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Introduction

Primary liver cancer has the fifth highest incidence 
rate of malignant tumors worldwide, and is the second 
leading cause of male mortality (1). The estimated annual 
global incidence of primary liver cancer is 841,000, and 

the number of deaths is estimated to be 782,000 (1). In 
China, liver cancer has the second highest mortality rate 
of malignant tumors, and new liver cancer cases account 
for more than 50% of the world’s total, increasing year by  
year (2). There are several risk factors for liver cancer, 
including viral infection, heredity, aflatoxin contamination, 
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carcinogen exposure, non-fatty alcoholic hepatitis, and 
various single-nucleotide polymorphisms (SNPs) (1-3). 
Despite the advancements in technology and improvements 
in  t r ea tment s  inc lud ing  su rgery,  r ad io therapy, 
chemotherapy, and the use of other biological agents, the 
prognosis of hepatocellular carcinoma (HCC) is poor due 
to recurrence and metastasis, with a 5-year disease-free 
survival rate of 16% to 27.1% (4).

Several studies have demonstrated that cancer stem 
cell (CSCs) subgroups, whose functions are responsible 
for tumor persistence and recurrence, metastasis, drug 
resistance, and radiation tolerance, may drive tumorigenesis 
(5,6).  CD133 (prominin-1) is  a 5-transmembrane 
glycoprotein expressed on a subset of hematopoietic stem 
cells derived from fetal liver and bone marrow. CD133 
is considered to be a CSC marker for a variety of cancer 
types, including HCC (7,8), colon cancer (9), gastric  
cancer (10), and ovarian cancer (11). It is associated with 
higher colony formation efficiency, a greater proliferation 
rate, and higher tumor incidence (12). Studies have found 
that HCC patients with elevated CD133 levels have a 
lower overall survival rate and higher recurrence rates than 
patients with lower CD133 expression levels. Although 
there are several studies on certain susceptibility genes for 
HCC (13-15), studies on CD133 SNPs in the context of 
HCC susceptibility and clinical features are still lacking. 
Furthermore, polymorphisms in the CD133 gene have 
been associated with a variety of human diseases (16-18). 
Given the limited number of studies examining CD133 
polymorphisms in HCC, we investigated the association 
between SNP rs2240688 and the demographics, clinical 
features, and prognosis of HCC in a Chinese population.

Methods

Study population

Subjects for this case control study were recruited from 
the Affiliated Tumor Hospital of Guangxi Medical 
University between September 2016 to December 2018. 
All participants received a relevant questionnaire in order 
to collect information on the history of environmental 
exposure after signing written informed consent. The 
demographic data collected included medical record 
number, gender, age, drinking status, smoking status, 
histological tumor type, tumor-node-metastasis stage, 
related biochemical indicators, and other information. In 
order to avoid selection bias, inclusion criteria, such as 

age and gender, were matched between the control group 
and the case group. The control group was recruited 
continuously from December 2018 to February 2019 from 
the physical examination center of the First Affiliated 
Hospital of Guangxi Medical University. Meanwhile, the 
control group comprised healthy subjects who had good 
daily life function, and no heart disease, cerebrovascular 
disease, infectious disease, autoimmune disease, abnormal 
physical examination indexes, or a personal or family 
history of cancer. Written informed consent was provided 
by all subjects in the study. The study was conducted in 
accordance with the Declaration of Helsinki (as revised in 
2013). This study was approved by the ethics committee 
of the Affiliated Tumor Hospital of Guangxi Medical 
University (approval ID: LW2020007).

DNA extraction and genotyping assays

Blood samples (2 mL) from each subject were collected 
and p laced  in  an  EDTA-K2 ant icoagulant  tube , 
thoroughly mixed, and stored at –20 ℃. Genomic DNA 
was isolated using a commercial kit (Adelaide, Beijing, 
China) according to the manufacturer’s instructions. 
The genotyping of CD133 rs2240688 was performed 
using the SNaPshot method (19), and, in order to 
ensure the accuracy of genotype evaluation, a negative 
control was used for each test. The forward primer 
sequence for CD133 rs2240688 polymorphism was 
5'-CTCATGTTAGCTGCACTCCAAT-3', and the reverse 
primer sequence for CD133 rs2240688 polymorphism was 
5'-ACCATTGACTTCTTGGTGCTG-3' (328 bp).

