
© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2020;9(6):3860-3869 | http://dx.doi.org/10.21037/tcr-19-2739

Introduction

According to annual statistics reported from the American 
Cancer Society (1), more than 1 out of every 4 cancer deaths 
are due to lung cancer. About 80% of lung cancer cases are 
non-small cell lung cancer (NSCLC). It is classified into 

three pathological subtypes: adenocarcinoma, squamous cell 
carcinoma, and large cell carcinoma. Lung adenocarcinoma 
(LUAD) is most common in young women and Asian 
populations, and it is associated with the mutation of some 
molecular targets, such as BRAF and HER2 (2).
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The current treatment of NSCLC is  gradually 
evolving from chemotherapy or radiotherapy to targeted 
drug therapies based on the genetic alterations, such as 
Osimertinib (3). Recent studies (4) found that co-occurring 
mutations in STK11 and TP53 in KRAS-mutant lung 
adenocarcinoma had an impact on tumor cell proliferation 
and immune surveillance responses. Another study (5) 
indicated that receptor-interacting serine/threonine protein 
kinase 4 (RIP4) is a regulator of tumor differentiation 
in lung adenocarcinoma. It can be inferred that genetic 
alterations are greatly associated with the development 
of NSCLC. Although previous scholars have obtained a 
lot of data from the microarray technique and the Next 
Generation Sequencing (NGS), information from these 
data may not be explored entirely. In this study, it is 
hypothesized that genetic features selected from these data 
will correlate with survival time of patients, which could 
be considered as one of the best indicators of survival and 
severity of illness. 

During cancer treatment, doctors and patients pay close 
attention to survival time. Traditional survival prediction 
depends on the clinicopathological characteristics of patients, 
which is imprecise sometimes. In order to be more accurate, 
it is better to apply artificial intelligence to the medical 
domain (6,7). Cox regression model is a traditional method 
to predict the overall survival time of patients, but does 
not achieve better performance (C-indexaverage=0.58) (8).  
In our study, we compared eight machine learning models 
based on The Cancer Genome Atlas (TCGA) dataset, 
including DNA sequence, RNA expression and DNA 
methylation. We identified the correlation between genes 
and survival time. Then, the algorithms and the selected 
genes were validated using the GEO dataset, and data of 
DNA methylation and DNA mutation are used to further 
analyze the mechanism of RNA expression.

Methods

Source of data

We obtained the LUAD related data set from the TCGA 
portal (https://portal.gdc.cancer.gov/). For subsequent 
validation and analysis, we acquired the GEO dataset (GSE 
72094), DNA methylation dataset and DNA mutation 
dataset from the GEO website (https://www.ncbi.nlm.
nih.gov/gds) and the Firebrowse website (http://www.
firebrowse.org/). All filtered samples (TCGA Dataset and 
GEO Dataset) must include the RNA-seq file, vital status 

and days to last follow-up.

TCGA dataset (RNA-sequence, DNA methylation, DNA 
mutation)

A total  of 291 RNA sequencing (RNA-Seq) f i les, 
including all open source RNA sequencing data and the 
corresponding clinical information files, were acquired. The 
downloaded data was integrated and spliced with clinical 
data using R(v3.4.3). We merged the related information 
using python packages (Pandas v0.23.0 and Numpy v1.14.3) 
(9,10). The RNA-Seq samples were removed if they did 
not have the corresponding clinical files (11). The genetic 
data features were removed if having zero values in more 
than 85% patients (the number of genetic features were 
reduced from 60,038 to 40,540). Then, we normalized all 
genetic feature columns by dividing the maximum value of 
the column (12). And we deleted some samples based on 
the following reasons: (I) removed samples who were still 
alive but had less than two years of cancer (because we are 
not sure how long these samples will survive in the outcome 
events); (II) remove non-primary tumor samples (Figure 1). 

DNA methylation data is divided into two parts 
according to the methylation chip. One part of the samples 
is measured using the Illumine Human Methylation 27 
Beadchip and another part using in the Illumine Human 
Methylation 450 Beadchip. The Methylation 27 dataset has 
200 samples. For the two datasets, the samples which did 
not have paired RNA expression data in the TCGA were 
removed. One issue to note is that there are conversion 
problems that some genes do not have corresponding 
methylation probes. Thirty percent genes in the TCGA 
dataset cannot match the corresponding methylation probes 
in the methylation dataset. The limma package was used in 
R language to analyze the methylation data (13). 

