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Background: The aim of the present study was to establish a prognostic model for the survival of children 
with osteosarcoma (OS).
Methods: The mRNA expression and clinical characteristics of pediatric patients with OS were extracted 
from the Therapeutically Available Research to Generate Effective Treatments (TARGET) database. After 
genes with differential mRNA expression were identified, univariate and multivariate Cox analyses were 
performed, and a prognostic model of pediatric OS was established. The prognostic values of a 7-mRNA 
signature were evaluated using the receiver-operating characteristic (ROC) curve in pediatric patients with 
OS.
Results: A total of 19,496 differentially expressed mRNAs were identified, including 267 upregulated 
mRNAs and 104 downregulated mRNAs. After univariate and multivariate Cox analyses, seven mRNA 
species (SCGB3A1, MUC17, ADH1B, KRT83, RP1-37E16.12, FIGF, and SFTPD) were found to be 
closely associated with survival. These mRNA species were mainly enriched in glycolysis/gluconeogenesis, 
arachidonic acid metabolism, cytokine-cytokine receptor interaction, neuroactive ligand-receptor interaction, 
tight junction, and complement and coagulation cascade pathways. A predictive model using the sum of 
independent prognostic values of the seven mRNA species as the risk score was proposed. The risk score 
was calculated as follows: risk score = 0.242257 × SCGB3A1 + 0.168999 × MUC17 + 0.415514 × ADH1B + 
0.488864 × KRT83 + 0.360864 × RP1-37E16.12 – 0.2991 × FIGF – 0.39576 × SFTPD. Pediatric patients with 
OS were assigned to low- and high-risk groups based on the risk score. The ROC curve analysis showed that 
the 7-mRNA prediction model performed well [area under the curve (AUC): 0.858].
Conclusions: A 7-mRNA signature has the potential to predict the prognosis of pediatric patients with 
OS, and therefore warrants further validation.
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Introduction

Osteosarcoma (OS) is the most common primary bone 
cancer. The global incidence is 0.2–3/100,000 per year for 
the general population and is 0.8–11/100,000 for people 
aged 15–19 years (1,2). OS is common among children, 
and has a high malignancy, disability, and recurrence rate, 
along with a poor prognosis. The incidence of OS generally 
increases with age. Although chemotherapy has increased 
the 3-year survival rate from 20% to 60–70% (3), there has 
been no significant progress in targeted OS treatment in the 
past few decades. Therefore, a further understanding of the 
genetic etiology of OS is required for progress to be made 
in treating this cancer.

Currently, a number of molecules have become 
therapeutic targets for certain cancers. For example, 
transferrin receptor 1 (TFR1), a member of the TFR 
family, is a membrane protein that regulates iron input (4,5). 
The uptake of iron by TFRs is important for cancer cells 
to absorb iron. There is increasing evidence that TFR1 is 
involved in the development of tumors, and its expression 
is significantly dysregulated in many cancers (6,7). The 
relationship between TFR1 and cancer has been extensively 
studied, and TFR1 is considered a valuable drug target 
for cancer intervention (8-11). Angiogenesis are regulated 
by the vascular endothelial growth factor (VEGF)and its 
receptor (VEGFR) signaling pathway and play a key role 
in tumor growth and metastasis. The selective inhibition 
of VEGFR kinase has been explored as a successful clinical 
cancer treatment strategy. Many VEGFR inhibitors have 
already been approved for clinical use, and many more are 
in various stages of development (12). Cyclin-dependent 
protein kinase 9 (CDK9) has been shown to play an 
important role in the pathogenesis of malignant tumors. 
A recent study demonstrated that high CDK9 expression 
was associated with significantly shorter survival in patients 
with OS following immunohistochemistry. This suggests 
that a high expression of CDK9 is an independent predictor 
of poor prognosis in patients with OS. It also indicates 
that CDK9 is a new prognostic marker and a promising 
therapeutic target for OS (13).

