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Background: 18F-FDG PET based radiomics is promising for precision oncology imaging. This work aims 
to explore quantitative accuracies of radiomic features (RFs) for low-dose 18F-FDG PET imaging.
Methods: Twenty lung cancer patients were prospectively enrolled and underwent 18F-FDG PET/CT 
scans. Low-dose PET situations (true counts: 20×106, 15×106, 10×106, 7.5×106, 5×106, 2×106, 1×106, 0.5×106, 
0.25×106) were simulated by randomly discarding counts from the acquired list-mode data. Each PET image 
was created using the scanner default reconstruction parameters. Each lesion volume of interest (VOI) 
was obtained via an adaptive contouring method with a threshold of 50% peak standardized uptake value 
(SUVpeak) in the PET images with full count data and VOIs were copied to the PET images at the reduced 
count level. Conventional SUV measures, features calculated from first-order statistics (FOS) and texture 
features (TFs) were calculated. Texture based RF include features calculated from gray-level co-occurrence 
matrix (GLCM), gray-level run length matrix (GLRLM), gray-level size zone matrix (GLSZM), neighboring 
gray-level dependence matrix (NGLDM) and neighbor gray-tone difference matrix (NGTDM). Bias 
percentage (BP) at different count levels for each RF was calculated.
Results: Fifty-seven lesions with a volume greater than 1.5 cm3 were found (mean volume, 25.7 cm3, 
volume range, 1.5–245.4 cm3). In comparison with normal total counts, mean SUV (SUVmean) in the 
lesions, normal lungs and livers, Entropy and sum entropy from GLCM, busyness from NGTDM and run-
length non-uniformity from GLRLM were the most robust features, with a BP of 5% at the count level 
of 1×106 (equivalent to an effective dose of 0.04 mSv) RF including cluster shade from GLCM, long-run 
low grey-level emphasis, high grey-level run emphasis and short-run low grey-level emphasis from GLRM 
exhibited the worst performance with 50% of bias with 20×106 counts (equivalent to an effective dose of  
0.8 mSv).
Conclusions: In terms of the lesions included in this study, SUVmean, entropy and sum entropy from 
GLCM, busyness from NGTDM and run-length non-uniformity from GLRLM were the least sensitive 
features to lowering count.
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Introduction

A quantitative radiomic approach or radiomics has been 
shown promising in diagnosis, response prediction and 
prognostication (1). It is now a very active research in 
oncological imaging by extracting high dimensional radiomic 
features (RFs) to characterize tumor. The most commonly 
used RF are first-order statistics (FOS) and texture features 
(TFs), including second-order features calculated from 
gray level co-occurrence matrix (GLCM) and high-
order features including the gray-level run length matrix 
(GLRLM) (2), gray-level size zone matrix (GLSZM) (3),  
neighborhood gray-level difference matrix (NGLDM) (4) 
and neighbor gray-tone difference matrix (NGTDM) (5). 
Maximum standardized uptake value (SUVmax), mean SUV 
(SUVmean) and peak SUV (SUVpeak) belong to FOS, 
which are commonly used in the clinic to measure tissue 
uptake of 18F-FDG without concerning for voxel spatial 
relationships (6). The utilities of PET based radiomics have 
been shown in various tumor types [including pancreatic (7),  
brain (8), lung (9), esophageal (10) and oropharyngeal (11)  
cancer] mainly for predicting survival.  The more 
comprehensive characterization of PET based texture 
analysis for clinical applications could be found in the 
review articles (12,13).

Quantification in PET imaging using SUV measures is 
subject to many errors from technical, physical and biologic 
factors, including scan acquisition parameters, image 
reconstruction parameters, patient motion and breathing, 
uptake period, partial volume effect and region of interest 
(ROI) delineation (14). These errors have been directly 
realized in SUV measures and have effect on PET clinical 
applications (15). Some errors have been investigated in RF 
including motion (16-18), reconstruction settings (19,20), 
partial volume effect (21) and tumor delineation (21,22).

