapine also inhibits tumor growth 
by selectively blocking NF-κB, a critical transcription factor 
in the pathogenesis of glioblastoma, and improving tumor 
chemotherapy sensitivity (61). Compared with colchicine and 
podophyllotoxin, its toxicity is low. For example, nosine and 
it analogs have been shown to have no sign of neurotoxicity 
or immunosuppression in ovarian cancer studies research. 
On the other hand, noscapine has been demonstrated to have 
neuroprotective effects in neurodegenerative disease and 
stroke mouse models (62). Concerning its anti-tumor effect 
on human prostate cancer cell lines LNCaP and PC-3, it was 
found that the joint application of paclitaxel and nicardipine 



4024 Cheng et al. Tubulin antitumor drugs

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2020;9(6):4020-4027 | http://dx.doi.org/10.21037/tcr-20-682

can increase the percentage of apoptotic cells. These results 
have provided new ideas for treating prostate cancer (63). 

Current clinical research

Plinabulin

Plinabulin (NPI-2358) is an anti-tubulin depolymerized 
vascular disrupting agent that can bind to the colchicine 
binding site of β-tubulin (beta-tubulin) to prevent 
polymerization and inhibit the effects on human tumor cell 
lines. It has been shown to have excellent safety in clinical 
trials and has yielded positive biological effects including 
the reduction of tumor blood flow, tumor pain, and other 
mechanical-related adverse events (64).

Small molecule vascular disrupting agent (VDA)

Combretastatin is a naturally occurring small allylbenzene 
st imulant.  By binding to tubulin,  i t  can promote 
microtubule depolymerization and inhibit tubulin 
polymerization (65). At present, different VDA have been 
successfully prepared, many of which have entered testing 
in clinical trials. The drugs that have entered the trials 
include: CA-4P, CA-1P, AVE8062, OXi4503, CKD-516, 
BNC105P, ABT-751, ZD6126, NPI-2358, MN-029, and 
EPC240758) (66). However, due to poor water solubility, low 
bioavailability, a fast metabolism rate, and systemic elimination 
of combretastatin A4 (CA-4), its clinical applications are 
limited. In a phase I study, ombrabulin (AVE8062) was used in 
combination with two standard taxane/platinum dual mixtures, 
and it was found to be feasible and with controlled overlapping 
toxicity. Nevertheless, it affected the efficacy of these  
duplexes (67). 

CKD-516 is a newly developed blood vessel destroying 
agent. Its maximum tolerated dose (MTD), safety, 
pharmacokinetics, and preliminary antitumor efficacy for 
patients with advanced solid tumors have been determined 
in clinical phase I dose-escalation studies (68). ABT-751 is an 
oral bioavailable sulfonamide with antimitotic properties (69).  
Tivantinib, also known as ARQ-197, is a potent and non-
ATP competitive and selective c-Met inhibitor currently 
under evaluation in phase 3 clinical trials for the use of liver 
cancer and lung cancer treatment. Preclinical studies have 
shown that CA-1 diphosphate (Oxi-4503) has good safety and 
effectiveness in clinical trials, while also being more effective 
than other vascular disrupting agents (70).

Inhibitor of c-MET

c-interstitial-epithelial transformation factor (c-MET) is 
involved in the occurrence of various tumors. Currently, 
many MET inhibitors have entered clinical trials, including 
carbotinib (XL184, BMS-907351), crizotinib (PF-
02341066), MK-2461 in pancreatic cancer, Merestinib 
(LY2801653), Tivantinib (ARQ197), onartuzumab 
(MetMab), Emibetuzumab (LY2875358), rilotumumab 
(AMG 102), and NK4 (71).

ARQ-197 (tivantinib) is a small molecule c-Met inhibitor 
and has shown encouraging results in phase I and II trials; 
however, the most recent studies have found that tivantinib 
performed poorly in liver cancer and METIV-HCC III (72).  
Onartuzumab is a monoclonal antibody that targets the 
MET receptor and prevents hepatocyte growth factor 
(HGF) signaling. In clinical phase 3 non-small cell lung 
cancer trial, onartuzumab plus erlotinib did not improve 
clinical outcomes, with shorter OS in the onartuzumab arm, 
compared with erlotinib in patients with MET-positive non-
small-cell lung cancer (67).

Conclusion

Microtubules are one of the crucial components that make 
up the cytoskeleton and exist in almost all eukaryotic  
cells (68). Microtubules play an essential role in all stages of 
cell physiological activity, including the maintenance of cell 
morphology, migration, mitosis, transport of intracellular 
materials, and signal transduction (69). Extensive research 
has been conducted over the past years, resulting in 
many highly effective tubulin modulators that function 
as microtubule stabilizers or microtubule destabilizers. 
Antitubulin agents of natural origin have three binding 
sites: targeted paclitaxel, vinca and, the colchicine binding 
domains (70). However, due to poor solubility or toxicity, 
many of these drugs have been restricted. Therefore, new 
tubulin drugs are being actively developed. In the past 
few years, some small molecule tubulin inhibitors and 
biological agents have entered clinical trials. For example, 
in a phase 1/2 clinical trial, rilotumab and erlotinib were 
used in combination to treat patients with non-small cell 
lung cancer (73). With a deepening understanding of 
tubulin, the mechanisms for treating tumors by tubulin 
have become increasingly clearer, and this understanding 
may serve as a solid foundation for the development of 
new drugs.
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