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Background: To establish a predictive model for the fibrotic level of neck muscles after radiotherapy by 
using radiomic features extracted from the magnetic resonance imaging (MRI) before and after radiotherapy 
and planning computed tomography (CT) in nasopharyngeal carcinoma patients.
Methods: A total of one hundred and eighty-six patients were finally enrolled in this study. According to 
the specific standard, all patients were divided into three different fibrosis groups. Regions of interests (ROI), 
including sternocleidomastoids (SCMs), trapezius (T), levator scapulae (LS), and scalenus muscles (S), were 
delineated manually and used for features extraction on IBEX. XGBoost, a machine learning algorithm, was 
used for the establishment of the prediction model. First, the patients were divided into training cohort (80%) 
and testing cohort (20%) randomly. Then the image features of CT or delta changes calculated from pre- 
and post-radiotherapy MRI images on each cohort constituted training and testing datasets. Then, based 
on the training dataset, a well-trained prediction model was produced. We used five-fold cross-validation 
to validate the predictive models. Afterward, the model performance was assessed on the ‘testing’ set and 
reported in terms of area under the receiver operating characteristic curve (AUC) under five scenarios: (I) 
only T1 sequence, (II) only T2 sequence, (III) only T1 post-contrast (T1 + C) sequence, (IV) Combination 
of all MRI sequences, (V) only CT. 
Results: Most of the patients enrolled are male (73.1%), mean age was 47 years, receiving concurrent 
chemo-radiotherapy as the primary treatment (90.9%). By the end of the final follow-up, most of the 
patients were rated as mild fibrosis (60.8%). We found the prediction model based on the CT image features 
outperform all MRI features with an AUC of 0.69 and accuracy of 0.65. Contrarily, the model based on 
features from all MRI sequence showed lower AUC less than 0.5 and lower accuracy less than 0.6. 
Conclusions: The prediction model based on CT radiomics features has better performance in the 
prediction of the grade of post-radiotherapy neck fibrosis. This might help guide radiotherapy treatment 
planning to achieve a better quality of life.
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Introduction

Nasopharyngeal carcinoma is relatively rare worldwide. In 
2018, 129,079 new cases of this malignancy were diagnosed, 
accounting for 0.7% of all cancers (1). Still, nasopharyngeal 
carcinomas are commonly diagnosed in Asia, especially 
in China [the crude incidence rate was 3.26/100,000 (2)]. 
Radiotherapy remains the standard treatment for these 
generally radiosensitive tumors and current estimates 
of 5-year overall survival after radiotherapy range from 
66% to 83% (3). Given these promising survival rates, 
oncologists increasingly have focused on the quality of life 
of their patients. Radiation-related fibrosis is a typical late-
onset complication of radiotherapy (4). This sequela may 
not arise until a few years after the end of the treatment 
and may progress or deteriorate further over time (4,5). 
Fibrosis can impair the functions of muscles in the head 
and neck and may thus restrict the opening of the mouth 
and jaw, motion in the shoulders, and rotation of the 
neck. Also, neck fibrosis may also cause cranial nerve palsy 
by compressing the hypoglossal nerve (6,7). All of these 
restrictions can interfere with eating, speaking, driving, self-
care, and employment (5), severely impairing the quality 
of life. Radiation fibrosis is a multi-stage development 
process regulated by a variety of molecules, so it is difficult 
to design drugs that work at all stages. The current 
treatment strategies are mainly focused on limiting the 
aggravation of fibrosis, including topical emulsions (8), 
antioxidant therapies (9), hyperbaric oxygen therapy (10), 
adipose-derived stem cells (11) and some other therapies 
directly inhibiting the inflammatory mediators (12). The 
acupuncture and moxibustion therapy of traditional Chinese 
medicine also show a certain curative effect (13). However, 
the treatment options for radiation-related fibrosis are 
limited, and their therapeutic effects cannot sufficiently 
reverse the evolution and progression of fibrosis. Therefore, 
it is crucial to identify patients potentially at a high risk 
of fibrosis, as this will allow the application of preventive 
interventions to ensure optimal function and quality of life 
or minimize the side effects of treatment.

