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Introduction

Colorectal cancer (CRC) is the third most common 
malignant neoplasm worldwide and a leading cause of 
cancer-related morbidity and mortality (1). Metastatic 
CRC (also called stage IV or advanced CRC) is the 
principal cause of death, but if cancer is detected at early 
stages curative treatment is often possible. Surgery is the 
primary form of treatment and results in cure for ~60% of 
patients with localized (stage I-III) disease (2,3). However, 
recurrence following surgery remains a major problem, 
and patients with lymph-node positive stage III and high-
risk stage II disease are offered fluoropyrimidine-based 
adjuvant chemotherapy (5-fluorouracil, capecitabine) with 

or without oxaliplatin. Rectal cancers may also receive pre-
operative chemoradiation. Recurrent tumor can develop 
in the bowel or at distant sites including the liver, lung, 
peritoneum, brain and bone (2,3). Guidelines for post-
surgery surveillance recommend a combination of clinical 
assessment, serum carcinoembryonic antigen (CEA) 
testing, colonoscopy and computed tomography (CT) 
scanning (4-6). In current practice, many CRC patients 
receive adjuvant therapy unnecessarily, either because they 
were cured by surgery alone, or because they will relapse 
despite treatment. Conversely, some stage II patients with 
low-risk clinicopathological features who are currently 
not considered for adjuvant therapy do relapse and might 
benefit from therapy.
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Outcomes from metastatic CRC remain poor, with a 
5-year survival rate of less than 20% (7). Curative surgery 
is only rarely possible in these patients, but an increase 
in therapeutic options has resulted in an improvement of 
median overall survival to ~24 months. Approved agents 
include standard chemotherapeutics (5-fluorouracil, 
capecitabine, oxaliplatin, irinotecan) and targeted therapies 
directed against the epidermal growth factor receptor 
(EGFR) (cetuximab, panitumumab) or angiogenesis 
(bevacizumab, aflibercept, regorafenib). Although these 
treatments have prolonged the lives of patients with 
metastatic CRC, clinical responses are limited to a subset of 
individuals and are generally short-lived with most tumors 
developing resistance within a few months. Significant side 
effects and costs are associated with these treatments, and 
identification of individuals who are likely to derive the 
greatest benefit remains a major challenge.

Many patients with CRC will remain asymptomatic until 
the development of late-stage disease, where symptoms may 
include abdominal pain, changes in bowel habit and the 
presence of blood in stool. The principal method adopted 
by national CRC screening programs for early disease 
detection is the fecal occult blood test (FOBT), targeted at 
high-risk age groups with follow-up by colonoscopy (8,9). 
FOBT screening is cost effective, but tests suffer from 
limited sensitivity and specificity. A further challenge is 
population participation for stool-based diagnostics.

Advances in the development of microarray and next-

generation sequencing (NGS) technologies have enabled 
global studies of CRC genomes, methylomes, as well 
as coding and non-coding transcriptomes (Figure 1). 
Integrated omics data have led to the identification of 
new cancer genes and pathways, and have improved our 
understanding of tumor biology and molecular subtypes. 
Translational genomics studies have revealed clinically 
relevant biomarkers for improving CRC diagnosis, 
surveillance, prediction of prognosis and therapy response. 
In addition, such studies have identified new druggable 
targets, opening up novel therapeutic opportunities. Here, 
we summarize pertinent results of CRC genomics studies 
to date, with an emphasis on tumor classification, diagnosis, 
prognostication and prediction of therapy benefit.

The CRC genome

Comparative genomic hybridization (CGH) arrays, single 
nucleotide polymorphism (SNP) arrays and more recently 
NGS approaches have provided fundamental insights into 
the complex landscapes of CRC mutations, DNA copy 
number alterations and chromosomal rearrangements. 
Sjöblom et al. and Wood et al. first used classic PCR-
based Sanger sequencing for exome-wide profiling of CRC 
mutations, identifying well-known, high-frequency mutated 
genes such as APC, KRAS, PIK3CA, SMAD4, TP53 and 
FBXW7 as ‘gene mountains’, and describing a large number 
of ‘gene hills’ that were mutated at low frequency (10,11). 