T h e  c l i n i c a l  v a l u e  o f  P E T / C T  s c a n n i n g  i s 
unquestionable. A higher dose of PET results in a better 
image but with a cost of higher radiation exposure to 
patients and hospital personnel. Although the linear no-
threshold hypothesis is controversial and low radiation such 
as radiation from medical imaging perhaps helps prevent 
cancer instead of increasing cancer (23), the public worry 
the carcinogenic risk due to medical imaging radiation. 
Low-dose PET/CT imaging is desired for patients, 
especially for younger patients. The advances of time of 
flight (TOF) technology and point spread function (PSF) 
based reconstruction algorithm could possibly increase 
sensitivity to detect lesions for some specific clinical tasks 

(24-26). In addition, low-dose PET/CT imaging is desired 
for pediatric patients or patients requiring repeated scans. 
To the best of our knowledge, no studies have been done to 
investigate RF stability under low-dose PET imaging.

The objective of this study was to evaluate the effect of 
lowering counts on RF in comparison with the “true values” 
calculated with full count data. We present the following 
article in accordance with the STROBE reporting checklist (27)  
(available at http://dx.doi.org/10.21037/tcr-20-1715).

Methods

Patients

Twenty patients (mean age, 64 y, age range, 46–81 y;  
12 men, 8 women) were prospectively enrolled between July 
2014 and June 2015 for this pilot study.

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study was 
approved by Domain Specific Review Board of National 
Healthcare Group, Singapore (Ref: 2014/00459) and 
informed consent was taken from all the patients. All these 
patients were presented with biopsy-proven primary lung 
cancer or suspicious abnormalities in the lung planned 
for definitive lung surgery. The data have been previously 
reported (24), focusing on investigating small lesion 
detectability for lung cancer screening with low FDG 
injections. The effect of lowering dose on RF derived from 
large lesions was explored in this manuscript.

Data acquisition

All subjects underwent whole-body 18F-FDG PET/CT scan 
on a Siemens Biograph mCT scanner with a 64-slice spiral 
CT (Siemens Healthcare Molecular Imaging) located in the 
Clinical Imaging Research Center after an uptake period 
of around 60 min with injection of 5.9±0.14 mCi 18F-FDG 
linearly with body weight. PET raw data were obtained in 
list-mode for 10 minutes with 2 bed positions covering the 
lungs. Each CT was performed with a tube voltage of 120 kV 
and a tube current of 50 mAs (rotation time: 0.5 s; pitch: 0.8).

Image reconstruction

The reduced PET doses were simulated by randomly 
discarding events in the list mode stream based on nine 
predefined true counts (24): 0.25×106, 0.5×106, 1×106, 
2×106, 5×106, 7.5×106, 10×106, 15×106, and 20×106. The true 
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PET counts were produced by subtracting prompts from 
randoms. The maximum possible number of independent 
realizations was determined based on the acquired counts 
for each subject, up to 50 realizations. Each realization 
was reconstructed with ordinary Poisson ordered subsets 
expectation maximization (OP-OSEM) (28) using a system 
PSF incorporated in the projection matrix and TOF 
information. Corrections including attenuation, randoms, 
and scatter were carried out for each realization. PET 
images were reconstructed with 2 iterations and 21 subsets 
and then smoothed by a 5 mm full-width-at-half-maximum 
Gaussian filter. The image matrix is 400×400 with a voxel 
size of 2.04×2.04×2.03 mm3. The dimension of CT image 
was 512×512 with a voxel size of 1.52×1.52×5 mm3. Low-
dose PET simulations and image reconstructions were both 
performed on the Siemens PET/CT workstation.

Volume of interest (VOI) delineation

The VOI in the normal lung background and liver 
background for each subject was obtained by drawing a 
sphere with a diameter of 3 cm. VOIs were obtained semi-
automatically by using an adaptive isocontour method 
correcting for local background with a threshold of 50% of 
the SUVpeak (29,30), following by a morphological closing 
operation to include necrotic regions. In addition, a manual 
adjustment to exclude neighboring nodes or metastases was 
made for each VOI if necessary. As in (22), only lesions with 
voxel number greater than 64 (4×4×4) were included for the 
meaningful calculations of RF. In addition, to mitigate the 
impact of partial volume effect on texture calculations, lesions 
with volumes with dimensions of at least equal to 3 times the 
spatial resolution of the scanner (about 5 mm) were included. 
Therefore, only the lesion with a volume of greater than  
1.5 cm3 was included in this study. All of the VOIs were 
drawn on the PET images reconstructed with full count data 
and then copied to the images at reduced counts.

