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Introduction

Nasopharyngeal carcinoma (NPC) is one of the most 

common cancers in humans and frequently has a history of 

Epstein-Barr virus (EBV) infection associated with it and is 
prone to metastasize to distant lymph nodes and organs (1). 
The occurrence of NPC is a complex process that involves 
a combination of viral infection, environmental factors, and 
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genetic aberrations (2,3). It is also related to diet habits, 
including the consumption of salted fish (4). In addition, 
recent studies have revealed that alterations of NF-κB 
signal pathway genes are also strongly associated with the 
pathology of NPC (5-7). The treatment of NPC patients 
currently consists of combination of radiotherapy and 
chemotherapy, including the use of cisplatin, 5-fluorouracil 
(5-FU), paclitaxel, and gemcitabine (7-9). However, the 
prognosis of most NPC patients is still poor. Therefore, 
applying genetic screening to detect specific biomarkers 
for treatment may be a better option, especially for patients 
with metastasis. To date, some reports have shown that 
soluble programmed death-ligand1 (sPD-L1) (10-12), 
microRNAs BART7-3p, BART13-3p (13,14), amyloid beta 
4 (A4) (15), and soluble MHC class I chain-related molecule 
A (MICA) (16) are good candidates as NPC biomarkers. 
However, the sensitivity and specificity of these biomarkers 
are controversial. Therefore, many studies have tried 
to explore new specific methods for NPC diagnosis and 
outcome predictions, including the clinical significance of 
circulating tumor cells (CTCs) in NPC patients (17,18). To 
date, less NPC genomic data are available, which obstructs 
the understanding of NPC biology, disease progression, and 
selective treatment.

Next generation sequencing (NGS) is a very sensitive 
and reliable technique for disclosing complex genetic 
aberrations in cancer patients (19). Chow et al. (8) found 
that there is a high percentage of gene mutations in fresh 
NPC samples, including alterations in the EGFR-PI3K-Akt-
mTOR, Notch, NF-κB, and DNA damage and repair (DDR) 
signaling pathways. Lin et al. (20) reported that frequent 
genetic lesions in NPC patients were closely associated with 
chromatin modification, autophagy, and the ERRBB-PI3K 
signaling pathway. These reports mainly utilized primitive 
tumor cells as sequencing sources, which may have limited 
their outcomes. Recent studies have indicated that whole 
exome sequencing (WES) from patient’s CTC samples 
reflect more accurately the genomic characterization of real 
tumors (21-23).

Here, we compared the gene mutations profiles of tumor 
cells and CTCs in primitive and metastatic NPC patients. 
CTCs originate from primitive tumors, where they are 
shed into the vasculature and/or lymphatics traveling in 
the blood circulation (24) to distant organs causing tumor 
metastasis. Therefore, the detection of CTC’s genomic 
DNA alterations is very helpful to determine patient 
prognosis and the appropriate treatment.

Methods

Subjects

We collected and sequenced a total of 12 samples from 
four patients from June, 2017 to June, 2018 at our hospital. 
Their identification numbers were K06275, 47 year-
old male; K06269, 54 year-old male; K05734, 62 year-
old male; K06262, 54 year-old male. K06275 and K06269 
were patients with non-metastatic NPC. K06262 and 
K05734 were patients with metastasis. Samples were taken 
from peripheral white blood cells, primitive tumors using 
surgery or endoscopy, and CTCs. This study protocol was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013) and approved by ethical committee of the 
People’s Hospital of Guangxi Zhuang Autonomous Region. 
Approved protocol number was 2017-23. All patients were 
given informed consent.

Samples DNA Extraction and CTCs isolation

DNA from the primitive lesions in paraffin embedded 
tumors was extracted using the Maxwell16 FFPE plus 
LEV DNA purification Kit (Promega, Madison, USA). 
For CTC isolation, we followed the protocols described 
as the previous paper (25). Briefly, 5 mL peripheral blood 
from the patient’s vein was first lysed using red blood lysis 
buffer and then filtered through an 8 μM filter membrane. 
CTCs remained on the filter membrane, whereas white 
blood cells passed through the filter, after which, their 
DNA was extracted using the Maxwell 16 cell LEV DNA 
Purification kit (Promega, Madison, USA). The membrane 
with CTCs was hybridized using CanPatrolTM CTC 
RNAISH (SurExam Bio-Tech, Guangzhou, China) and 
identified. Then, confirmed CTCs were collected using a 
Palm Microbeam laser microdissection system and further 
enriched and amplified with the GenomePlex Single Cell. 
CTCs were classified as epithelial, mesenchymal, and mixed 
types according to their morphology and surface markers. 
Their graphs were shown as Figure 1. Whole Genome 
Amplification Kit (Sigma, USA). Finally, DNA fragments 
were obtained from amply and purification and were used 
for all subsequent experiments.