Figure 1 Genomic technologies used to uncover biomarkers for colorectal cancer molecular classification, diagnosis, prognosis, surveillance 
and therapy response. CGH, comparative genomic hybridisation; CNVs, copy number variations; SVs, structural variations; SNPs, single 
nucleotide polymorphisms; qRT-PCR, quantitative real-time PCR; miRNA, microRNA.
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These pioneering studies were followed by integrated 
whole-exome NGS and DNA copy-number studies by The 
Cancer Genome Atlas (TCGA) Network, presenting a 
detailed survey of the genomic profiles on over 270 sporadic 
CRCs (12). Approximately 15% of CRCs were found to 
exhibit hypermutation with two distinct mutation patterns: 
microsatellite instability (MSI) in three-quarters of cases, 
characterized by increased insertions, deletions and single 
nucleotide substitutions, usually with hypermethylation 
and MLH1 silencing, and a nucleotide substitution 
hypermutator phenotype (NSHP) in one-quarter of cases, 
associated with mutations in polymerase ε (POLE). Twenty-
four genes were highlighted as significantly mutated, 
targeting the WNT, RTK/RAS, PI3K, TGF-β and TP53 
pathways in both non-hypermutated and hypermutated 
tumors, but with different genetic alterations between 
these CRC subtypes. Non-hypermutated tumors showed 
common mutations in APC, TP53, KRAS, PIK3CA, 
FBXW7, SMAD4, TCF7L2, NRAS, CTNNB1, SMAD2, 
FAM123B, SOX9, ATM and ARID1A, while hypermutated 
tumors showed frequent alterations in ACVR2A, APC, 
TGFBR2, BRAF, MSH3, MSH6, SLC9A9 and TCF7L2. At 
the chromosomal level, non-hypermutated tumors tended 
to be aneuploid, while hypermutated tumors tended to be 
near-diploid. Consistent with previous CGH and SNP array 
studies (13-18), the most commonly deleted chromosome 
arms were 8p, 15q, 17p (including TP53) and 18q (including 
SMAD4) ,  and the most commonly gained regions 
were chromosome 7, 8q (including MYC), 13 and 20q. 
Recurrent copy-number alterations included potentially 
drug-targetable amplifications of ERBB2 and IGF2. Low 
prevalence chromosomal translocations were detected 
between NAV2 and the WNT pathway member TCF7L1 
using whole-genome sequencing on a subset of samples. A 
similar genomic study on 74 primary colon tumors reported 
highly concordant results, and also identified recurrent 
fusion transcripts involving R-spondin family members 
(EIF3E-RSPO2 and PTPRK-RSPO3) that were shown to 
contribute to activation of oncogenic WNT/β-catenin 
signaling (19,20). Additional low prevalence translocations 
identified by whole-genome or targeted NGS studies in 
CRC include C2orf44-ALK, VTI1A-TCF7L2 and LACTB2-
NCOA2 (19,21,22). Recent NGS studies have provided 
additional details on the mutation spectra of colorectal 
adenomas, MSI and microsatellite stable (MSS) carcinomas 
(23-29). Mutational heterogeneity has been investigated 
between primary cancers and matched metastases indicating 
high genomic concordance, with a thick common trunk and 

smaller genomic branches (30-33). Some evidence exists 
for intra-tumor mutational heterogeneity, but data on this 
are still emerging (33). CGH array studies have proposed 
a refined classification of non-hypermutated CRCs into 
chromosomally stable (CSS) and chromosomal instability 
(CIN) groups (17,34). However, these groups have not as 
yet been systematically investigated for specific mutation 
signatures.

Non-invasive analysis of circulating tumor DNA 
(ctDNA) is an emerging genomics-tool that is actively 
being developed to improve CRC diagnosis and post-
surgery surveillance. It is based on the detection of tumor 
specific single-base substitutions or larger somatic structural 
variations (SSVs) in DNA fragments that are released by 
tumors into plasma. Assays are typically designed against 
either point mutations in hotspot genes or patient-specific 
SSVs (35-40). Hotspot mutations can be utilized in both 
the diagnostic and surveillance setting, but these may only 
identify a subset of patients and have limited specificity. 
Application of patient-specific SSVs is restricted to the 
surveillance setting, requiring low coverage whole-genome 
sequencing and/or microarray analysis of resected tumor 
for assay design, yet highly-specific tests can in principle be 
produced for all individuals. Several reports have shown that 
assays against point mutations in hotspot mutated genes like 
KRAS, BRAF and PIK3CA can identify ctDNA fragments 
in plasma and serum in ~70% of patients with CRC (38,39). 
Recently, a clinical pipeline for identification of patient-
specific SSVs for post-surgery CRC surveillance has been 
presented, demonstrating sensitive temporal assessment 
of disease status, response to surgical and oncological 
intervention, and early detection of recurrence (40). 
Recommending the use of at least three SSVs per patient to 
counter observed primary-metastasis genetic heterogeneity, 
this approach achieved sensitivity and specificity of 100% 
for detecting relapse, with a 2-15 (mean 10) months lead 
time compared to conventional follow-up.

Stool-based diagnostic tests have also been successfully 
tested for detection of mutations in high-frequency mutated 
CRC genes, including APC, KRAS and TP53 (41-48) such 
as the clinically used PreGen-Plus™ kit (49). Additionally, 
studies have evaluated long fragment DNA from exfoliated 
cancer cells in stool as diagnostic marker, with modest 
sensitivity and specificity (50-52).