The DNA mutation level 3 dataset was downloaded from 
Firebrowse. We got the mutation data of 131 samples that 
appeared in the TCGA data set.

GSE 72094 dataset (RNA-Seq)

We processed GEO dataset in the same process of the 
TCGA dataset. And finally there was 174 samples in the 
available GEO dataset.

Feature selection

As reported in previous research, using all genes whose 
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expression levels are measured to predict outcomes did 
not get a high accuracy. And 60,038 genes are first derived 
from RNA-Seq, and then 19,498 genes are deleted since 
they have zero value in 85% samples or more. In this study, 
we used the Relief (Relevant Features) algorithm which 
was first proposed by Kira and Rendell on the basis of 
the instance-based learning (14). We randomly selected 
a sample R from the training set D, then found k nearest 
neighbor samples H from samples of the same type as 
R, fiund k nearest neighbor samples M from samples of 
different types from R, and finally updated the feature 
weight according to the formula defined as follows:

( ) ( ) ( , , ) / ( , , ) /W A W A diff A R H m diff A R M m= − +  [1]

where A=1,2...N, N is the number of features, m is the 
number of algorithm iterations. It calculates a feature 
score for each feature that can then be applied to rank 
and select top scoring features for feature selection. Using 
this method, we chose the top 200 features which we used 
for the downstream modeling. We used the first 1 to 200 
features to train the model, and finally determined 22 genes 
based on the model accuracy (Figure 2). See below for a 
detailed description.

For survival prediction, patients in the test set were 
classified into >3 years of survival time and <3 years. The 

variance selection method and the chi-square test method 
were also utilized to select the features (not shown), and the 
relief algorithm was selected by comparing the outcomes.

Machine-learning algorithms for prediction

In this study, the classification methods (Figure 3) applied 
were Support Vector Machine (SVM) (15), Random Forest 
(RF) (16), Logistic Regression (LR) and Naïve Bayes  
(NB) (17). The regression methods applied (Figure 3) were 
Linear Regression, Support Vector Regression (kernel 
Poly), Support Vector Regression (kernel Linear), and Ridge 
Regression. Based on the fitting results, we could classify the 
samples into two categories: shorter prognosis time group 
(less than 3 years) and longer prognosis time group (more 
than 3 years). We iteratively used genes which ranked 1 to 
200 to train these eight machine learning models, recorded 
the accuracy of each model and plotted the accuracy curve. 
We used 4-fold cross-validation to avoid the overfitting 
problems. And for the accuracy, AUC, c-index and other 
evaluation indicators, we calculated the average values as the 
final results. By comparing the accuracy curves of the eight 
models, we selected the optimal model and the corresponding 
number of features required for the model. Then predictive 
model was built with the selected parameters. We used this 
model combined with selected genes to verify on the Gene 

Figure 1 Flow chart of data preprocessing. Given the RNA expression data (FPKM format) as input, the model outputs the outcomes of 
lung adenocarcinoma patients. We removed the genes whose 85% value are 0 to better filter effective features and improve the accuracy of 
model. Normalization method is Max scaling. 

TCGA LUAD RNA-seq data TCGA LUAD clinical data

Patients with RNA-seq data and prognosis time

Select FPKM format data

Delete gene (0 in more than 85% sample)

Normalization

Remove non-primary tumor samples
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Figure 2 Twenty-two selected genes using Naïve Bayes.

Figure 3 Two types of machine learning algorithms were used. SVM, support vector machine; SVR, support vector regression.

22 genes panel
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Expression Omnibus (GEO) datasets (GSE72094). We 
randomly set aside 20% of the total data as a test set. And the 
Kaplan-Meier plot were drawn (18).

Evaluation

For classification, we used accuracy and Area Under Curve 
(AUC) (19) to judge model quality. For the fitting, in 
addition to the accuracy, we used the concordance index 
(C-index) to evaluate the pros and cons of the fitting results. 
The accuracy (ACC) was the ratio of the number of correctly 
classified samples to the number of all samples. C-index 
can be seen as the fraction of all pairs of individuals whose 
predicted survival times are correctly ordered and is based 
on Harrell C statistics (20). A C-index score around 0.70 
means a good model, whereas a score around 0.50 means that 
the fitting result represents a random guess. Mean Absolute 
Error (MAE) and Root Mean Squared Error (RMSE) are 
indicators to measure the accuracy of regression algorithms. 
The smaller the value, the more accurate the algorithm.