Image features

A bin size of 64 was selected in this study to calculate 
TFs (22,31). Image intensities within each VOI were 
transformed to the range [0–63]. For each VOI, 67 RFs 
were computed for each VOI from FOS, GLCM, GLRLM, 
GLSZM, NGLDM and NGTDM (19) and their acronyms 
are summarized in Table 1, including seven SUV measures 
[lesion SUVmax, normal lung SUVmax, normal liver 
SUVmax, lesion SUVmean, normal lung SUVmean, 

normal liver SUVmean. Lesion SUVpeak (1-cm-diameter 
spherical VOI centered on SUVmax)]. In terms of GCLM, 
3D matrix was employed in this study, capturing spatial 
dependence of gray-level values across multiple slices, 
which was extended from the 2D GLCM by summing voxel 
triplet probabilities in a 2D image. Each TF of GLCM and 
GLRLM was calculated from the combined matrix from 
13 different directions with 1 voxel displacement (32). The 
26 nearest neighbors were employed to calculate NGLDM 
and NGTDM. Moreover, the neighborhood intensity 
difference of zero was only considered for NGTDM. All of 
the TFs were calculated based on an open-source software 
package (33) following the guideline of image biomarker 
standardization initiative (34). The VOI delineations and 
RF calculations were performed on an in-house software 
written with Matlab running on a normal desktop computer.

Data analysis

Mean images of each subject across realizations were 
calculated for analysis at each count level. Bias percentage 
(BP) at different low count levels for each RF relative to its 
value at full count level was calculated as follows:

( ) ( ) ( )% 100 %low full fullBias absolute RF RF RF= − × 	 [1]

where RFlow and RFfull are the value of each RF at each low 
count level and full count level calculated from each mean 
image, respectively. The mean BP of all lesions for each RF 
was calculated for further analysis. Eight scales of BP were 
used in this study (5%, 10%, 15%, 20%, 25%, 30%, 40% 
and 50%). The minimum count required to reach the least 
BP scale for each RF was determined. For example, as for 
SUVmean, the mean BP were 31%, 21%, 4.8%, 2.5%, 1%, 
0.7%, 0.6%, 0.5% and 0.5% at the count level of 0.25×106, 
0.5×106, 1×106, 2×106, 5×106, 7.5×106, 10×106, 15×106, and 
20×106, respectively, as shown in Figure 1. Therefore, the 
minimum count of 1×106 and the least BP scale of 5% were 
recorded for SUVmean.

Results

Patient characteristics were shown in Table 2 .  All 
patients were at the advanced stage (III and IV) with 16 
adenocarcinoma and 4 squamous cell carcinoma. Among 
these patients, the number of Chinese, Malay, Filipino and 
Indian are 15, 3, 1 and 1, respectively. Fifty-seven lesions 
with a volume greater than 1.5 cm3 were identified for 
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Table 1 Summary of TFs and FOS features

Order Matrix Features

FOS Histogram Variance (VAR)

Median (MED)

Coefficient of variation (COV)

Skewness (SKE)

Kurtosis (KUR)

Energy (ENEF)

Entropy (ENTF)

Lesion_mean (LSM)

Lung_mean (LUM)

Liver_mean (LVM)

Lesion_max (LSX)

Lung_max (LUX)

Liver_max (LVX)

Lesion_peak (LSP)

Second- 
order  
features

GLCM Autocorrelation (AUC)

Contrast (CONG)

Correlation (COR)

Cluster shade (CS)

Dissimilarity (DIS)

Energy (ENG)

Entropy (ENTG)

Inverse difference (ID)

Homogeneity (HM)

Maximum probability (MP)

Sum of squares (SOS)

Sum average (SA)

Sum variance (SV)

Sum entropy (SE)

Difference variance (DV)

Difference entropy (DE)

Information measure of correlation (IMC)

Inverse difference normalized (IDN)

Inverse difference moment normalized 
(IDMN)

Diagonal moment (DM)

Second diagonal moment (SDN)

Table 1 (continued)

Table 1 (continued)

Order Matrix Features

High- 
order 
features

GLRLM Short-run emphasis (SRE)

Long-run emphasis (LRE)

Low grey-level run emphasis (LGRE)

High grey-level run emphasis (HGRE)

Short-run low grey-level emphasis (SRLGE)

Short-run high grey-level emphasis (SRHGE)

Long-run low grey-level emphasis (LRLGE)

Long-run high grey-level emphasis (LRHGE)