Genomic instability phenotypes of CRC, MSI and CIN, 
have been demonstrated to be predictive of good and poor 
prognosis, respectively (53,54). The extent of CIN may 
provide additional prognostic value (55,56). Several CGH 
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array studies have attempted to define particular regions 
of chromosomal gain or loss related to tumor progression 
and outcome (14,16,57-68). Perhaps the strongest data 
exist for loss of chromosome arms 4q and 18q and inferior 
survival, but whether these relationships are independent 
of global CIN status remains uncertain (68,69). Recently, 
different types of CIN, such as genome-doubling and 
chromothripsis, have been suggested to be adversely related 
with patient outcome (70,71).

Targeted gene sequencing studies to develop integrated 
mutation signatures for CRC prognostication are only 
beginning to emerge. A recent study evaluating 187 recurrent 
and pathway-related genes in 160 patients with stage 
I-IV CRCs, has proposed a five-gene-signature (CDH10, 
COL6A3, SMAD4, TMEM132D, VCAN) for stratifying 
patients by outcome independent of TNM status (72).

Genomic approaches are gradually being applied for 
identification of molecular markers of therapy benefit. To 
date, unbiased exome mutation and DNA copy number 
studies have focused on cancer cell lines in the context 
of high-throughput drug screens. However, only small 
numbers of CRC cell lines have been included in such 
screens thus limiting the power of these studies to identify 
robust biomarker-drug response associations (73-75). In 
patients with metastatic CRC, several targeted gene mutation 
and copy-number analyses have investigated resistance to 
treatment with monoclonal antibodies targeting EGFR. 
These studies have largely considered “rational” candidate 
genes indicated by previous focused studies. For example, 
Peeters et al. evaluated cancer resistance to panitumumab 
using massively parallel multigene tumor sequencing of 
KRAS, NRAS, BRAF, PIK3CA, PTEN, TP53, EGFR, AKT1 
and CTNNB1. As found in other reports (76,77), wild-
type KRAS, NRAS and BRAF status were associated with 
longer progression-free survival (78). Ciardiello et al. 
reported a similar targeted NGS study interrogating 22 
genes in patients treated with FOLFIRI plus cetuximab, 
reporting worse outcome in cases with KRAS, NRAS, 
BRAF, or PIK3CA mutations (79). The potential of ctDNA 
analysis for monitoring intrinsic and acquired resistance 
to anti-EGFR antibody therapy has been successfully 
demonstrated, applying both targeted mutation and 
SSV analysis (38,80-82). Limited data suggest that tumor 
DNA copy number profiles may correlate with outcome 
in advanced CRC patients treated with fluoropyrimidine-
based regimens. In particular, chromosomal losses of 18q, 
17p11.2-p13.2 and gains of 20p13-q13.3 have been associated 
with response to the FU + irinotecan (FOLFIRI) and 

capecitabine + irinotecan (CAPIRI) (83,84).
Limited data exist for rectal cancer response to 

preoperative chemoradiation. A study by Chen et al. 
highlighted loss of chromosome 4 as associated with 
the risk of lymph node metastasis (85). Similarly, Grade  
et al. suggested that pre-therapeutic evaluation of gains 
of chromosomal regions 7q32-q36 and 7q11-q31, and 
amplifications of 20q11-q13 may predict responsiveness to 
chemoradiotherapy (86).

The CRC transcriptome

Analysis of the protein-coding CRC transcriptome 
using microarray platforms has provided a framework 
for classification of CRC subtypes and prediction of 
cancer outcomes and therapy benefit. These signatures 
are generally derived from the analysis of resected tumor 
specimens with limited micro-dissection and capture 
neoplastic, stromal and immune components.

Several classification schemes for CRC have been 
proposed based on unsupervised clustering of tumor gene 
expression data (87-91). Approaches to tumor categorization 
have included hierarchical clustering, non-negative matrix 
factorization and the clustering of meta-genes (medians of 
groups of genes with correlated expression). Although these 
classification schemes differ in the number and detail of the 
subtypes proposed, ranging from three to six groups, major 
themes are separation into classes differentiated by MSI 
and CIN status, tumor location, and expression of epithelial 
versus mesenchymal markers (Table 1). One study has 
aligned their classification with different types of precursor 
lesions, classic versus serrated adenoma (87), while another 
has connected their classes with the cell types in colorectal 
crypts, stem cell, transit-amplifying cell, goblet cell and 
enterocyte (88). Recently, two studies have demonstrated 
major contributions of stromal cells in tumor groups 
with increased mesenchymal marker expression, rather 
than tumor cells undergoing epithelial-to-mesenchymal 
transition as was originally proposed (92,93).