DNA library generation and sequencing

The above mentioned DNA was processed for amplification 
of targeting regions, primers digestion, adapter connection, 
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fragment screening, and library enrichment with the Ion 
AmpliSeqTM Exome RDY 4×2 kit (Life Technologies, USA). 
Then, a library was constructed, preparing sequencing 
template with the use of Ion ChefTM (Life Technologies, 
USA). The sequencing templates were then transferred 
into PI sequencing chips and connected to an Ion Proton 
sequencing instrument (Life Technologies, USA) for high-
throughput sequencing (HTS).

Experiment flowchart

The exome is the sum of all exons in one specimen. This 
region contains essential genetic information for protein 
translation (26). Exome sequencing utilized chips and 
probes hybridizing genomic deoxyribonucleic acid (DNA) 
sequencing of riched exons. Then, high throughout 
sequencing was used to detect all samples.

Bioinformation analysis strategy

Raw reads were obtained from WES. Then, low quality 
(<10) sequences of less than 50 base pair were ruled out. 
After decontamination unique pairs were aligned with 
unique mapped reads in the whole genomic database. 
Subsequent genetic information analysis included targeting 
region sequencing depth, covering rate analysis, single-
nucleotide polymorphism (SNP), and Indel detection, using 
the bioinformatics analysis tool Annovar. After screening 
for mutated genes with altered amino acid, we analyzed the 
linkage of the molecular mechanism, signal pathways and 
cellular functions in these altered genes and proteins using 
gene ontology (GO) analysis.

Results

Somatic mutational landscape in 4 NPC patients

To compare the profile of gene mutations in primitive 
and metastatic NPC patients, WES of white blood cells, 
tumor cells and CTCs from patients was performed and 
analyzed. All 4 patients were male. The age was between 
47 to 62 years old. After ion torrent analysis of raw data 
of sequencing, they were screened and filtered. Then, we 
carried out Annovar analysis. Non-exonic region mutation 
sites, adapter, non-monoclonal fragments (multiple 
barcode), and synonymous mutations (SNV) were first 
ruled out. We chose non-synonymous mutations (non-
SNV) as our data for analysis. The one of following three 
criteria was selected as our potential candidate genes: (I) 
significantly mutated genes previously reported in a large 
scale sequencing of NPC patients (20); (II) relevant genes 
in NPC as well as other cancers listed in the COSMIC 
database (http://cancer.sanger.ac.uk/cosmic/) (27); (III) 
genes that act in pathways related to cancer according to the 
KEGG database (https://www.genome.jp/kegg). According 
to these criteria, we obtained the mutational landscape of 4 
primitive tumor lesions (Figure 2). We found no significant 
difference between the non-SNV of the primitive lesions 
in the metastatic patients (K06262 and K05734) and the 
non-metastatic patients (K06269 and K06275). However, 
we found that there was MSH2 gene mutation in two non-
SNV patients (K06275 and K06262), which suggested that 
the MSH2 gene mutation give rise to defects of the DDR 
function. This process in turn may have promoted the 
accumulation of mutations involved in tumorigenesis. In 

Figure 1 The graphs of circulating tumor cells (CTCs): (A) epithelial type CTCs, which detected by Alexa Fluor 594 (red color) labeled 
EpCAM,CK8, CK18,and CK19; (B) mesenchymal type CTCs, which detected by Alexa Fluor 488 labeled vimentin and Twist; (C) mixed 
CTCs were tested with epithelial and mesenchymal markers.

A B C

http://cancer.sanger.ac.uk/cosmic/
https://www.genome.jp/kegg/pathway.html
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addition, we also found BAP1 gene alteration in a metastatic 
patient (K06262), which is relevant to invasion and tumor 
metastasis (28). This result indicated that this gene mutation 
enhanced the invasive ability of cancer cells, and resulting 
in metastasis.