Statistical analysis

In order to confirm the representativeness of the population 
of study samples, a Chi-square test was used to determine 
whether the samples conformed to the Hardy-Weinberg 
Equilibrium (HWE) law. When the P value >0.05, the 
samples were considered to be representative of the 
population. Two independent sample Chi-square tests 
were used to test the difference between the two groups. 
Differences in genotype and allele frequency between 
the HCC and control groups were assessed using a Chi-
square test with Bonferroni correction. Chi-square testing 
and logistic regression analyses were used to compare the 
distribution data of alleles and genotypes, and the relative 
risk was expressed as an odds ratio (OR) and its 95% 
confidence interval (CI). The logistic regression method 
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was applied to correct for the effects of confounding factors 
such as gender and age. All statistical tests were performed 
using SPSS 24.0 (SPSS Inc., Chicago, IL, USA), and were 
two-sided, with a P value <0.05 considered to be statistically 
significant.

Results

Baseline characteristics of the study population

Initially, 593 subjects were enrolled in the HCC group, and 
561 subjects were enrolled in the control group. There were 
21 cases without pathological reports and 7 cases with liver 
metastases records, which were excluded from the HCC 
group. Ultimately, 565 HCC patients and 561 controls 
were included in this study, and their clinical parameters 
are presented in Table 1. We analyzed the demographic 
characteristics of the subjects and found that the mean 
age, gender, and body mass index (BMI) classification of 
the two groups of patients were matched. The average 
age of patients with HCC was 53.62 years, ranging from  
10–89 years. Similarly, the average age of the control group 
was 52.15 years, ranging from 22–78 years. Interestingly, 
the majority of patients were male (86.19%). After statistical 
analysis, the age and gender of HCC patients were not 
significantly different from those of the control group 
(P>0.05).

CD133 rs2240688 polymorphism and HCC risk

The genotype frequency of CD133 rs2240688 was 
consistent with the Hardy–Weinberg equilibrium law, 
indicating that the samples selected in this study were 
representative of the population of interest. The most 
frequently distributed allele in the controls and recruited 
HCC patients was AA heterozygous. The genotype 
frequencies of the CD133 rs2240688 locus in the HCC 
group were 333 (58.9%) for AA, 202 (35.7%) for CA, 
and 30 (5.3%) for CC. Similarly, the genotype frequency 
distribution of this locus in the control group was 384 
(68.4%) for AA, 159 (28.3%) for CA, and 18 (3.2%) 
for CC. The frequency distribution of the AA, CA, and 
CC genotypes between the two groups was statistically 
significant (P<0.001). In the overall analysis, multiple 
comparisons using a Chi-square test with Bonferroni 
correction found that the distribution of the AA genotype 
was different from that of the CA and CC genotype, and 
the distribution of the A allele also differed from that of 

the C genotype (P=0.0167). We then used the AA genotype 
and A allele as a reference to analyze the risk of HCC. For 
comparing genotypes and alleles of HCC susceptibility, the 
logistic regression model of the two categorical variables 
was used to correct for the influence of confounding factors 
such as gender and age, and the OR value and 95% CI 
of rs2240688 on the risk of liver cancer were calculated. 
Individuals carrying the rs2240688 CA + CC genotype 
had a 1.508-fold higher risk of developing HCC than 
individuals carrying the AA genotype (P<0.001, OR =1.910, 
95% CI: 1.181–1.926). Similarly, individuals carrying the 
homozygous CC genotype were 1.910 times more likely to 
develop HCC than individuals carrying the AA genotype 
(P=0.036, OR =1.910, 95% CI: 1.044–3.493). Individuals 
carrying the heterozygous CA genotype were 1.463 times 
more likely to develop HCC than individuals carrying the 
AA genotype (P=0.003, OR =1.463, 95% CI: 1.134–1.887). 
In addition, individuals carrying the C allele were at 1.442 
times greater risk of HCC than those carrying the A allele 
(P<0.001, OR =1.442, 95% CI: 1.772–1.774), indicating 
that the C allele mutation was associated with an increased 
risk of HCC. The detailed results are summarized in Table 2.

We further investigated whether there was a difference 
in the distribution of the rs2240688 genotype between 
the clinical subgroups (Table 3). Results showed that the 
genotype distribution of CD133 rs2240688 was significantly 
associated with metastasis (P=0.008). However, the results 
also showed that the genotype distribution of CD133 
rs2240688 was not significantly associated with factors such 
as age, gender, alcohol consumption, and smoking status 
(P>0.05).

We also analyzed common pathological markers of HCC 
that are routinely tested for, including alpha-fetoprotein 
(AFP),  alanine aminotransferase (ALT), aspartate 
aminotransferase (AST) and γ-glutamyl transpeptidase 
(GGT). Results showed that the genotype distribution of 
CD133 rs2240688 was significantly associated with ALT 
(P=0.023).