mRNA extracted from blood and stool have been 
considered as biomarker analysis for diagnosis of CRC 
(94-96). Several groups have used expression microarrays 
on blood from patients with CRC and healthy controls 
to identify an initial set of candidate diagnostic mRNAs 
followed by further refinement of candidates using RT-
PCR (96,97). Other groups have screened normal and 
tumour tissue to find differentially expressed candidate 
genes, from which a refined set was obtained upon 
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follow-up using mRNA extracted from stool-derived  
colonocytes (98) or blood (99). A related approach has 
been to examine previously described candidate genes 
with reported high levels of expression in tumour or 
patient blood (e.g., COX2, MMP7 and CEA) (100-102). 
One commercial blood-based diagnostic test for CRC, 
ColonSentry®, which uses a 7-gene mRNA signature is 
currently available (103,104) (Table 2). Validation in two 
cohorts yielded sensitivity and specificity of 72-82% and 64-
70%, respectively (103,111). However, research into using 
mRNA for CRC diagnosis appears to be waning relative 
to approaches which utilise aberrant DNA methylation or 

miRNAs discussed below.
Multiple studies (126-139) have searched for gene 

expression signatures for predicting risk of tumor 
recurrence following surgical resection of the primary 
tumor (112,120,125,140-155). Early studies often had 
modest sample sizes and relied on cross-validation to assess 
performance of their signatures, while later studies evaluated 
larger sample sizes and included independent patient cohorts 
for signature assessment. A survey of 31 gene signatures 
demonstrated little overlap in the component genes (156), 
and only modest prognostic performance when assessed in 
independent datasets (156). Recognized reasons for these 

Table 1 Comparison of gene expression-based classification schemes for colorectal cancer from De Sousa et al. (87), Sadanandam et al. (88), 
Marisa et al. (89) and Budinska et al. (90) Roepman et al. (91)

Classification 

scheme
Class MSI, CIN CIMP, BRAF 

Prognosis  

(RFS, OS)

Molecular 

phenotype

Similarity to 

precursor polyp
Site

MSS/conventional

De Sousa E Melo CCS1-CIN MSS, CIN CIMP0, BRAFwt Intermediate Epithelial Tubular Left

Roepman B-type MSS BRAFwt Intermediate Epithelial Left ↑

Sadanandam Transit-amplifying BRAFwt Mixed Epithelial Both

Marisa C1 MSS, CIN CIMP0, BRAFwt Intermediate Epithelial Not serrated Left ↑

Marisa C5 MSS, CIN CIMP0, BRAFwt Intermediate Not serrated Left ↑

Budinska B MSS, CIN CIMPH ↑*, BRAFwt Good Epithelial Left ↑

Sadanandam Enterocyte MSI, MSS BRAFwt Intermediate Epithelial Left ↑

Budinska E (mixed) MSS, CIN CIMP0 ↑*, BRAFwt Poor Epithelial, 

inflammatory

Left

Budinska A MSS, CSS CIMP0 ↑*, BRAFwt Good Epithelial Both

MSI-like

De Sousa E Melo CCS2-MSI MSI CIMPH, BRAFmt ↑ Good Inflammatory Right

Sadanandam Inflammatory MSI BRAFmt ↑ Intermediate Inflammatory Right ↑

Marisa C2 MSI ↑,  

CSS ↑
CIMPH ↑, BRAFmt ↑ Intermediate Serrated Right ↑

Budinska C MSI, CSS CIMPH ↑*, BRAFmt ↑ Intermediate Inflammatory Right ↑

Roepman A-type MSI ↑ BRAFmt ↑ Good Epithelial Right ↑

Sadanandam Goblet-like MSI BRAFmt ↑ Good Epithelial Right ↑

Marisa C3 CSS ↑ CIMPH ↑, BRAFwt Intermediate Serrated Right ↑

MSS/serrated

De Sousa E Melo CCS3-serrated MSS ↑ Poor Mesenchymal Serrated Both

Roepman C-type MSS/MSI BRAFmt ↑ Poor Mesenchymal Left ↑

Sadanandam Stem-like MSS BRAFmt ↑ Poor Mesenchymal Left ↑

Marisa C4 MSS, CIN ↑ CIMPH ↑, BRAFwt ↑ Poor Mesenchymal Serrated Both

Marisa C6 MSS, CIN CIMP0, BRAFwt Poor Mesenchymal Serrated Left ↑

Budinska D MSI ↑, CIN CIMP0* ↑, BRAFmt ↑ Poor Mesenchymal Left ↑

*CIMP status assigned using a microarray expression signature rather than a panel of methylation markers.