Fibrosis is characterized by an increase in tissue 
stiffness (i.e., loss of compliance), which can be detected 
by palpation. Accordingly, most studies have used hand 

palpation and clinician-based rating scales of fibrosis, 
including the Medical Research Council (MRC) (14), 
European Organization for Research and Treatment of 
Cancer/Radiation Therapy Oncology Group (EORTC/
RTOG) (15), and Late Effects in Normal Tissues/
Subjective, Objective, Management, and Analytic (LENT/
SOMA) scoring systems (16). However, these scales are 
inevitably subjective, semiquantitative (17), and prone to 
interobserver error. Other studies have applied quantitative 
mechanical methods (18), quantitative electrical methods 
(19,20), ultrasound shear wave elastography (21), and 
magnetic resonance imaging (MRI) (22,23) to various parts 
of the body for fibrosis assessment. In the neck, tissue 
fibrosis may affect multiple tissue layers with considerable 
overlap. Currently, all of these changes cannot be detected 
using a single measurement technique, and even invasive 
biopsy is limited due to the ability to sample only specific 
microscopic points. 

The field of radiomics is not based on information from 
images or single pathological tissue layers. Accordingly, 
this field differs from the traditional practice of subjecting 
medical images solely to visual interpretation (24). 
Radiomics exhibits tremendous promise as a comprehensive 
method of three-dimensional examination that enables 
the noninvasive profiling of multiple tissue layers (25). 
Nowadays, more and more researches begin to focus on 
the functional evaluation by using radiomics. A previous 
exploratory study succeeding in finding the relationship 
between the radiation dose to the masseter and the medial 
pterygoid and the variance of the MRI intensity of the 
radiation-induced trismus described by the radiomic 
textures (26). At the same time, a number of studies have 
shown the relationship between the image features and 
radiation-induced xerostomia and the integration of image 
features into the predictive model may improve the risk 
stratification of xerostomia (27-29). MRI is used widely in 
clinical workups for the pretreatment diagnosis and staging 
of nasopharyngeal carcinoma and as a conventional routine 
follow-up method. And every patient would perform 
planning CT scans before radiotherapy. In this study, 
therefore, we aimed to grope for if the radiomic features 
extracted from many types of MRI scans or CT could build 
a predictive model of radiation-related fibrosis.
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Figure 1 A workflow to produce a predictive model. These steps include gathering a set of patient images, segmentation of the region of 
interest (ROI) including four muscle, extracting a set of radiomics features from these ROIs, generating a predictive model and then perform 
the statistical analysis. 
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Methods

The workflow of this study is depicted in Figure 1. Specific 
contents and details in the process are described below.

Patient cohort

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study 
was approved by Ethic Committee of the Hunan Cancer 
Hospital (No. 07 of 2020 Scientific Research Quick 
Review). The study is a retrospective study that examines 
the fait accompli of the past. Before the retrospective study, 
all the private information of patients will be anonymized, 
no direct contact with patients, no privacy of patients, the 
results of the study are only used for medical research, there 
is no risk to the patients included in the study. Based on the 
above, we applied for exemption from the informed consent 
of the subject and approved by the Ethic Committee.

For this study, we initially analyzed all MRI and CT 
data of 749 patients from the same institution in 2015, 
who received chemoradiation in 6–7 weeks. All MR images 
were obtained from a 1.5-T MRI system (GE sigma CV/
i) during routine clinical practice. All photos were axial 
scans with the field of view of 30 cm, slice thickness of  
5 mm, and slice spacing of 1 mm. CT images were 
acquired on GE LightSpeed RT (GEHW) with a peak 
tube voltage of 120 kVp and exposure of 200mAs. Images 
had 512×512 pixels, FOV of 550.0 mm × 550.0 mm, and a 
slice thickness of 5 mm.

The final analysis included the images, clinical factors, 

and outcome data of the patients who met the following 
inclusion criteria: (I) initial treatment for pathologically 
confirmed nasopharyngeal carcinoma at a single institution 
in 2015; (II) no history of radiotherapy of neck and head 
because of other disease; (III) treated with static intensity-
modulated radiation therapy (s-IMRT), step and shoot; 
(IV) availability of MR images collected at two points 
(before radiotherapy and up to 6 months post-treatment), 
including T1-weighted (T1), T1 post-contrast (T1 + C), 
and T2-weighted (T2) scans; (V) availability of planning 
CT images. Patients were excluded when they met the 
following criteria: (I) patients who could not be contacted 
at the follow-up time; (II) unavailability of MR images at 
each point or planning CT images; (III) poor image quality 
which is not sufficient for diagnosis and analysis. The 
specific screening process is shown in Figure 2.