Grey-level non-uniformity for run (GLNr)

Run-length non-uniformity (RLN)

Run percentage (RP)

GLSZM Short-zone emphasis (SZE)

Long-zone emphasis (LZE)

Low grey-level zone emphasis (LGZE)

High grey-level zone emphasis (HGZE)

Short-zone low grey-level emphasis (SZLGE)

Short-zone high grey-level emphasis 
(SZHGE)

Long-zone low grey-level emphasis (LZLGE)

Long-zone high grey-level emphasis  
(LZHGE)

Grey-level non-uniformity for zone (GLNz)

Zone-length non-uniformity (ZLN)

Zone percentage (ZP)

NGLDM Small number emphasis (SNE)

Large number emphasis (LNE)

Number nonuniformity (NN)

Second moment (SM)

Entropy (ENTN)

NGTDM Coarseness (COA)

Contrast (CONN)

Busyness (BUSN)

Complexity (COMP)

Texture strength (TS)

TF, texture feature; FOS, first-order statistics; GLCM, gray-level 
co-occurrence matrix; GLRLM, gray-level run length matrix; 
GLSZM, gray-level size zone matrix; NGLDM, neighboring 
gray-level dependence matrix; NGTDM, neighbor gray-tone  
difference matrix.
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Table 2 Characteristics of 20 patients

Subject Sex Race Age (y) Histology TNM stage

1 Male Indian 56 Squamous cell carcinoma IIIB

2 Female Chinese 47 Squamous cell carcinoma III

3 Male Filipino 52 Adenocarcinoma IV

4 Male Chinese 66 Adenocarcinoma IV

5 Male Malay 66 Adenocarcinoma IV

6 Female Malay 54 Adenocarcinoma IV

7 Female Chinese 70 Adenocarcinoma IV

8 Male Chinese 80 Adenocarcinoma IV

9 Female Chinese 59 Adenocarcinoma IV

10 Male Chinese 68 Squamous cell carcinoma IV

11 Female Chinese 56 Adenocarcinoma IV

12 Male Chinese 46 Adenocarcinoma IV

13 Female Chinese 74 Adenocarcinoma IV

14 Male Chinese 71 Adenocarcinoma IV

15 Female Chinese 80 Adenocarcinoma IB

16 Female Chinese 56 Adenocarcinoma IV

17 Male Chinese 64 Adenocarcinoma IV

18 Male Chinese 81 Adenocarcinoma III

19 Male Chinese 58 Squamous cell carcinoma IIIB

20 Male Malay 68 Adenocarcinoma IV

Figure 1 Mean bias of SUVmean for all subjects at different 
counts level (green marker represents the recorded bias and count 
for SUVmean). SUVmean, mean standardized uptake value.

all 20 patients. The mean lesion volume was 25.7 (range, 
1.5–245.4) cm3. Figure 2 shows PET images of a patient 
reconstructed with full count and different reduced count 
data. As expected, image quality decreases with lowering 
counts. The increasing noise in the image may translate 
into less stable image features. SUVmean bias of all lesions 
at different count level is displayed in Figure 3, which 
demonstrates that bias decreases with higher lesion volumes. 
The minimum count required to reach the least BP scale 
for each image feature is shown in Figure 4. Since the BP of 
all image features at the count level of 0.25×106 were larger 
than 50%, the information for this count level were not 
included in Figure 4. The SUVmean (lesion, normal lung 
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and liver) were very stable at all count levels. Only a count 
of 1×106 was required to reach 5% of BP for SUVmean. In 
comparison with SUVmean, SUVpeak (LSP) and SUVmax 
(LSX, LUX and LVX) of lesion (LSX), normal lung (LUX) 
and liver (LVX) were less table. Counts of 5×106 and 10×106 
were necessary to maintain 5% of BP for LSP and LSX, 
respectively. BP was found to be higher for LUX (20%) and 
LVX (40%) even at the count of 20×106. Textures including 
entropy (GLCM), sum entropy (GLCM), busyness 
(NGTDM) and RLN (GLRLM) were the most stable RFs, 
having the same performance with SUVmean. In addition, 
MED, KURENEF and ENTF from FOS, ZLN and ENG 

from GLCM, ZP from GLSZM, TS from NGTDM, 
GLNr, LRE and RP from GLRLM can achieve a BP of 5% 
at the count of not more than 5×106. A count level of 20×106 
was required to achieve a BP of 5% for features including 
ID(GLCM), HM(GLCM), IMC(GLCM), IDN(GLCM), 
IDMN(GLCM),  DM(GLCM),  GLNz(GLSZM) , 
S Z E ( G L S Z M )  a n d  S R E ( N G L D ) .  C S ( G L C M ) , 
LRLGE(GLRM), HGRE(GLRM) and SRLGE(GLRM) 
exhibited the worst performance, their BP were more 
than 50% even with 20×106 counts. The count of 1×106 is 
approximate to an effective dose of around 0.04 mSv.