240 Cheasley et al. Genomic approach to translational studies in colorectal cancer

© Translational Cancer Research. All rights reserved. Transl Cancer Res 2015;4(3):235-255www.thetcr.org

findings are technical differences in sample preparation 
and microarray processing, cohort heterogeneity and gene 
selection methods. These challenges can be overcome using 
rigorously controlled assay conditions. Accordingly, four 
prognostic gene expression signatures have been translated 
into clinical use following extensive validation on external 
cohorts: Oncotype DX® (Colon), a 12-gene RT-PCR based 
assay (112-119,157), ColoPrint®, an 18 gene microarray-
based assay (120-122), OncoDefender™, a 5 gene RT-PCR 
based assay (123,124), and GeneFx Colon®, a 634 gene 
microarray-based assay (125) (Table 2). Gene expression 
based CRC classification schemes may also have prognostic 
potential, with MSI-associated classes showing good 
prognosis and serrated/mesenchymal classes exhibiting poor 
prognosis (87-91).

Transcriptome analyses have also been attempted for 
predicting response to chemotherapy and radiotherapy 
for CRC. Perhaps the most studied scenario has been 

that of pre-operative chemoradiation in rectal cancer 
patients, utilizing pre-treatment biopsies (158-165). These 
transcriptomic studies typically involve smaller training sets 
(n<100) than those for prognosis signatures and generally 
lack external validation. Classifier genes show little overlap, 
and an evaluation of three reported signatures found poor 
performance in an external dataset (166). One recent review 
concluded that an optimal gene signature for prediction 
of chemoradiotherapy in rectal cancer patients has not yet 
been found (167). A small number of studies have used 
transcriptomic data to generate models of 5-FU-based 
chemotherapy benefit in patients with advanced CRC 
(168-171). These studies are limited by small numbers of 
patients and a lack of validation in large patient cohorts. 
In general, gene signatures developed for predicting 
risk of tumor recurrence following surgical resection 
of the primary tumor have not been shown to exhibit 
predictive value for 5-FU based adjuvant chemotherapy 

Table 2 Diagnostic and prognostic tests for colorectal cancer in which genomic methods were used as part of development and/or 
implementation of clinical test

Name Description Assay(s) Source Reference(s)

Diagnosis

ColoVantage® Plasma Methylation status of SEPT9 DNA promoter 

region

RT-PCR blood plasma  

(cell-free DNA)

(105)

Epi proColon® Methylation status of SEPT9 DNA promoter 

region

RT-PCR blood plasma  

(cell-free DNA)

(106-108)

RealTime mS9™ Methylation status of SEPT9 DNA promoter 

region

RT-PCR blood plasma  

(cell-free DNA)

(109)

ColoSure™ Methylation of VIM from DNA RT-PCR Stool (110)

PreGen-Plus™ 21 point mutations in KRAS, APC, TP53;  

a MSI marker (BAT-26) and a DNA integrity 

marker

Capillary 

electrophoretograms

Stool (49)

ColoGuard® KRAS mutations, VIM, NDRG4 and BMP3 

methylation (plus ACTB reference), plus 

presence of haemoglobin

RT-qPCR Stool (48)

ColonSentry® Expression levels of seven gene biomarkers RT-PCR Blood plasma (mRNA) (103,111)

Prognostic

Oncotype DX® Colon 

Cancer Assay

Expression levels of 12 genes (7 cancer 

related genes and 5 reference genes)

RT-qPCR FFPE primary tumour (112-119) 

ColoPrint® Expression levels of 18 genes Microarray Fresh-frozen primary 

tumour

(120-122)

OncoDefender™ Expression levels of 5 genes RT-PCR FFPE primary tumour (123,124)

GeneFx Colon® 

(formerly ColDx)

Expression levels of 634 genes Microarray FFPE primary tumour (125)

RT-PCR, quantitative real-time PCR.
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benefit, although in two studies benefit was suggested 
to be limited to the poor prognosis groups (148,149). 
The application of transcriptome approaches to targeted 
biological therapies is an emerging field (172-176). Several 
of the CRC classification schemes have been suggested 
to have predictive value for 5-FU-based chemotherapy 
or radiotherapy, but with apparently conflicting results 
(Table 1). For example, the mesenchymal “stem cell-like” 
class of Sadanandam et al. (88) was found to be sensitive 
to FOLFIRI and radiotherapy, while the mesenchymal 
“C-type” class of Roepman was associated with 5FU-
resistance (91).

The CRC methylome

DNA methylation of cytosines in the context of CpG 
dinucleotides is a central mechanism of epigenetic 
control, with essential roles in the maintenance of genome 
integrity, genomic imprinting, transcriptional regulation, 
and developmental processes. Multiple approaches for 
genome-wide studies of DNA methylation patterns have 
been developed, generally combining DNA analysis by 
microarrays or NGS with one of three techniques to 
convert DNA methylation patterns into DNA sequence 
information or library enrichment: endonuclease digestion, 
affinity enrichment and bisulphite conversion (177,178).