Clinical factors

The patient’s clinical parameters were obtained through 
a retrospective review and are presented systematically in 
Table 1. The median follow-up duration was 18 months 
(range, 11–22 months). The patients were asked about the 
presence of four symptoms: (I) discomfort in the neck (self-
rated on a scale of 0–10), (II) experience of late facial edema 
after treatment (yes or no, if yes, how long did it regress), 
(III) experience of upper limb pain after treatment (yes or 
no, if yes, the severity and is there any treatment), and (IV) 
restricted head rotation during activities of daily living (yes 
or no, if yes, the degree of limitation and how long does 
it last). Based on these symptoms and physical signs, all 
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Figure 2 Flow diagram for patient selection in our study.

Nasopharyngeal carcinoma patients identified through searching the 
database who were treated with radiotherapy (n=749)

Cohorts eligible for further screening

Patients included (n=186)

Mild grade
(n=113)

Moderate grade
(n=45)

Severe grade
(n=28)

Excluded patients (n=413)
• Loss of follow-up (n=290)
• Dead (n=23)
• Treated by other radiotherapy modalities (n=100)

Excluded patients (n=150)
• Without MRI before radiotherapy in this institution (n=65)
• Without CT (n=50)
• Without MRI after radiotherapy in less than 6 months (n=23)
• Poor image quality (n=12)

patients were divided into three groups: mild, moderate, 
and severe fibrosis. Specific standards are listed in Table 2. 

Lesion segmentation

Lesion segmentation was performed using The Imaging 
Biomarker Explorer (IBEX) software package, version  
1.0 (30). An experienced clinical oncologist used the IBEX 
software to contour the ROIs manually on each type of 
MRI sequence (T1, T1 + C, and T2) and CT for each 
patient. Later, the contoured ROI would be reviewed 
by another experienced radiologist. It has been reported 
that muscle fibrosis develops before skin fibrosis (31). 
Based on this theory, the ROI was drawn to include 
sternocleidomastoids (SCMs), trapezius (T), levator 
scapulae (LS), and scalenus muscles (S). The ROI was 
divided horizontally into two parts based on the level of 
the cricoid cartilage, which received a different radiation 
dose during radiotherapy. It is worth reminding that we 
contoured four ROIs above the cricoid cartilage on CT 
because of the loss of part images. 

Extraction and calculation of radiomic features

IBEX was used to extract image features from pre- and 
post-radiotherapy MRI images or planning CT images. 
Categorization according to specific standards (Table 2) was 
used to label the image features like three different groups. 
As shown in Table 3, the textural features calculated in this 
study can be organized into 10 categories. Two processing 

methods were applied, including Resample Voxel Size 
and Butterworth Smooth (32), which lessened the image 
noise. Assigning different parameters to every textural 
feature, and a total of 190 texture features were acquired 
for each sequence of the MRI at every time points and 
1,767 for CT. The magnitude of change of each feature 
was computed as follows: delta change = (post − pre)/pre, 
being used for MRI feature modeling, where post and pre 
correspond to the measurements after and before radiation 
therapy, respectively. Changes from the first time to the 
second time in radiomics features, called delta-radiomics, 
have been proved to improved model for predicting the 
prognosis of patients combined with clinical factors and 
radiomic characteristics (33). On the meanwhile, features 
acquired on CT were directly used for modeling on the 
next step.

Feature modeling

In reality, many features have high noise and may lead to 
overfitting or classification errors in feature modeling. Not 
all image features can be conductive to grade the severity 
of neck fibrosis after radiotherapy. Features were selected 
for the prediction performance in terms of the AUC 
(>0.6). Meanwhile, XGBoost, a Gradient Tree Boosting 
regularization form (34), could identify a subset of essential 
features to avoid feature redundancy for feature modeling 
in the course of calculation. Previous studies have reported 
that XGBoost showed lower test error rate and the larger 
AUC in comparison with logistic regression analysis and 
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Table 1 Patient’s clinical and dosimetric parameters