Discussion

In the last years, RF, mostly TF, have been growingly 
used in the quantification of intra-tumor heterogeneity. 
The utility of 18F-FDG PET based radiomics have 
been investigated in cancer patients, mainly focusing on 
diagnosis, treatment response prediction and prognosis. 
The workflow of radomics typically involves quantitative 
imaging, VOI delineation, RF extraction and machine 
learning, in which error from each step would lead to 
variations of radiomics performance. PET imaging is an 
intrinsically noisy imaging modality and its quantitative 
image reconstruction easily suffers from factors including 
physical, technical and biological factors (14). Detected 

Figure 2 Mean PET images of subject 1 (SUV: 0–4) at the different count level. (A) 103×106, (B) 20×106, (C) 15×106, (D) 10×106, (E) 7.5×106, 
(F) 5×106, (G) 2×106, (H) 1×106, (I) 0.5×106. SUV, standardized uptake value.

Figure 3 Mean SUV bias of all lesions at different count level. 
SUV, standardized uptake value.
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PET count or events during acquisition usually depends on 
injected tracer dose, system sensitivity and scan duration, 
which determines PET image quality and has influences on 
accuracy of RF. Our primary aim was to explore the impact 
of reducing count on RFs derived from 18F-FDG PET 
tumor images. In particular, we want to find out which RF is 
not sensitive to noise due to lowering PET true count level. 
RF with the same robustness as the commonly used SUV 
measures are desired for quantitative tumor characterization 
in low-dose PET/CT imaging, which may bring more 
benefit for pediatric patients or patients who need to have 
multiple PET/CT scans.

In a previous study (24), quantitative accuracy and good 
lesion detectability of low-dose 18F-FDG PET focusing on 
small lesions (mean volume, 1.25 cm3; range, 0.18–3.80 cm3)  
could be maintained around 10×106 true counts using a 
dataset of biopsy-proven primary lung cancer or patients 
with suggestive radiologic abnormalities planned for 
definitive lung surgery from a prospective study. Low-
dose data were produced by randomly discarding events 
in the PET list-mode. The same image data were used 
in this study but focusing on large lesions (mean volume, 
25.7 cm3, volume range, 1.5–245.4 cm3). Previous studies 

investigated the minimal size required for radiomic analysis 
to assess intratumor heterogeneity (32,35,36). For example, 
Hatt et al. suggested a size of at least 10 cm3 to evaluate 
tracer uptake variation with TFs (32). In that study, PET 
images were reconstructed with 4×4×4 mm. Therefore, 
number of voxels within a lesion of 1.5 cm3 in this study 
(voxel size: 2.04×2.04×2.03 mm) is comparable to that 
study. As shown in Figure 4, obviously, different image 
features have different sensitivity to count level. SUVmean 
is a very stable image metric and its BP is about 5% at the 
count level of 1×106, which translates to an effective dose of 
around 0.04 mSv. Among RF, ENTG(GLCM), SE(GLCM), 
BUSN(NGTDM) and RLN(GLRLM) have the same 
performance with SUVmean. As expected, the performance 
of SUVpeak(LSP) is inferior to SUVmean(LSM) but 
superior to SUVmax(LSX). At the count level of 20×106, BP 
could be to 5% for the image features including SUVmean 
in the lesions, normal lungs and livers, ENTG(GLCM), 
SE(GLCM) ,  BUSN(NGTDM),  RLN(GLRLM) , 
M E D ( F O S ) ,  E N G ( G L C M ) ,  Z P ( G L S Z M ) ,  L S P, 
KUR(FOS), ENEF(FOS), TS(NGTDM), GLNr(GLRLM), 
LRE(GLRM), RP(GLRLM), ENTF(FOS), MP(GLCM), 
DE(GLCM), ENTN(NGLDM), SNE(NGLDM), SUVmax 