Gene functional analysis

Gene Ontology analysis and GAD database are used 

in DAVID website (https://david.ncifcrf.gov/). GO is a 
formidable resource to understand the meaning of genes 
and interpret these genes. GAD database interprets the 
relationship of genes and diseases.

Statistical analysis

Breslow test, Mann-Whitney U test, Student’s t test and 
Cox model were used to analyze data in this study. Breslow 
test is used in survival analysis. Mann-Whitney U test 
is used in comparing two groups without making the 
assumption that values are normally distributed. Student’s t 
test is used in comparing the expression of different groups. 
Cox model is used in filtering features in the supplementary 
appendix. Graph Pad Prism (V5.01) and SPSS (V23) were 
used in statistical analysis.

Results 

Survival prediction and outcome

From the TCGA-LUAD datasets, we used 131 cancer 
samples that covered RNA-Seq, DNA-Seq and DNA 
methylation. RNA-Seq was used in training and validating 
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the predication models. DNA-Seq and DNA methylation 
were utilized to subsequently analyze the gene expression 
and discuss the relationship. We chose the 3-year survival 
time to divide the patient into two group and train the 
model. Although 5-year survival rate is the most common 
indicator, we would face the problem of data imbalance if we 
choose 5-year survival time for grouping. We preprocessed 
the data as described in the previous “Methods”. We used 
eight algorithms to predict that the patients in the validation 
set would survive for more than 3 years or less (Table 1).

(I) As for regression, the Poly SVR has the best 
performance of 77% (69–81%) while C-index is 0.69 
(0.65–0.72) showing great prediction. The Mean Absolute 
Error (MAE) and Root Mean Squared Error (RMSE) also 
have low scores of 1.92 and 2.81, respectively. (II) With 
respect to classification, the prediction results are shown 
in Table 1. Logistic regression outperforms three other 
algorithms with a predictive accuracy of 77% (68–84%), 
compared to 75% (70–94%) accuracy of Naïve Bayes. 
C-index, MAE and RMSE are suitable for fitting methods 
rather than the classification, so AUC is used to evaluate the 
performance of the classification model. The AUC of the 
Logistic regression and the Naïve Bayes are 0.74 (0.56–0.93) 
and 0.81 (0.70–0.94) respectively (Table 1). Figure S1 shows 
the outcomes of accuracy and other index as the number 
of features increases. These results demonstrate that our 
methods of selecting genomic features is effective, and 
the predication algorithms is robust to predict survival 
time. Excessive genetic features used in the algorithm are 

considered to have the tendency of overfitting. Therefore, 
less genetic features and 4-fold cross validation experiment 
are used to avoid the overfitting problem. Naïve Bayes, the 
SVR (line) and logistic regression are chosen to predict 
survival on confirmation cohorts because they have accuracy 
>75% and corresponding features <25. 

Validation of the prediction model

To confirm the robustness of our models, we tried to 
validate our models on another cohort (GSE 72094, 
n=174). The GSE 72094 calculate the logarithmic value 
of a provided number of base 2 and IRON normalized 
signal while TCGA data is FPKM type and the format of 
data preprocessing is different from TCGA. Therefore, 
the weights of genetic features were trained again and 
corresponding features is same. The training set and test set 
for each method were randomly selected by R package (the 
random library). Due to the limitation of the dataset, the 
result we presented in the validation set is a floor outcome 
of the prediction model.

We used SVR (line), Naïve Bayes, and Logistic 
Regression to predict survival on confirmation cohorts. The 
accuracy results of the GEO dataset are as follows: SVR 
(poly) 57%, Naïve Bayes 69%, and Logistic Regression 
51%. Logistic Regression and SVR (poly) have the highest 
accuracy on the TCGA cohorts, as they have low accuracy 
on GEO cohorts, suggesting that they are unstable on 
different datasets. So, Naïve Bayes is the best and the 

Table 1 Performance and respective feature numbers of 8 models

Model ACC C-index MAE RMSE AUC
Minimum number  

of features

Linear regression 0.70 (0.57–0.84) 0.65 (0.60–0.73) 2.14 (1.79–2.45) 3.01 (2.24–3.74) – 19