Genome-wide methylome analyses have highlighted 
extensive disruption of DNA methylation in CRC. Tumors 
are typically characterized by global loss of methylation 
(hypomethylation), predominantly in repetitive sequences, 
and focal gain in methylation (hypermethylation) in CpG 
islands, the latter often occurring simultaneously within 
defined megabase regions (179-181). Hypermethylation 
within CpG islands is associated with transcriptional 
silencing of tumor suppressor genes, whilst hypomethylation 
within gene bodies can affect transcriptional elongation or 
alternative promoter usage and cause aberrant transcription 
of oncogenes (182-196). Global loss of methylation 
may trigger cancer genomic instability and activation of 
transposons and genes within regions of repetitive sequence 
(186-188). Both hypo- and hypermethylation occur early 
in tumorigenesis (189-196), and the average CRC genome 
carries thousands of methylation changes with marked 
impact on the cellular transcriptional program (197,198).

Studies have identified a subset of CRCs that exhibit 
particularly widespread promoter hypermethylation, 
referred to as the CpG island methylator phenotype 
(CIMP) (199,200). CIMP is observed in ~30% of CRCs, 

and presence and extent of CIMP have been used to classify 
CRC into three major subgroups, CIMP high (CIMP-H), 
CIMP low (CIMP-L) and non-CIMP (CIMP-0), with 
distinct clinical and molecular features (201,202). CIMP-H 
is associated with proximal tumor location, female gender, 
BRAFV600E mutation, MLH1 methylation and MSI; CIMP-L 
is characterized by proximal tumor location and KRAS 
mutation, while CIMP-0 is associated with distal tumor 
location, TP53 mutation and CIN (202-205).

Aberrant DNA methylation patterns are attractive tumor 
biomarkers because of their high frequency in neoplasms, 
and the detection of methylation in DNA isolated from 
stool and/or blood has emerged as a promising approach 
for early diagnosis and surveillance of CRC (206,207). 
Microarray based studies of hypermethylated CpG sites in 
CRC and benign adenomas have revealed a large number of 
tumor-specific candidate detection markers (195,208-210). 
Translation of these candidates into blood- or stool-based 
diagnostic tests is actively being pursued by academia and 
industry, involving method development, validation of 
specificity against normal tissues and other pathologies, and 
evaluation of performance against routine clinical assays 
(FOBT, CEA). A recent study evaluating circulating DNA 
detection of HLTF and HPP1 hypermethylation in addition 
to CEA serum measurements showed that combination 
of all three markers outperformed each assay on its  
own (211). In a related study, Lange et al. suggested 
that blood-based detection of THBD  and C9orf50 
hypermethylation outperformed CEA (212). Two diagnostic 
tests have already been introduced into clinical practice, 
including a blood-based PCR test for methylated septin-9 
(Epi proColon®, ColoVantage® Plasma, RealTime 
mS9™ kit) (105-109,213-215), and a stool-based test for 
methylated vimentin (ColoGuard® assay, ColoSure™ assay) 
(48,110) (Table 2).

The association between CIMP and risk of CRC 
recurrence has been analyzed extensively, but results remain 
inconclusive. Several studies indicate CIMP-H as a poor 
prognostic factor in MSS but not MSI tumors (216,217), 
while CIMP-L has been suggested to be an indicator of poor 
outcome regardless of MSI (216,218,219). An association 
between CIMP and shortened survival was also reported in 
advanced CRC patients, among whom the contribution of 
MSI is relatively limited (220). However, there is evidence 
that the adverse effects associated with CIMP status may 
be attributable to BRAF mutation (205,221,222). Global 
hypomethylation as measured by analysis of LINE-1 
elements has also been associated with poor outcomes, but 
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data are limited (223,224). Several studies have investigated 
small numbers of methylated candidate loci not included 
in CIMP marker panels identifying some evidence for 
prognostic associations (210,225-228), but no genome-wide 
methylome studies have been reported.

Epigenetic signatures are increasingly being considered 
in the context of response to chemotherapeutic and 
target agents. Recently, Ha et al. correlated genome-
wide methylation array data with histopathological rectal 
tumor regression grade, highlighting hypomethylation of 
KLHL34 as a candidate predictive marker for sensitivity 
to preoperative chemoradiation therapy (229). Miyaki  
et al. related DEX1 hypermethylation and transcriptional 
silencing, identified by genome-wide methylation sensitive 
amplified fragment length polymorphism (MS-AFLP) 
analysis, to resistance of camptothecin 11 (CPT-11) 
based chemotherapy via inhibition of apoptosis (230). 
Integrating gene expression microarray analysis and 
methylation-specific PCR, Tan et al. identified PPP2R2B 
hypermethylation and transcriptional silencing as a 
modulator of PDK1-directed Myc signaling and rapamycin 
sensitivity in CRC (231). CIMP status has been assessed 
in the context of 5-FU-based adjuvant chemotherapy, but 
results have not been conclusive. Some investigators have 
found that 5-FU treatment increases survival in patients 
with CIMP-H CRC (205,232,233), but others have not 
replicated this finding (234).