Clinical factors N=186
Training cohort Testing cohort

Mild Moderate Severe P Mild Moderate Severe P

SEX 0.972 0.645

Male 136 67 24 18 17 6 4

Female 50 23 12 4 6 3 2

AGE (years) 0.005 0.273

≥65 8 1 2 3 1 1 0

<65 178 89 34 19 22 8 6

T stage 0.935 0.852

T1 19 10 3 2 2 1 1

T2 59 28 14 5 7 4 1

T3 60 30 10 8 7 2 3

T4 48 22 9 7 7 2 1

N stage 0.398 0.714

N0 4 1 1 1 1 0 0

N1 28 13 6 3 3 1 2

N2 112 58 20 11 14 5 4

N3 42 18 9 7 5 3 0

M stage 0.03 0.524

M0 178 88 36 18 22 9 5

M1 8 2 0 4 1 0 1

Clinical stage 0.222 0.672

I 2 0 1 0 0 1 0

II 11 6 2 1 2 0 0

III 91 45 18 10 11 4 3

IVa 74 37 15 7 9 4 2

IVb 8 2 0 4 1 0 1

Concurrent chemoradiotherapy 0.641 0.687

No 17 9 4 1 2 1 0

Yes 169 81 32 21 21 8 6

The 7th American Joint Committee on Cancer (AJCC) TNM staging manual was used to stage the patients. 

other machine learning approaches, including decision tree, 
random forest, and support vector machine (35). It leads 
us to propose using this method for the establishment of 
the prediction model of radiation-related fibrosis. First, the 
subjects included were divided into five folds which was 

consistent with the proportion of the three fibrotic groups 
in the overall cohort randomly. Then four folds constituted 
the training cohort, and the remaining one constituted 
the testing cohort. The modeling was done based on the 
selected image features delta changes on the MRI images 
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Table 2 Categorization of 186 patients according to muscle fibrosis in the neck after treatment

Level Conditions (meet any of the following)

Mild (I) Rating: 0–4 points

(II) No facial edema

(III) No upper limb pains

(IV) Neck activity is unrestricted

Moderate (I) Rating: 4–6 points

(II) Late facial edema (regress within 3 months)

(III) Mild upper limb pain (no treatment)

(IV) Neck activity is slightly limited

Severe (I) Rating: 7–10 points

(II) Late facial edema, lasting more than 3 months

(III) Severe upper limb pain, or needing medical intervention

(IV) Neck activity is significantly limited or duration >6 months

Categorization into a specific group required the patient to meet any of the above criteria.

that were calculated in the previous step or the features 
extracted from CT on the cohort. Next, XGBoost was 
used to generate a well-trained prediction model based on 
the training image dataset. Though a lack of independent 
external validation, we do perform five-fold cross-validation 
(internal validation), which is identified to be an effective 
way to build patient-specific predictions without bias (36). 
Finally, we compared the prediction performance under 
five scenarios: (I) only the T1 sequence; (II) only the T2 
sequence; (III) only the T1 + C sequence; (IV) combination 
all the MRI sequences; (V) only the CT. The performance 
of the predictive model was then assessed using the testing 
image set, and the results are reported in terms of the mean 
AUC.

Results

Patients cohort and selected features

As shown in Figure 2, lastly, a total of 186 patients were 
finally enrolled for further analysis. The patients include 
was divided into training cohort (80.0%) and testing cohort 
(20%) randomly. The patient sample was predominantly 
male (73.1%), with a mean age of 47 years. The majority 
had locally advanced disease (93.0%) and had received 
concurrent chemoradiotherapy as the primary treatment 
(90.9%). By the end of the final follow-up, most patients 
were classified as having mild fibrosis (60.8%). There are no 

significant differences among the fibrosis groups for all the 
factors except age (P=0.005) and metastasis stage (P=0.03) 
of the patients in the training cohort. Detailed clinical 
parameters are depicted in Table 1. As shown in Figure 3, 
fibrosis degree has nothing to do with the lymph node 
stage. We performed spearman relativity analysis between 
these two variables (P=0.613, rs=0.029).

A total of 139 textures from T1 sequence, 138 features 
from T2 sequence and 157 features from T1 + C sequence 
were used for feature modeling and 749 features for 
CT. As shown in Table 3, extracted features include first-
order, second-order and higher-order characteristic, 
which can be further grouped into ten categories. Shape 
features, Neighbor Intensity Difference features, Intensity 
Histogram Gaussian Fit features, Intensity histogram 
features, Intensity Direct features (37), Gray Level Co-
occurrence Matrix features, Gray Level Run Length Matrix 
features (38), and Gradient Orient Histogram features (39) 
were enrolled in this study.