Mutational signature of the primary lesions and CTC 
samples

All single-nucleotide variations (SNVs) were classified 
into six categories according to the mutation directions 
(C > A, C > G, C > T, T > A, T > C, and T > G) (6). On 
the addition of mutated nucleotides at the 5’-terminal 
and 3’-terminal, there was total of 96 mutational contexts. 
Different mutational contexts have varying proportions in 
each tumor. This different ratio of 96 mutational contexts 
is defined as the mutational signature (29). Each signature 
has its corresponding generation mechanism. Therefore, 
we speculated that the mutational signature of each tumor 
contributes to its tumorigenesis. We analyzed a fraction of 
the 96 mutational contexts in four primitive NPC patients 
using the multiple linear regression models (30), and 

compared their mutational contexts with 30 mutational 
signatures in the COSMIC database (Figure 3). The left 
panel in Figure 3 shows a fraction of six mutational contexts 
and the right panel shows the proportion of each signature. 
We found that all the four patients had a dominant 3 type 
signature, which results from double strand DNA break 
and causes dysfunction of homologous recombination. This 
also indicated that the genome is unstable in the process 
of carcinogenesis. Interestingly, we also found the unique 
signatures 5 and 4 in two metastatic patients, K06262 
and K05734, respectively. The resulting mechanism of 
signature 5 is unclear; however, it has been identified in 
many kinds of cancers. In contrast, signature4 frequently 
occurs as a C > A transition in the transcribed strand that 
results from smoking. These results indicated that distinct 
life environments and styles caused different carcinogenesis 
mechanisms.

To evaluate specific gene mutations in CTCs, we also 
performed differential mutation analysis. Gene mutations 
from leukocytes were used as a negative control. We found 
almost identical mutations between primitive tumor and 
white blood cells. In contrast, there were tremendous 

Figure 2 Mutational landscape of 4 nasopharyngeal carcinoma (NPC) primitive lesions: the left panel shows presence or absence of 
metastasis in the different patients; the middle panel shows driving mutations for each primitive tumor; the right panel shows non-silent 
mutation numbers (Non-SNV).
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differences between CTCs and white blood cel ls  
(Table 1). Specially, we found that CFAP74, MOB3C, 
PDE4DIP, IGFN1, CYFIP2, NOP16, SLC22A1, ZNF117 
and SSPO mutations were involved in both primary tumor 
and CTC samples. CCDC144NL only occurred in primitive 
tumors. Interestingly, OR2T12, CPN2, MLXIPL, BAIAP3, 
IGSF3, SIN3B, and ZNF880 mutations were found in 
the metastatic group (supplementary material at http://
fp.amegroups.cn/cms/123ade0661df7777fed15ae4e1cea7fa/
TCR-19-2899-1.xlsx).

GO pathway enrichment analysis

We further analyzed the pathway enrichment of gene 
mutations using GO analysis. The results are shown in the 
Figures 4 and 5 for the NPC patients. As an example, the 
graph shows that the UBC complex, ZNF family numbers, 
PCDH proteins, and IFNA were key mutated genes in 
patient K06269 patient (Figure 4). In contrast, PCDHGA10, 
SRA1, ZNF family numbers, CNOT1 and WNK1 gene 
mutations were involved in alterations of signaling pathways 

Figure 3 Mutational signature framework of four primitive tumor samples. The left panel shows a fraction of mutational contexts in each 
patient. The right panel indicates mutational signature patterns.
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in patient K05734 (Figure 5). Similarly, HSPG2, NOTCH 4, 
PXN, PIK3R1 and GAB1 gene mutations occurred in patient 
K06275. CD40, HSPG2, EP300, LIMK1 and GNAS gene 
alteration were relevant to different signaling pathways in 
patient K06262 (data not shown). These data revealed that 
individual tumors had their own altered signaling pathways.

Profiles of cancer associated gene mutations

Carcinogenesis is a multi-step procession many gene 
mutations accumulate at various stages. Up to 400 genes 
including oncogenes, tumor suppressor, cell cycle related, 
apoptotic, RNA transcription and translation, DDR 
genes are involved in this transformation. The present 
study confirmed these findings in the metastatic patient K 
06262 (Table 2). These critical gene mutations definitively 
contributed to the occurrence of NPC. We found PMS2, 
BCL11A, PDE4DIP, and ALK4 gene mutations in the 
K06269 primitive lesion, which are related to DDR, 