Figure 4 The minimum count required for each image feature to reach the least BP scale. BP, bias percentage.
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in the lesions (LSX), NN(NGLDM), SM(NGLDM), 
LZE(GLSZM), ID(GLCM), HM(GLCM), IMC(GLCM), 
I D N ( G L C M ) ,  I D M N ( G L C M ) ,  D M ( G L C M ) , 
SZE(GLSZM) and SRE(GLRLM). The effective dose is 
around 0.8 mSv for 20×106 counts, which is much less than 
that in most clinical scans (around 6 mSv). Image features 
including CS(GLCM), LRLGE(GLRM), HGRE(GLRM) 
and SRLGE(GLRM) exhibited the worst performance with 
BP not less than 50% with 20×106 counts. In this study, RF 
exhibited different variability to lowering count. However, 
it is not known whether the variability will be translated 
into significant impact in clinical practice, which will be an 
interesting investigation.

Discretization is usually required to reduce intensity 
values to a finite set and image noise for the calculation of 
RF. Orlhac et al. (22) suggested at least 32 gray levels should 
be used in the computation of RF. Our previous study (19)  
found that there was no significant difference for the results 
with a bin size of 32, 64 and 128. In addition, a fixed bin 
size of 0.5 SUV were also investigated in this study as 
recommended in the previous studies (31,37), but without 
changing sensitivities of image features to noise. However, 
choosing the optimal bin size is challenging, which depends 
on the noise and resolution of the PET images. Different 
bin size may be considered for different aims. In order to 
achieve the balance between accuracy and precision, the bin 
size of 64 was used to calculate RF.

Lesion segmentation is a prerequisite for calculations of 
RF. However, accurate lesion segmentation in PET is still 
very challenging, especially for low signal-to-noise ratio 
image. In this study, an adaptive contouring method with 
a threshold of 50% SUVpeak while correcting for local 
background was used to delineate VOI in the PET images 
with full count data and VOIs were copied to the PET 
images at the reduced count level to eliminate the difference 
due to lesion segmentation. In addition, robustness of ten 
conventional features including SUV measures (LSM, 
LUM, LVM, LSX, LUX, LVX and LSP), metabolic tumor 
volume, total lesion glycolysis and asphericity to noise were 
also investigated, while using the adaptive threshold of 50% 
SUVpeak on each individual image for all count levels. 
LSX, LUX and LVX exhibited greater than 50% variation 
even at the count level of 20×106. LSM, LUM, LVM, 
tumor volume, aspericity (38) and total lesion glycolysis 
were the most robust features, requiring 15×106 count to 
reach the threshold of 15%. A robust and accurate tumor 
segmentation method for low-dose PET imaging is desired.

PSF can improve isotropic PET resolution by correcting 

parallax effect. Although PET reconstruction with PSF 
modeling increases uptake measurement in small lesions and 
lesion detectability, it may potentially lead to distinct noise 
texture and cause edge overshooting (39,40). In the low-
dose PET imaging, image noise can easily be blown up due 
to PSF modeling, which may cause instability of RF when 
lowering injected dose. Our previous work also demonstrated 
that there are quantitative differences of RF between PET 
images reconstruction with PSF and without PSF (19). 
Another major factor influencing PET radiomics for lung 
cancer patients is respiratory motion, since it will lead to 
image blurring and eventually inaccurate quantification (18). 
However, this motion will systematically influence each 
patient’s images at the all count levels and lead to the same 
impact on RF for each patient. Therefore, respiratory motion 
is not an issue for our objective in this study.

Conclusions

In this study, we analyzed the sensitivity of RF and SUV 
measures to count level. Different RF had different 
performance. The BP of SUVmean could be maintained 
at around 5% even at the count level of 1×106 with the 
patient data and acquisition parameters used in this 
work. ENTG(GLCM), SE(GLCM), BUSN(NGTDM) 
and RLN(GLRLM) have the same performance with 
SUVmean. MED, KURENEF and ENTF from FOS, 
ZLN and ENG from GLCM, ZP from GLSZM, TS from 
NGTDM, GLNr, LRE and RP from GLRLM can achieve 
a BP of 5% at the count of not more than 5×106. These 
features are suggested for 18F-FDG PET based radiomics 
study for lung cancer at true count as low as 5×106.
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