Feature modeling

The radiomics signatures based on MRI images or CT 
images performed well in predicting the degree of fibrosis 
after radiotherapy. Values of AUC, accuracy, sensitivity 
and specificity of the five scenarios are as shown in Table 4. 
When predicting three different fibrosis groups, we found 
the model based on the CT image features showed better 
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Table 3 The features used in this study and related preprocessing 
methods

Category Feature Preprocess

Gradient  
Orient 
Histogram

Inter Quartile Range Resample Voxel Size

Kurtosis

Mean Absolute Deviation

Median Absolute Deviation

Percentile

Percentile Area

Quantile

Range

Skewness

Gray Level  
Co-occurrence 
Matrix 25

Auto Correlation Resample Voxel Size

Cluster Prominence

Cluster Shade

Cluster Tendency

Contrast

Correlation

Difference Entropy

Dissimilarity

Energy

Entropy

Homogeneity

Homogeneity2

InformationMeasureCorr1

InformationMeasureCorr2

Inverse Diff Moment Norm

Inverse Diff Norm

Inverse Variance

Max Probability

Sum Average

Sum Entropy

Sum Variance

Variance

Table 3 (Continued)

Table 3 (Continued)

Category Feature Preprocess

Gray Level  
Co-occurrence 
Matrix 3

Auto Correlation Resample Voxel Size

Cluster Prominence

Cluster Shade

Cluster Tendency

Contrast

Correlation

Difference Entropy

Dissimilarity

Energy

Entropy

Homogeneity

Homogeneity2

InformationMeasureCorr1

InformationMeasureCorr2

Inverse Diff Moment Norm

Inverse Diff Norm

Inverse Variance

Max Probability

Sum Average

Sum Entropy

Sum Variance

Variance

Gray Level 
Run Length 
Matrix25

Gray Level  
Nonuniformity

Resample Voxel Size, 
Butterworth Smooth

High Gray Level Run 
Emphasis

Long Run Emphasis

Long Run High Gray Level 
Emphasis

Long Run Low Gray Level 
Emphasis

Low Gray Level Run 
Emphasis

Run Length Nonuniformity

Table 3 (Continued)
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Table 3 (Continued)

Category Feature Preprocess

Run Percentage

Short Run Emphasis

Short Run High  
Gray Level Emphasis

Short Run Low  
Gray Level Emphasis

Intensity  
Direct

Energy Resample Voxel Size

Energy Norm

Global Entropy

Global Max

Global Mean

Global Median

Global Min

Global Std

Global Uniformity

Inter Quartile Range

Kurtosis

Local Entropy Max

Local Entropy Mean

Local Entropy Median

Local Entropy Min

Local Entropy Std

Local Range Max

Local Range Mean

Local Range Median

Local Range Min

Local Range Std

Local Std Max

Local Std Mean

Local Std Median

Local Std Min

Local Std Std

Mean Absolute Deviation

Median Absolute Deviation

Percentile

Table 3 (Continued)

Table 3 (Continued)

Category Feature Preprocess

Quantile

Range

Root Mean Square

Skewness

Intensity 
Histogram

Inter Quartile Range Resample Voxel Size, 
Butterworth Smooth

Kurtosis

Mean Absolute Deviation

Median Absolute Deviation

Percentile

Percentile Area

Quantile

Range

Skewness

Neighbor 
Intensity 
Difference 25

Busyness Resample Voxel Size, 
Butterworth Smooth

Coarseness

Complexity

Contrast

Texture Strength

Neighbor 
Intensity 
Difference 3

Busyness Resample Voxel Size, 
Butterworth Smooth

Coarseness

Complexity

Contrast

Texture Strength

Shape Compactness1 –

Compactness2

Convex

Convex Hull Volume

Convex Hull Volume 3D

Mass

Max3D Diameter

Mean Breadth

Table 3 (Continued)
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performance, with an AUC of 0.69 and accuracy of 0.65 

compared to that models of T1, T2, T1 + C, and combine 

all three sequences show lower AUC (all is 0.49) and lower 

accuracy (0.56, 0.55, 0.57, 0.58). 

Discussion

In this study, we developed predictive models of radiation-
related fibrosis based on the radiomic features of MRI and 
CT. These features exhibited predictive power to a certain 
extent. To our best knowledge, our group was the first to 
use the radiomic features of MRI and CT to predict the 
grade of radiation-related fibrosis on the neck. Additionally, 
we proposed a more practical standard for fibrosis level, 
including symptoms and physical signs.