metabolism, cell proliferation, and protein degradation. In 
contrast, ERCC3, EGFR, BRAF, and 155 gene mutations 
occurred in K06269 CTC samples. Similarly, MSH2, 
ERCC4, VHL, and 21 more gene mutations occurred in 
the K06275 primary lesion; PARP1, ERCC5, APC, and 264 
more gene mutations occurred in K06275 CTC samples. 
Interestingly, MSH2, ERCC1, BAP1, and 26 more gene 
mutations, and MSH2, ERCC3, EGFR, and 240 more 
gene mutations occurred in K06262 primitive lesion and 
CTC samples, respectively. PDE4DI, and BCR2 mutations 
occurred in the patient K05734 primitive lesion. MSH2, 
ERCC3, HIF1A, and 237 more gene mutations occurred 
in the patient K05734 CTC sample (Table 3). We found 
that K06275 always had more mutations than the other 
three subjects in either primitive lesions or CTC samples. 
In contrast, subject K06262 from the metastatic group 
had more tumor associated gene mutations. Only K06262 
had invasion relevant gene mutations in primitive lesions. 
However, all four CTC samples had more invasion and 
metastasis relevant gene mutations than primitive lesions.

Comparison of gene mutations in CTC samples

CTCs are considered one of the causes for cancer 
metastasis. Primitive tumor cells enter the peripheral blood 
and seed tumor cells into long distant organs, where they 
proliferate and amplify to form metastatic sites (31). We 
isolated CTCs from four patients using CTC isolation 
kits and performed WES to compare them with primitive 
tumors. The results are shown in Figure 6. We detected 
large amounts of somatic mutations. Although there were 
some identical mutations between primitive tumors and 
CTCs, we found that somatic mutations in CTCs were 
considerably higher than in the primitive tumor. These 
results indicated that CTC WES is very helpful tumor 
prediction and for diagnosis.

Discussion

Carcinogenesis is involved in the alteration of multiple 
molecules and signaling pathway networks (32,33). 
Activation of oncogenes or inactivation of suppressor genes 
can give rise to the occurrence of cancers (34,35). Here, 
we utilized WES to trace gene alterations in primitive 
tumors and CTCs of two non-metastatic patients and 
two metastatic patients. The present data revealed that 
the somatic mutation rate in CTCs is significantly higher 
than in either primitive tumor or metastatic samples. 

Figure 4 Pathway diagram summarizing the mutated genes in 
patient K06269. The results show that UBC complex, ZNF family 
numbers, PCDH proteins and IFNA are key mutated genes in 
K06269 patient.
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Table 2 Function classification of gene mutations in K06262 primitive tumor sample

Gene AAChange ExonicFunc.refGene Classification

MSH2 c.196_197insG Stopgain DNA damage and repair

ERCC1 c.211delG Frameshift deletion DNA damage and repair

GATA2 c.441dupG Frameshift insertion RNA transcription and translation

TET2 c.4582delC Frameshift deletion RNA transcription and translation

PML c.1767delG Frameshift deletion RNA transcription and translation

JAK3 c.G2774T SNV RNA transcription and translation

CRTC1 c.1706delC Frameshift deletion RNA transcription and translation

CEBPA c.206delC Frameshift deletion RNA transcription and translation

CEBPA c.218_219del Frameshift deletion RNA transcription and translation

CEBPA c.208_209del Frameshift deletion RNA transcription and translation

CEBPA c.212delG Frameshift deletion RNA transcription and translation

EP300 c.4402dupA Frameshift insertion RNA transcription and translation

PDE4DIP c.T5207A SNV Metabolism

PDE4DIP c.C2353T Stopgain Metabolism

PDE4DIP c.1218delA Frameshift deletion Metabolism

PDE4DIP c.G180A Stopgain Metabolism

RET c.960_961del Frameshift deletion Metabolism

BCL9 c.1148_1149insG Frameshift insertion Development and differentiation

ACVR2A c.29_30insA Frameshift insertion Development and differentiation

ACVR2A c.G31T Stopgain Development and differentiation

TNK2 c.21delC Frameshift deletion Development and differentiation

HNF1A c.A1720G SNV Development and differentiation

CIC c.407_408insC Frameshift insertion Development and differentiation

IKBKB c.151delC Frameshift deletion Immunology

CDKN2A c.342delC Frameshift deletion Apoptosis

BCL2L2 c.265delG Frameshift deletion Apoptosis

EZH2 c.1682delA Frameshift deletion Proliferation

BCL2 c.119_120del Frameshift deletion Proliferation

TCF3 c.1474delG Frameshift deletion Proliferation

MARK4 c.1310delG Frameshift deletion Proliferation

MTOR c.3041_3042insT Frameshift insertion Signal transduction

GNAS c.C1522A SNV Signal transduction

BAP1 c.G88T Stopgain Tumor metastasis
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Interestingly, the patients with high non-synonymous 
mutations had MSH2 gene mutation. In addition, we also 
found that BAP1 gene alteration, which is relevant to 
invasion and metastasis of cancer, occurred in a metastatic 
patient.