Discussion

Recent research has suggested that CSCs contribute 
to tumor initiation, metastasis, relapse, and resistance 
to chemotherapy or radiotherapy (20). SNPs represent 
the largest proportion of genetic variation in the human 
genome, and their contribution to cancer susceptibility has 
been extensively explored (21,22). The CD133-encoding 
gene is located on human chromosome 4p15, a region 
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Table 1 General characteristics of HCC patients and the normal controls

Characteristics Cases (n=565) Controls (n=561) χ2 P value

Age (year)

Range 10–89 22–78

Mean 53.62 52.15

<40 95 102 0.365 0.546

>40 470 459

Gender

Male 487 488 0.562 0.453

Female 78 73

BMI (kg/m2)

≤18.5 62 51 1.805 0.406

18.5–23.9 366 359

≥24 137 151

BCLC stage

A + B stage 259

C + D stage 306

Metastasis

No 470

Yes 95

Smoking status

No 344

Yes 221

Alcohol drinker

No 374

Yes 191

Family history of cancer

No 487

Yes 78

Liver cirrhosis

Absent 172

Present 393

HBV infection

HbsAg (–) 57

HbsAg (+) 497

HCV infection 11

HCC, hepatocellular carcinoma; BMI, body mass index; BCLC, Barcelona clinic liver cancer; HBV, hepatitis B virus; HCV, hepatitis C virus.
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considered closely related to cancer susceptibility (18,23,24). 
CD133 is considered an important marker molecule for 
tumor cells (17,25,26), and O’Brien et al. demonstrated 
that CD133+ tumor cells have stem cell characteristics (27). 
A growing number of studies have also demonstrated that 
CD133 is highly expressed in CSCs of pancreatic ductal 
adenocarcinoma (PDAC), glioma, colon cancer, gastric 
cancer, malignant melanoma, non-small cell lung cancer, 
and other tumors, which suggests that CD133 may play 
a multifaceted role in tumor development (9,28-32). The 
prognostic and clinicopathological value of CD133 protein 
and mRNA expression have also been demonstrated in other 
studies (33-35). For example, in HCC, subjects with greater 
CD133 mRNA levels also showed greater invasiveness than 
subjects with lower CD133 mRNA levels (36). Although it 
is widely believed that CD133 plays an important role in 
cancer, the relationship between CD133 polymorphisms 
and the clinical features of HCC are noticeably lacking. 
Therefore, in this case control study, we investigated the 
association of the CD133 SNP rs2240688 with the patient 
demographics, clinical features, and susceptibility to HCC.

We found that the variant genotypes (AC/CC) of 
rs2240688 A>C in the miRNA binding site of the stem 
cell marker gene CD133 were associated with a higher 
susceptibility to HCC. The distribution frequency of 
rs2240688 alleles and genotypes in the HCC case group 
and control group was statistically significant, which is 
consistent with the results of Liu et al. (37) in lung cancer 
and Wang et al. (38) in gastric cancer. We found that 
the CA heterozygous and CC homozygous genotypes, 
along with C carrier status and C alleles, were associated 

with an increased risk of HCC. This may be attributed 
to the fact that CD133 expression is closely related to 
cell proliferation, apoptosis, invasion and metastasis, and 
angiogenesis (39-42). Furthermore, it has been shown that 
SNPs located in the 3'untranslated region (3'-UTR) region 
of the CD133 gene are associated with a variety of human 
tumors (38,43,44). SNPs in the 3'-UTR have also been 
shown to have functional effects on the control of mRNA 
stability and efficiency through the regulation of miRNA, 
including miR-34a, -101, -128, -137 and -1385 (45-47). 
It has been shown that SNPs in a target-binding site can 
alter the miRNA-mRNA interaction and thus affect the 
expression of miRNA targets (48,49). Additionally, studies 
have confirmed that rs2240688 A-to-C transition gains a 
new binding site of the microRNA has-miR-135a/b, which 
may play a pivotal role in modulating the effect of the 
SNP on CD133 expression (38). Interestingly, rs2240688 
is located at the 3'-UTR region of the CD133 gene. SNP 
rs2240688 has been associated with an increased risk of 
HCC, consistent with the corresponding role of CD133 in 
promoting the development of liver cancer through other 
signaling pathways such as G protein-coupled receptor 87 
and CXCL3 (50,51). Additionally, in the subgroup analysis 
of CD133 rs2240688 and clinical characteristics, our results 
showed that the genotype distribution of CD133 rs2240688 
was significantly associated with metastasis and ALT. 
Considering the promotional capability of CSCs on tumor 
growth and metastasis, the present study suggests that 
CD133 might modify the metastasis competence of HCC 
via miRNA binding site polymorphisms, which could be a 
putative target for improved HCC treatment.

