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Introduction 

Lung adenocarcinoma (LUAD) has surpassed lung 
squamous cell cancer and large-cell carcinoma as the most 
common histological type of non-small cell lung cancer 
(NSCLC) and accounts for more than 85% of lung cancer 

(LC) (1-3). The global incidence of LUAD has risen in 
the last few decades, especially in young patients, with the 
prevalence in young patients even reaching between 57.5% 
and 77.9% (4-10). Due to a lack of apparent symptoms, the 
5-year survival rate of LUAD patients is less than 15% (11). 
However, the 5-year survival rate of LUAD patients with 
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stage I can reach 100% (12-14). Hence, the early detection 
and treatment of subjects with LUAD is associated with 
improved survival. Low-dose computed tomography 
(LDCT) is the method recommended for LUAD screening 
and surveillance by several guidelines (15-17). However, 
periodic LDCT tests for screening may expose individuals 
to a significant level of radiation, the impact of which is 
unknown but possibly harmful (18-21). Previous studies 
have reported that the high false-positive rates and poor 
cost-effectiveness of LDCT are still problematic for its 
use in the screening of LUAD (22,23). Therefore, an 
accurate, harmless, comparatively cost-effective screening 
tool is needed to facilitate the widespread early screening  
of LUAD.

Aberrantly expressed microRNAs (miRNAs) have 
been studied as candidate biomarkers for early detection 
of numerous cancers, including NSCLC (24,25). The 
possibility of cancer screening based on miRNAs markers 
detected in body fluids, such as in the blood, has recently 
become one of the prime focuses of research efforts. The 
expression profiles of miRNAs exist with remarkable 
stability in various types of body fluids, including blood (26),  
and  re f lec t  the  tumor  deve lopment  l ineage  and 
differentiation stages, are related to the clinicopathological 
features of tumor (27,28), and can be used to identify 
tumor histological subtypes based on origin, histology, 
and chemical sensitivity (29-31). The less invasive 
sampling method of using circulating miRNAs biomarkers 
as surrogates is an attractive option for the molecular 
detection of LUAD which may revolutionize the screening 
and surveillance for LUAD. 

Circulating miR-21, miR-155, miR-210, miR-126, miR-
182, and miR-17 are the most frequently reported miRNAs 
diagnostic biomarkers for NSCLC. But the expression levels 
and deregulation directions are inconsistent in different 
studies (32-36), and whether these circulating miRNAs 
biomarkers can accurately identify LUAD or be applied 
for predictions in clinical practice is still inconclusive. In 
the present study, we conducted a systematic summary 
of the published microarray datasets that investigated the 
above-mentioned circulating miRNAs biomarkers for 
LUAD diagnosis based on the Gene Expression Omnibus 
(GEO) database. The primary purpose was to analyze the 
diagnostic performance of circulating miR-21, miR-155, 
miR-210, miR-126, miR-182, and miR-17 for patients 
with LUAD. The second aim was to clarify the biological 
processes and molecular regulatory mechanisms of these 
miRNAs in LUAD development via bioinformatics analysis. 

We present the following article in accordance with the 
STREGA guideline checklist (available at http://dx.doi.
org/10.21037/tcr-19-3025).

Methods

Selection of GEO dataset and data extraction 

A systematic literature search was applied to identify 
microarray datasets assessing circulating miRNAs as 
diagnostic biomarkers for LUAD, NSCLC, and LC. 
We mined the GEO database for eligible datasets until 
June 26, 2019. The search strategy was as follows: ((lung 
OR pulmonary) AND (cancer OR carcinoma OR tumor 
OR tumor OR malignanc* OR neoplas* OR nodule OR 
adenoma* OR adenocarcinoma)) AND (microRNA* OR 
miRNA* OR miR*)). We used the following filters to filter 
the search results again: “Homo sapiens”[porgn] AND 
“gse”[Filter]. The initial screening involved browsing 
the title and applying the following exclusion criteria: (I) 
unrelated to LUAD/NSCLC/LC, (II) non-human studies, 
(III) unrelated to the topic. The second screening used 
the following inclusion criteria: (I) datasets assaying the 
expression levels of miRNAs in serum, plasma, exosomes, 
and blood; (II) datasets comparing LUAD patients with 
healthy controls; (III) datasets with a sufficient amount 
of raw data to calculate the test performance parameters. 
Finally, the datasets including specific expression data in 
serum, blood, plasma, or exosomes of miR-21, miR-155, 
miR-210, miR-126, miR-182, and miR-17 for LUAD 
detection were enrolled as eligible datasets. 