The CRC miRNAome

MicroRNAs (miRNAs) are short (19 to 25 nucleotides), 
double-stranded, non-protein coding RNAs, that regulate 
expression of complementary mRNAs at the post-
transcriptional level by inducing mRNA degradation 
or blocking translation into protein. Abnormal miRNA 
expression profiles are related to clinical and biological 
behavior of tumors and, given their high stability, have been 
investigated as robust diagnostic, surveillance, prognostic 
and predictive biomarkers in cancer tissues and body fluids 
from cancer patients (235,236). Genomic approaches have 
mainly utilized qRT-PCR and microarray technologies.

To date, multiple studies have reported unsupervised 
principle component or cluster analyses of miRNA 
expression data to classify CRC. Oberg et al. analyzed 315 
normal colonic mucosa, tubulovillous adenoma, MSS/
proficient mismatch repair (pMMR) sporadic carcinoma, 
and MSI/deficient mismatch repair (dMMR) sporadic 
and inherited carcinoma samples using microarrays (237). 

Unsupervised analysis demonstrated that normal colon 
tissue, adenomas, MSS/pMMR carcinomas and MSI/
dMMR carcinomas were clearly discernible. Consistent with 
these data, several other studies analyzing MSS/pMMR 
and MSI/dMMR cancers also found miRNA expression 
differences between these tumor groups (238-241). One 
report suggested that Lynch syndrome tumors may display 
a different miRNA profile as compared to sporadic MSI 
tumors (242), but this was not noted by Oberg et al. (237). 
However, overlap between MSI/dMMR associated genes 
identified across studies is limited. One supervised analysis 
has suggested miRNA expression differences by CRC 
location, CIMP, KRAS and TP53 status although this 
has not been replicated (241). A recent microarray study 
on 1,141 CRC cases, analyzing 121 miRNAs previously 
reported with advanced tumor stage and/or survival, verified 
stage associations for five miRNAs (hsa-miR-145-5p, hsa-
miR-31-5p, hsa-miR-200b-3p, hsa-miR-215 and hsa-miR-
451a) (243).

miRNA signatures in the blood or stool of CRC patients 
have been evaluated as an alternative to FOBT testing 
for CRC diagnosis. Multiple studies have used separate 
discovery and validation cohorts to derive diagnostic 
miRNA blood/stool profiles using qRT-PCR panels or 
microarrays (244-255). Proposed classifiers comprise 1 to 
21 miRNAs, with sensitivities of 34-85% and specificities of 
68-97% reported across studies. In particular, up-regulation 
of miRNAs miR21 and miRNA92/miRNA92a have been 
highlighted in several blood- and stool-based studies 
for CRC diagnosis (236). To date, signatures have not 
been validated in independent follow-up reports or been 
rigorously compared against FOBT testing. Despite these 
caveats, miRNA signatures show promise as non-invasive 
CRC biomarkers.

Tumor miRNA signatures have been studied to 
predict prognosis using qRT-PCR, microarrays and NGS 
approaches. Several prognostic miRNA signatures for stage 
I-IV CRC patients have been proposed with little overlap 
between classifiers (243,256,257). One international study 
identified a 2-miRNAs classifier for predicting recurrence 
risk in MSS stage II-III CRC using NGS (258). The most 
comprehensive discovery and validation study to date has 
been reported by Zhang et al. (259). Using microarrays, 
a panel of 35 miRNAs was identified as differentially 
expressed between 40 paired stage II colon cancer tumors 
and adjacent normal tissues, and validated in independent 
samples from 138 patients. Based on these candidate genes, 
a six-miRNA prognostic classifier (miR-21-5p, miR-20a-
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5p, miR-103a-3p, miR-106b-5p, miR-143-5p, and miR-
215) was built using LASSO Cox regression and validated 
in an external cohort of 460 stage II patients. Notably, miR-
21-5p has been linked to prognosis and advanced tumor 
stage in multiple other studies (256,260-262). Similar 
investigations in stage II CRC patients using smaller sample 
sizes have proposed classifiers with 1-4 miRNAs, and some 
of these have been validated using additional sample data 
(239,263,264). None of the proposed prognostic miRNA 
signatures for stage II CRC overlap. Recently, a study 
compared the miRNA expression profile in primary cancers 
and matched liver metastasis using NanoString screening, 
identifying both primary CRC and serum miRNA 
signatures with metastasis predictive potential (265).