Ridge regression 0.73 (0.66–0.81) 0.68 (0.60–0.74) 1.91 (1.70–2.23) 2.70 (2.24–3.74) – 19

Line SVR 0.75 (0.69–0.84) 0.65 (0.53–0.74) 1.92 (1.48–2.37) 2.78 (2.13–3.50) – 24

Poly SVR 0.77 (0.69–0.81) 0.69 (0.65–0.72) 1.92 (1.64–2.15) 2.81 (2.25–3.49) – 49

Naïve Bayes 0.75 (0.68–0.81) – – – 0.81 (0.70–0.94) 22

SVM 0.74 (0.69–0.81) – – – 0.73 (0.62–0.81) 16

Random forest 0.75 (0.72–0.78) – – – 0.76 (0.69–0.83) 55

Logistic regression 0.77 (0.68–0.84) – – – 0.74 (0.56–0.93) 24

We filtered the methods of the accuracy >75% with the corresponding number of features <25-Naïve Bayes, SVR (line) and logistic  
regression- applying to the following confirmation cohort. ACC, accuracy; AUC, area under curve; MAE, mean absolute error; RMSE, root 
mean squared error; SVM, support vector machines; SVR, support vector regression.
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most stable algorithm for predicting survival time in lung 
adenocarcinoma. Naïve Bayes can significantly distinguish 
two cohorts (Figure 4, P=0.0438, Breslow Test).

The deep mining of the genomic features

The RNA expression of 22 genes have differences in the 
two groups with a prognosis of less than 3 years or more. 
The expression of some genes is implicated in survival time 
of LUAD (Figure 5).

The 22 genomic features (Figure 2) include the 
expression data of 13 coding DNA and 9 long non-coding 
RNA (lncRNA), suggesting that lncRNA dose affect 
protein coding (21). Association between the selected genes 
and lung illness or cancer are shown in the GO and GAD 

Figure 4 Kaplan-Meier survival curves in confirmation cohort of 
GEO dataset. We use the Naïve Bayes to significantly distinguish 
between the two groups (>3 and <3 years) (P=0.0438, Breslow 
Test). 

Figure 5 Expression of the genes selected. The four genes images (A: BBOX1, B: CRISP3, C: MARCH4, D: UNC5A) below show the 
expression of the genes we selected in different groups of the survival time (***P<0.01, Student’s t test). We used the difference in expression 
values between different groups as the basis of our research.
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analysis (Figure S2). We attempted to explain the change of 
RNA expression and find whether transcription present the 
association between DNA mutation and DNA methylation. 
Therefore, the coupled DNA-seq and DNA methylation 
files were downloaded from Firebrowse, where the data is 
acquired from the TCGA.

In the DNA mutation data, the mutation counts in the 
long-survival group (>6 years) is less than the short-survival 
group (<1 year) in 22 genes (Figure 6A, P=0.031, Mann-
Whitney U test). Considering whether the total mutation 
burden in the long-survival group is less than in the short-
survival group, we compared the two groups using Mann-
Whitney U test (Figure 6B, P=0.147). For the ratio of 
mutations in 22 genes to in total genes, the short-survival 
group is higher than the long-survival group (Figure 6C, 
P=0.026, Mann-Whitney U test). Within the range of 
22 genes, many mutation sites occur in the 28 samples of 

short-survival group, with up to 3 in SULT1E1 gene. The 
following mutations are BBOX1, UNC5A, RAET1G (Figure 
6D). Those mutations including reported and unreported 
ones may be associated with cancer progression affecting 
the survival of patients. Epigenetic alterations are reported 
to play an essential role in the transcription of gene, as we 
know. However, we did not find the significant correlation 
between the DNA methylation value and survival time 
using the limma package applying the filter of |log2FC|>1 
and FDR <0.05 (13).