Two reviewers (Erna Jia and Na Ren) independently 
screened the involved datasets that remained after the 
filtering process described above, and disagreements 
between the reviewers were resolved by discussion 
and consensus. For each dataset, we extracted detailed 
information on dataset ID, first author, upload year, county, 
sample type, sample size, and expression value.

Statistical analysis 

Means and standard deviations (SD) were calculated. 
A two-sample t-test was conducted for independent 
samples in random design studies, while standardized 
mean difference (SMD) was used to assess the relationship 
between circulating miRNA expression levels and LUAD. 
Heterogeneity was assessed by Cochran’s Q Statistic and 
I2 statistic with the Chi-squares test. Cochran’s Q Statistic 
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with a P value less than 0.1 or a value of I2 greater than 
50% was considered to indicate significant heterogeneity. 
The sensitivity, specificity, and area under the curve 
(AUC) values of miRNAs with statistically significant 
differences between LUAD samples and healthy controls 
were calculated in each dataset, using true-positive (TP), 
false-positive (FP), true-negative (TN), and false-negative 
(FN) values estimated from the raw expression data. Then, 
the diagnostic accuracy of these miRNAs was estimated 
by pooled statistics. The summary receiver operator 
characteristic (SROC) curve was depicted. The pooled 
AUC was calculated to evaluate the diagnostic performance 
of statistically significant miRNAs discriminating LUAD 
cases from healthy controls. A P value of less than 0.05 was 
considered statistically significant.

All statistical analyses and plots were conducted via R 
x64 (version 3.5.3) and STATA 15.1 (Stata Corporation, 
College Station, Texas). 

Target prediction analysis and bioinformatic analysis 

Online prediction software, miRWalk 3.0 (Targetsca, 
miRTarBase, and miRDB), was used to predict the target 
genes of statistically significant miRNAs, and the genes 
that overlapped in all 3 databases were selected as the target 
genes. Gene ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) enrichment analyses of 
overlapped genes were analyzed by the online DAVID 
database, with a P value less than 0.05 and a false discovery 
rate (FDR) value more than 1.5 being considered as 
statistically significant. Furthermore, we used the online 
STRING database to construct protein-protein interaction 
(PPI) network analysis. A combined score of more than 0.9 
was considered statistically significant, and we further used 
the MCODE plugin of Cytoscape to identify the hub genes. 

Results

Results from the GEO database 

Five microarray datasets, including GSE27486, GSE40738, 
GSE94536, GSE111803, and GSE93300 from the GEO 
database, were deemed eligible. Raw expression data were 
acquired from these 5 datasets, and means and SDs were 
calculated to estimate the expression state of miR-21, miR-
155, miR-210, miR-126, miR-182, and miR-17 in LUAD 
cases and healthy controls via R x64. A meta-analysis 
merging all the qualified data was performed to calculate 

the overall pooled SMD of those miRNAs in the LUAD 
cases and healthy controls. The results revealed that the 
expression level of miR-17 was higher in LUAD samples 
than in healthy controls (P=0.03), and the overall pooled 
SMD was −0.93 (95% CI, −1.78, −0.08), presented visually 
in Figure 1. The Cochran-Q statistic (P=0.02) and the value 
of I2 (71%) showed significant heterogeneity, necessitating 
the selection of a random-effects model for analysis  
(Figure 1). A two-sample t-test for independent samples was 
conducted for each dataset containing raw expression levels 
of miR-17, the results of which are displayed in Figure 2 as 
intuitive boxplots, with the available data being summarized 
in Table 1. In order to draw a credible conclusion for the 
value of the miR-17 biomarker in LUAD detection, an 
SROC plot was depicted (Figure 3). Ultimately, the overall 
pooled sensitivity, specificity, and AUC values were 0.78, 
0.71, and 0.79, respectively. 

GO and KEGG analyses 

A total of 85 overlapped genes were obtained. For the 
prediction of functional annotation information of 
overlapping genes by GO enrichment analysis (Figure 4), 
GO-BP included 11 statistical items, with the top 3 enriched 
items being endocytosis, cellular response to starvation, 
and regulation of calcium ion import; GO-MF included 10 
statistical items, with the top 3 enriched items being protein 
binding, identical protein binding, and GTPase activity; 
GO-CC included 8 statistical items, with the top 3 enriched 
items being cytosol, cytoplasm, and intracellular membrane-
bounded organelles. There were 3 statistically significant 
KEGG enrichment pathways: bladder cancer, cell cycle, and 
miRNAs in cancer, shown in Figure 4.