Multiple studies have investigated the relationship 
between CRC miRNA signatures and therapy response. 
A recent microarray-based investigation proposed 
miRNA-17-5p expression as a predictive marker for 
5-FU-based neoadjuvant chemoradiation and adjuvant 
chemotherapy (266). In metastatic CRC, three studies 
have identified miRNA signatures associated with the 
added benefit of oxaliplatin or bevacizumab to 5-FU 
or capecitabine (267-269), and one study examined the 
benefit of 5-FU (270). In rectal cancer, miRNA signatures 
have been proposed to predict response to pre-operative 
chemoradiotherapy (266,271-275). Interestingly, several 
studies have suggested that their prognostic classifiers 
could also predict patients benefit from adjuvant 5-FU 
based chemotherapy or irinotecan-cetuximab combination 
therapy (256,257,259,276,277). For example, the 6-miRNA 
prognostic classifier identified by Zhang et al. also predicted 
5-FU treatment response for stage II CRC patients 
(259,277), while high miR-345 expression identified by 
Schou et al. was also associated with lack of response 
for patients to treatment with cetuximab and irinotecan 
(259,277). Recently, a serum miRNA signature has been 
proposed as a non-invasive predictor of response to 
chemotherapy for CRC patients (278).

Conclusions and perspectives

Ongoing global genome characterization efforts are 
transforming our understanding of CRC biology and 
pathogenesis. Knowledge of the molecular aberrations 
dr iv ing cancer  development—including genome, 
transcriptome, methylome and miRNAome alterations—can 
be applied, in principle, to develop integrated approaches 
for personalized cancer treatment. Recent genome-wide 

DNA sequencing and copy number studies in CRC have 
validated established genetic pathways of tumorigenesis 
and mutator phenotypes, while highlighting extensive 
mutational heterogeneity and identifying novel cancer 
gene candidates. Gene expression and DNA methylation 
data have demonstrated widespread deregulation of the 
CRC epigenome and indicate the importance of the cell-
of-origin, retention of differentiation hierarchy and tumor 
stroma for CRC molecular classification (87,92,279,280).

Advances in genomics have begun to contribute new 
tools for clinical diagnosis and management of CRC. 
Blood- and stool-based tumor DNA sequencing, miRNA 
detection and DNA methylation assays are being developed 
for improved population screening, to facilitate surveillance 
of tumor recurrence and for dynamic monitoring of cancer 
response to therapy (207,281,282). Direct genomic and 
transcriptomic analyses of patient tumors are being pursued 
to provide prognostic and predictive information about the 
course of disease and benefit of treatment, with the current 
standard of care already involving assessment of KRAS 
mutation prior to treatment of metastatic CRC with anti-
EGFR antibody therapy (283). Germline pharmacogenomic 
variation, which we did not consider in this review, further 
has the potential to predict patient treatment tolerance in 
order to avoid deleterious side effects (284).

Challenges for translation of genomic-based CRC 
biomarkers include the need for well-defined clinically 
characterized cohorts and for standardization regarding 
specimen collection, handling, and storage. Biomarker 
translation may further be improved through integration 
with functional genomics approaches to establish mechanistic 
rather than correlative links with tumor biology (285). 
Besides inter-tumor molecular heterogeneity, intra-
tumor molecular heterogeneity poses a major hurdle to 
the translation of genomics findings and remains to be 
fully elucidated. Efforts focusing on molecular profiling of 
tumor regional heterogeneity and (epi-) genomic variation 
between metastatic deposits are ongoing. Besides clonal 
heterogeneity, hierarchical organization and phenotypic 
plasticity may play clinically important roles and will be 
subject of future genomic studies (286,287).

The application of genomic approaches, in particular 
whole exome sequencing, presents issues beyond the 
assessment of molecular alterations related to the patient’s 
original presentation of CRC. Given the comprehensive 
nature of these tests, incidental findings on clinically 
relevant variants in genes with no relationship to the 
primary diagnosis may be made. This raises questions as to 
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whether such findings should be reported back to patients, 
what method of reporting should be used, and when to 
disclose these results (288-290).

The revolutionary advances in genomic technologies 
are enabling the possibility of personalized medicine for 
CRC. Evolving platforms such as NGS and high-density 
microarrays are starting to bring precision genomic 
profiling to the clinic at a reasonable cost. Ongoing 
innovations in existing applications and clinical informatics 
algorithms, as well as the many emerging technologies, 
will continue to advance translational cancer genomics and 
ultimately contribute to improving patient outcomes.
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