Notably, the features extracted from CT outperformed 
all other feature changes from commonly used MRI scans, 
including T1, T2, and T1 + C, in terms of AUC values 
and accuracy. Compared with CT, MRI has the advantage 
of showing soft tissue lesions better and providing muscle-
specific measurements. Researchers have previously 
identified a close relationship between MRI features and the 
severity of radiation-induced fibrosis (40). However, we did 
find that image features from CT have higher accuracy in 
predicting the degree of fibrosis after radiotherapy. Despite 
we only contoured four ROIs on CT images compared to 
eight ROIs on MRI, more features were extracted from 
CT. Besides, the type of acquisition noise, enhancement 
status, and image reconstruction algorithm have different 
effects on MRI imaging characteristics, especially in a 
retrospective study (41). To our knowledge, no standardized 
MRI method has been developed for the purpose of head 
and neck scanning or radiomics. Therefore, the effects 
of various MRI factors on the image data cannot yet be 
avoided. On the other hand, despite no existing studies 
have correlated clinically rated neck fibrosis with CT 
findings, previous studies have found textural image features 
extracted from CT are highly correlated with the severity 
of pulmonary fibrosis (42) and could discriminate between 
patients with and those without radiation pneumonitis (43).
Moreover, the previous study has used CT texture changes 
for distinguishing radiation-induced fibrosis from tumor 
recurrence for lung cancer (44). 

Despite the advantages of this approach, our research 
had some limitations. First, standard protocols for fibrosis 
grading included patient self-ratings, which inevitably led to 
subject bias. Second, the current radiomic analysis protocol 
involves complex computational steps with frequent human 
interactions and a potentially time-consuming analytical 
process and may be challenging to include in daily 
clinical practice. Currently, this post-processing process 
includes multiple steps and calculations and requires 

Table 3 (Continued)

Category Feature Preprocess

Number of Objects

Number of Voxel

Orientation

Roundness

Spherical Disproportion

Sphericity

Surface Area

Surface Area Density

Volume

Voxel Size

Intensity 
Histogram 
Gaussian Fit

Gaussian Amplitude Resample Voxel Size

Gaussian Area

Gaussian Mean

Gaussian Std

Hist Area

Number of Gaussian

Figure 3 A hotspot map of the relationship between lymph node 
stage and the degree of fibrosis.
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Table 4 The performance of the predictive model using the XGBoost

Modality AUC Accuracy Degree Sensitivity (%) Specificity (%)

T1 – – (I) Mild 81.39 20.10

0.49 0.56 (II) Moderate 13.33 83.87

– – (III) Severe 3.33 96.20

T2 – – (I) Mild 84.04 6.71

0.49 0.55 (II) Moderate 4.00 88.45

– – (III) Severe 3.00 96.60

T1 + C – – (I) Mild 81.35 19.29

0.49 0.57 (II) Moderate 17.33 83.34

– – (III) Severe 0.20 97.73

T1 + T2 + T1 + C – (I) Mild 85.09 14.52

0.49 0.58 (II) Moderate 13.33 88.93

– – (III) Severe 3.00 96.58

CT – – (I) Mild 98.74 2.09

0.69 0.65 (II) Moderate 2.15 98.66

– – (III) Severe 0.00 100.00

AUC, area under the curve; T1, T1-weighted scans; T1 + C, T1 post-contrast cans; T2, T2-weighted scans; CT, computed tomography.

approximately 60 minutes per patient (45). But we believe 
that as technological innovation and the optimization of 
the algorithm, it will be less time-consuming in the future. 
Moreover, our study did not distinguish between radiation-
induced fibrosis and residual or recurrent tumor. The 
residual tumor remained after treatment in nearly 7–13% of 
nasopharyngeal carcinoma cases (46). A future prospective 
study should incorporate data from dynamic contrast-
enhanced MRI, the primary choice for the diagnosis of neck 
fibrosis after radiotherapy for nasopharyngeal carcinoma, 
given its ability to identify tumor residue, recurrence, 
and fibrosis (47). Finally, our analysis was based on a 
retrospective design and data from a single center. Our 
model requires validation through a prospective multicenter 
trial with a larger study cohort.

Conclusions

In conclusion, we constructed a predictive, non-invasive, 
inexpensive, and highly patient-specific model of radiation-
related fibrosis that does not affect existing clinical 
activities. This model requires further optimization, but 
it does contribute to the decision-making of the radiation 
treatment. Oncologists may use this model to compare 

the potential effects of different therapeutic regimens 
on the grade of radiation-related fibrosis and could 
thus individually tailor treatments to minimize the side 
reaction by adjusting the dose prescription on the neck. 
Furthermore, our model may inform studies of radiation-
related injuries in other body regions. In the future, we aim 
to develop the model further to enable direct predictions 
of the effects of radiation-related fibrosis on the quality  
of life.
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