Table 2 Comparison of genotype and allele distributions of CD133 rs2240688 in HCC group and controls group

Parameter Case, n (%) Controls, n (%) OR (95% CI) POR ORadj (95% CI) Padj

CD133 rs2240688

All

AA 333 (58.9) 384 (68.4) 1.00 1.00

CA 202 (35.7) 159 (28.3) 1.465 (1.136–1.889) 0.004 1.463 (1.134–1.887) 0.003

CC 30 (5.3) 18 (3.2) 1.922 (1.052–3.511) 0.034 1.910 (1.044–3.493) 0.036

CA + CC 232 (41.0) 177 (31.5) 1.511 (1.180–1.924) 0.001 1.508 (1.181–1.926) 0.001

Alleles

A 868 (76.8) 927 (82.7) 1.00 1.00

C 262 (23.2) 195 (17.3) 1.443 (1.173–1.775) 0.001 1.442 (1.772–1.774) 0.001

HCC, hepatocellular carcinoma; OR, odds ratio; CI, confidence interval.



5945Translational Cancer Research, Vol 9, No 10 October 2020

© Translational Cancer Research. All rights reserved. Transl Cancer Res 2020;9(10):5940-5948 | http://dx.doi.org/10.21037/tcr-19-2690

Table 3 Association of CD133 rs2240688 genotype with clinical characteristics in HCC patients

Characteristics
rs2240688 rs2240688 rs2240688

AA CA CC P value CA CC P value AA CA + CC P value

Age (year)

Range 19–87 10–89 35–76 10–89 35–76 19–87 10-89

Mean 52.3 52.7 55.6 52.7 55.6 52.3 53.04

Gender

Female 48 27 3 27 3 48 30

Male 285 175 27 0.778 175 27 0.608 285 202 0.615

BCLC stage

A + B stage 183 105 18 105 18 183 123

C + D stage 150 97 12 0.643 97 12 0.412 150 109 0.649

Smoking status

No 202 121 20 121 20 202 141

Yes 131 81 10 0.778 81 10 0.479 131 91 0.978

Alcohol drinker

No 222 128 24 128 24 222 152

Yes 111 74 6 0.191 74 6 0.074 111 80 0.776

Metastasis

No 272 181 17 181 17 272 198

Yes 71 21 3 0.008 21 3 0.545 71 24 0.002

Family history of cancer

No 288 175 23 175 23 288 198

Yes 45 25 7 0.271 25 7 0.110 45 32 0.892

Liver cirrhosis

Absent 101 62 8 62 8 101 70

Present 232 140 22 0.904 140 22 0.654 232 162 0.968

HBV infection

HbsAg (–) 28 21 6 21 6 28 27

HbsAg (+) 297 178 24 0.128 178 24 0.135 297 202 0.218

HBV infection 8 3 0 3 0 8

AST

Negative 178 97 18 97 18 178 115

Positive 155 105 12 0.312 105 12 0.221 155 117 0.363

ALT

Negative 211 110 23 110 23 211 133

Positive 122 92 7 0.023 92 7 0.022 122 99 0.148

GGT

Negative 116 71 14 71 14 116 85

Positive 217 131 16 0.426 131 16 0.222 217 147 0.660

AFP

Negative 135 78 13 139 13 135 91

Positive 198 124 17 0.843 124 17 0.323 198 141 0.753

HCC, hepatocellular carcinoma; BCLC, Barcelona clinic liver cancer; HBV, hepatitis B virus; ALT, alanine aminotransferase; AST, aspartate 
aminotransferase; GGT, γ-glutamyl transpeptidase; AFP, alpha-fetoprotein.
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In summary, this study was the first to explore the 
relationship between rs2240688 and the risk of HCC. We 
found that rs2240688 was associated with an increased 
risk of HCC and may play an important role in tumor 
progression, thus providing a basis for the search for novel 
therapeutic targets. Due to the small sample size of this 
study, and the inability to obtain more accurate data from 
the control group, the applicability of these results may 
be limited. Therefore, future studies investigating more 
CD133 SNPs, with larger sample sizes and more clinical 
information, are needed to determine the relationship 
between CD133 polymorphisms and the risk of developing 
HCC.
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