PPI network analysis 

The PPI network contained 85 nodes and 12 edges 
(P=0.00362). The protein network diagram is presented 
in Figure 5. The MCODE plugin of Cytoscape identified 
2 significant modules and 10 hub genes: CCND2, E2F3, 
TNRC6B, AGO1, AAK1, RAB5B, LDLR, FBXO21, UBE3C, 
and MYLIP (Figure 6). The standard settings were as 
follows: degree cutoff =2, node score cutoff =0.2, k-core =2, 
max depth =100.

Discussion 

Our study aimed to evaluate the diagnostic accuracy of 
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Figure 1 Forest plots for the meta-analysis of circulating miR-17, miR-21, miR-126, miR-155, miR-182, and miR-210 expression in LUAD 
cases compared with healthy controls. LUAD, lung adenocarcinoma.
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circulating miR-21, miR-155, miR-210, miR-126, miR-
182, and miR-17 for patients with LUAD, based on raw 
expression levels of these miRNAs from the GEO database. 
With raw qualified data estimation outcomes, circulating 
miR-17 was more highly expressed in LUAD samples 
compared with healthy controls. The results revealed 
that circulating miR-17 had high diagnostic accuracy 
in discriminating LUAD cases from healthy controls. 
However, the eligible microarray datasets were limited, 
and there was moderate heterogeneity. Subsequently, 
bioinformatics analysis was performed to investigate the 
molecular role of miR-17 in the pathogenetics of LUAD, 
and 10 hub-genes were selected from the predicted target 
genes. 

MiR-17, as an oncogene in numerous tumors, is the 
most prominent member in the miR-17-92 cluster (37). 
MiR-17-92 clusters are essential regulators of fundamental 
cellular processes like differentiation, metastases, apoptosis, 

Figure 2 Box plots for the expression levels of circulating miR-17 in LUAD samples and healthy controls based on the GEO database. 
LUAD, lung adenocarcinoma; GEO, Gene Expression Omnibus.

Table 1 The relevant information of 5 eligible microarray datasets from the GEO database

PMID First author Year County Sample type LUAD N Healthy N T value P value TP FP TN FN

GSE27486 Patnaik SK 2011 USA Blood 22 12 5.3684 8.59E-06* 20 2 10 2

GSE40738 Patnaik SK 2017 USA Blood 45 59 1.5555 0.1235 18 27 46 13

GSE94536 Li LL 2017 China Plasma 6 3 1.7042 0.228 6 0 2 1

GSE111803 Fang H 2019 China Exosome 5 5 0.77029 0.4799 5 0 2 3

GSE93300 Liu X 2019 China Plasma 9 4 – – – – – –

GSE93300 Liu X 2019 China Plasma 9 4 – – – – – –

*, indicates the P value was less than 0.05. LUAD, lung adenocarcinoma; GEO, Gene Expression Omnibus; TP, positive value; FP, false 
positive; TN, true negative; FN, false negative.

Figure 3 SROC curve for circulating miR-17 in the diagnosis of 
LUAD. a,b,c,d indicate GSE27486, GSE40738, GSE94536 and 
GSE111803. SROC, summary receiver operator characteristic; 
LUAD, lung adenocarcinoma.
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proliferation, invasion, DNA repair, and autophagy (38), 
which are implicated in the regulation of many oncogenes 
involved in distinct and opposing pathways (39-41). The 
carcinogenic role of miR-17-92 clusters in different 
cancers has been confirmed, and they could interact with 
the transcription factors E2Fs and c-Myc, which play 
critical roles in cell-cycle regulation during tumorigenesis 
(42,43). As reported, circulating miR-17 is significantly 

expressed in many cancers, including breast cancer, gastric 
cancer, prostate cancer, and NSCLC, and thus can be an 
efficient non-invasive biomarker for the screening of cancer 
patients (25,44-47). For the first time, the present study 
demonstrated that circulating miR-17 has a strong ability 
to distinguish between LUAD cases and healthy controls, 
supporting its potential use as a new clinical biomarker for 
the screening and detection of LUAD patients. To confirm 
the true clinical utility for screening and diagnosis of 
LUAD, further validation should preferably be done in the 
context of large-scale prospective research among multi-site 
collaborative studies.