Discussion

Transcriptome data analysis captures coding and non-
coding genes and quantifies the difference of gene 
expression in cells, tissues and organs (22). The knowledge 
of genes has influenced our clinical treatments of illnesses, 

Figure 6 The relationship between the survival time and number of mutations in 22 genes. (A) The number of mutations in 22 genes in 
predictive algorithm give significant P-value (short-survival vs. long-survival, P=0.031), *P<0.1. (B) The total number of mutations does not 
differ statistically in the short-survival group (<1 year survival group) and the long-survival group (>6 years survival group) (P=0.147). (C) 
For the ratio of mutations in 49 genes to in total genes, the short-survival group is higher than the long-survival group (P=0.026), *P<0.1. (D) 
SULT1E1 mutation appears 3 times in 28 samples in short-survival group, and this gene is frequently mutated in short-survival group.
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even our lifestyle. Some researchers have attempted to 
associate the clinical features, medical images or living 
habits with the survival of lung cancer patients, but the 
outcomes were not of great prognostic value. In this study, 
we used the transcription files of two distinct groups 
(<3 years group and >3 years group) to train the feature 
filtering algorithm to acquire the weights of genetic 
features, and then predicted whether the patients’ survival 
time is <3 years or >3 years.

To manifest the robustness of our survival model, we 
applied this algorithm on the GEO dataset and achieved a 
consistent performance on the GEO confirmation cohort. 
In the confirmation cohorts, accuracy of outcomes dropped 
from 75% to 69%. The reasons may be as follows: Firstly, 
the GEO dataset used the microarray methods to calculate 
the value of RNA expression, resulting that gene features in 
the GEO dataset do not include lncRNA and micro RNA. 
Secondly, the format of data processing in GEO dataset is 
different from the TCGA LUAD dataset. In general, the 
results in the GEO dataset can confirm the feasibility of the 
algorithm. Because of the instability of Logistic Regression 
and SVR(poly), Naïve Bayes shows the best performance in 
prediction.

In some significant genes, some gene expression is 
associated with the survival time (Figure 3). Although other 
genes do not show significant differences, we cannot rule 
out the possibility that genes are not differently expressed 
and trace amounts of protein may affect the biological 
function. In our research, 22 genetic features are selected 
from Relief and Naïve Bayes. Some genetic features have 
been reported in previous research. The UNC5A feature is 
the top significant gene with the highest weight. UNC5A is 
down-regulated in multiple tumors including lung cancer, 
may be tumor suppressor inhibiting tumor extension (23). 
Low expression in CRISP3 predict a good prognosis in 
breast cancer (24). ANXA13 is up-regulated in colorectal 
cancer and may be associated with metastasis (25). SOX11 
contributes to increase invasive growth and the progression 
of ductal carcinoma in situ to invasive breast cancer (26). 
SULT1E1 could suppress tumor proliferation and invasion 
in mammary cancer model (27). The filtered features we 
screened are biologically significant and are worthwhile to 
explore. However, the expression of MARCH4, RAET1G, 
PAMR1 and other genes are not reported in the field of 
lung cancer.

As shown in the Figure 3, there is a negative correlation 
between the number of mutations in 22 genes and survival 
time. The mutation number in 22 genes, rather than the 

total mutation number, is greater in the short-survival 
cohort. It indirectly confirms that 22 genetic features affect 
the survival time of LUAD indeed. But we did not find any 
differences regarding gene methylation between the two 
groups (<3 years and >3 years groups).

There are some limitations on combining the machine 
learning and RNA expression. For instance, the algorithms 
can only process data, not the potential relationship 
between the data. MARCH4, RAET1G, PAMR1 are on the 
22-gene panel of predicting the survival time, and we do not 
know whether these three genes are incorrectly associated 
on the list of 22 genes or if they have just not been reported 
yet. In addition, transcriptome data is characterized by a 
small sample size but a large number of features, limiting 
many deep learning algorithms which are suitable.

Conclusions

In conclusion, we found that there is correlation between 
the expression of some genes and survival time. The 
model of 22-gene panel could predict survival time of 
lung adenocarcinoma patients by Naïve Bayes algorithm. 
Using this approach, we filtered some specific genes, and 
this would be helpful for doctors’ diagnosis and patients’ 
treatment.
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Supplementary

Figure S1 Detailed results for regression and classification methods. (A) It shows the accuracy and AUC values of the results of the four 
classification algorithms; (B) the accuracy and C-index values of the results of the four fitting algorithms are presented. The abscissa is the 
number of genetic features. ACC, accuracy; AUC, area under curve.
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Figure S2 Gene functional annotation clustering. Twenty-two genes are applied in GO analysis and GAD enrichment analysis. a modified 
Fisher Exact P value is also named as the EASE score in DAVID.
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