MSH2 gene encodes a DNA mismatch repair (MMR) 
protein, which is involved in many kinds of DNA repair (36). 
MSH2 alteration is frequently associated with hereditary 
nonpolyposis colorectal cancer (HNPCC) because of DNA 
microsatellite instability (37). Interestingly, immunotherapy 
of colorectal cancer patients with MSH2 mutation has 
shown great benefits (38). Our qPCR results revealed that 
there were significant high PD-L1 and CTLA4 levels in 
metastatic patients compared with non-metastatic patients. 
Previous studies have shown extensive expression of PD-
L1 had extensive expressions in tumor cells or immune cells 
of NPC patients (39,40). The other data also showed that 
there were high PD-L1 level in NPC patients with MMR 

status (41). All together, these finding indicate that the 
use of immune checkpoint inhibitors in metastatic NPC 
patients may result in great outcomes. MSH2 dimerizes 
with MSH6 to form the MutSα mismatch repair complex, 
which repairs DNA longer insertion/deletion loops (42). 
MSH2 alteration is also involved in acute lymphoblastoid 
leukemia (ALL) patients (43). Here, we found an association 
between MSH2 mutations was associated in primitive and 
metastatic NPC patients with high somatic mutation ratio. 
This implied a key role of DDR gene dysfunction in the 
occurrence of NPC.

BAP1 gene encodes a deubiquitinating enzyme that 
acts as a nuclear-localizing protein. Mutations in this gene 
have been identified in some breast and lung cancers (27). 
BAP1 mutation is closely relevant to metastasis (28). In the 
present result showed that BAP1 alteration only happened 
in metastatic patient, confirming its role in metastasis. Two 
metastatic patients had the unique mutational signatures 4 
and 5. This indicated that each patient is unique with his 
own environment and life style.

To date, previous reports have shown that sPD-L1 (10-12), 
microRNAs BART7-3p, BART13-3p (13,14), A4 (15), and 
MICA (16) as candidate biomarkers for NPC prognosis. 
The clinical significance of these markers for NPC 
metastasis remains. Recent studies revealed that gene 
mutations in the NF-κB signaling pathway were involved 
in the occurrence of NPC (5,6,8,44). Our current data 
revealed that more gene mutation occurred in NPC 
patients, including those in DDR, RNA transcription 
and translation, metabolism, apoptosis, and immunology 
pathways. This result hinted that the occurrence of NPC is 
more complex than we previously thought. We also found 
that CFAP74, MOB3C, PDE4DIP, IGFN1, CYFIP2, NOP16, 
SLC22A1, ZNF117, and SSPO mutations were present 
in all primitive tumor and CTC samples. Interestingly, 
OR2T12, CPN2, MLXIPL, BAIAP, IGSF3, SIN3B and 
ZNF880 only occurred in metastatic NPC patients. This 
finding demonstrated that these genes may be used as new 
biomarkers to target therapy. We plan to test these mutated 
genes in large a sample size in the future.

We also found that many DDR relevant gene mutations 
including BRIP1, PMS1 and DEE only existed in metastatic 
CTC samples. Graham et al. (45) found that PMS1 forms 
a complex with MIH1gene to correct mispaired DNA. 
Zhao (46) reported that MLH1, MSH2, MSH6 and PMS1 
are present in stage II and III colorectal cancer patients. 
Velázquez et al. (47) found that BRIP1 gene mutations 
occurred in inherited breast cancer patients. It was also 

Figure 5 Pathway diagram summarizing the mutated genes in 
patient K05734. The graph shows that PCDHGA10, SRA1, ZNF 
family numbers, CNOT1 and WNK1 gene alterations are involved 
in the signaling pathways.
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reported that the association between MSH6 and BRIP1 
variants are relevant to oxidative DNA damage in triple 
negative breast patients (48). Here, we first have found 
that PMS1 and BRIP1 gene mutations are relevant to NPC 
metastasis.

Conclusions

Our data revealed that WES of CTC samples in NPC 
patients is a very powerful tool for distinguishing primitive 
and metastatic tumor. We found that a few critical gene 
mutations, such as those in the MSH2, BAP1, PMS1, DEE 
and BRIP1 genes are present in metastatic CTC samples. 
These genes may be used as new biomarkers to target 
treatment.
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