Bioinformatics analysis was applied to gain a more 
comprehensive understanding of miR-17 in LUAD 
biology. Several core GO terms and signal pathways 
were illuminated in the underlying molecular interaction 
mechanism of miR-17 in LUAD based on GO enrichment 
and KEGG pathway analysis. Ten hub genes, namely 
CCND2, E2F3, TNRC6B, AGO1, AAK1, RAB5B, LDLR, 
FBXO21, UBE3C, and MYLIP, were identified as candidate 
target genes involved in the regulation of crucial biological 
processes in LUAD. Apart from TNRC6B and MYLIP, 
other genes have been reported to have a close association 
with tumorigenesis, progression, invasion, metastasis, 
recurrence, and the therapy strategy of LC (48-55). 
Researchers should thus endeavor to identify the specific 
relationship between these hub genes and LUAD.

Exosomes, plasma and blood are currently accepted 
sample modalities for non-invasive detection of miRNAs, 
but there are different miRNA profiles from different 

Figure 5 PPI networks of the overlapped predicted target genes of 
miR-17. PPI, protein-protein interaction.

Figure 6 The top 2 modules and top 10 hub genes from the PPI network. PPI, protein-protein interaction.
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sample types. Hemolysis can lead to the release of 
intracellular miRNAs into extracellular that contaminate 
extracellular miRNAs concentrations, as intracellular 
miRNA concentrations are higher than extracellular ones 
(56,57). In addition, the miRNA concentrations can be 
affected by cell debris which is not completely removed, 
if the centrifugal speed and time of preparation procedure 
is insufficient (58). However, strong studies have recently 
verified that exosomes derived from tumor cells can be 
specially identified by surface markers, which effectively 
avoid the contamination of abovementioned factors 
(59,60). Therefore, more and more researches have been 
focusing on exosome miRNAs using for diagnosing cancers 
including LUAD. In the present study, subgroup analysis 
of sample types was not conducted due to few datasets 
included, we only assessed the diagnostic performance of 
the abovementioned miRNAs in all circulation sample 
types. MiRNAs extraction and standardize quantitative 
methods are also the source of heterogeneity (58,61). 
Now there are several kinds of miRNA extraction kits, 
the miRNeasy kit is the recommended detection kit (62), 
but not all studies used this kit. U6 snRNA, cel-miR-39, 
and miR-16 are the generally standardize references, but 
it is not unified. In the future, the uniform preparation 
procedure, miRNA extraction method and standardize 
quantitative reference should be applied in large sample 
studies to identify the diagnostic accuracy of circulation 
miRNAs in LUAD.

There are several strengths and a few deficiencies in 
this study. Our study integrated raw expression data from 
the GEO database to identify the diagnostic ability of 
circulating miR-21, miR-155, miR-210, miR-126, miR-
182, and miR-17 for LUAD detection. We estimated the 
mean and SD based on raw expression data, and a meta-
analysis based on the estimation outcomes was conducted 
to give an overall conclusion. It is plausible that circulating 
miR-17 can be a valid biomarker for LUAD detection and 
screening. However, several datasets showing negative 
outcomes and poor diagnostic performance were included 
in this meta-analysis. As circulating miRNA biomarkers 
entail lower costs, less radiation exposure, better tolerance, 
and more convenient specimen extraction. Our study 
focused on identifying those circulating miRNA biomarkers 
that may be useful for the detection of LUAD. Moreover, 
our study identified several signal pathways and hub genes 
of miR-17 in the underlying molecular mechanisms of 
LUAD development, which helped further clarify this 
exploration. In the evaluation of circulating miRNAs, raw 

expression data in each dataset, and the inconsistencies of 
the specimens, detection platforms, operating protocols, and 
demographics might have been unavoidable confounding 
factors, causing moderate heterogeneity, although we did 
apply a random-effects model. The number of enrolled 
samples in the 5 datasets ranged greatly from 3 to 59, and 
this might also have influenced our results. Finally, 10 hub 
genes of miR-17 were identified from predicted target genes 
in present study, but, due to budgetary constraints, we were 
unable to validate these hub genes. 

Conclusions

Our estimations focused on studies distinguishing LUAD 
cases from healthy controls based on the raw expression 
levels of circulating miR-21, miR-155, miR-210, miR-
126, miR-182, and miR-17; all of these miRNAs were 
mostly reported as potential diagnostic biomarkers in 
previous studies. By combining the original estimations, 
a meta-analysis showed a significant diagnostic capacity 
of circulating miR-17 for LUAD detection. Also, we 
discovered several underlying pathways and 10 hub 
genes of miR-17 in LUAD biological processes through 
bioinformatics analysis. Although circulating miR-17 
revealed high diagnostic accuracy for LUAD detection 
in our study, it still cannot be used in the clinical settings 
for LUAD screening and surveillance. Thus, a large set 
of samples, used in prospective and experimental research 
with a longitudinal study design, is needed to validate the 
findings, and will be a challenging but promising task. 
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