At present, there are no well-established prognostic 
markers for pediatric patients with OS. Individual 
heterogeneity makes the tumor-node-metastasis (TNM) 
staging system clinically ineffective for the prognosis of OS. 
Although the alkaline phosphatase tumor biomarker has 
been used to predict OS (14), and gene modules have been 
found to be associated with OS (15-18), to the best of our 

knowledge, there have been no previously published studies 
specifically focused on the prognosis of OS in pediatric 
patients. Studies have shown that mRNA plays a very 
important role in the development of pediatric OS (19-22), 
which indicates that mRNAs may be used as a prognostic 
marker in this disease.

The purpose of the present study was to evaluate the 
use of mRNAs as a prognostic marker of OS in pediatric 
patients by analyzing the expression of mRNAs available 
from the Therapeutically Available Research to Generate 
Effective Treatments (TARGET) OS database.

We present the following article in accordance with 
the MDAR reporting checklist (available at http://dx.doi.
org/10.21037/tcr-20-2407).

Methods

Extraction of TARGET pediatric OS data

mRNA sequencing data and corresponding clinical target 
data were downloaded from the TARGET database (portal.
gdc.cancer.gov/). Because the data are standardized, no 
further processing was required, and no data were deleted. 
There were 101 cases of gating in the database, including 
0 normal samples and 101 OS samples. There were 39 
females and 62 males, ranging in age from 4 to 23 years, 
with an average age of 16 years. Differential expression 
analysis was performed on level 3RNA sequencing data of 
OS tissues using the edgeR package based on R language. 
Genes with absolute log2 fold change >1 and P<0.05 in 
mRNA expression levels were considered to be differentially 
expressed. The study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013). Because 
the data are from a public database, no ethics committee 
approval was required.

Survival analysis

The mRNA expression data of pediatric patients with OS 
combined with clinical data from the TARGET database 
were used to determine the differential expression of 
mRNA signals that affect prognosis. The survival curve of 
the samples with differential mRNA expression was drawn 
with the Kaplan-Meier plot, and the total survival rate 
was determined. Univariate and multivariate Cox analyses 
were performed to calculate the risk ratio and P values of 
all differentially expressed mRNAs. The sensitivity and 
specificity of the risk score in predicting the overall survival 
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rate of pediatric patients with OS were assessed based on 
the area under the curve (AUC) of the receiver-operating 
characteristic (ROC) analysis.

Pathway analysis

Pathway analyses were performed among the survival-
related mRNAs from the univariate Cox analysis using 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
(http://www.genome.jp/kegg/pathway.html) pathway 
databases.

Statistical analysis

Pediatric patients with OS tumors were allocated to 
high- and low-expression groups according to the median 
expression level of each differentially expressed mRNA. 
Overall survival was determined using the Kaplan-Meier 
survival analysis. The difference in survival of the pediatric 
patients was determined using the log-rank test with 
the survival analysis in R package. A P value <0.05 was 
considered to be statistically significant.

Results

Single mRNA species were related to survival in pediatric 
patients with OS

A total of 19,496 mRNA species were found to be 
differentially expressed, including 104 downregulated 
mRNAs and 267 upregulated mRNAs. Kaplan-Meier and 
Cox P value survival analyses of the deferentially expressed 
mRNA species indicated that 33 genes with differential 
mRNA expression were significantly related to survival 
(P<0.05) (Table 1).

A group of mRNA species was closely related to survival in 
pediatric patients with OS

Univariate Cox analysis was performed on all differentially 
expressed mRNAs, and 22 potential candidates were selected 
(Table 2). Multivariate Cox analysis was then performed 
on the candidate mRNA species to determine the mRNA 
species closely related to survival, with a cutoff threshold 
of significance set at 0.01 (P<0.01). Seven mRNA species 
were identified (SCGB3A1, MUC17, ADH1B, KRT83, RP1-
37E16.12, FIGF, and SFTPD). The independent prognostic 
values of these seven hub mRNAs were generated by 

multivariate Cox analysis (Table 3). Five mRNAs were 
related to high mortality among pediatric patients with OS, 
including SCGB3A1, MUC17, ADH1B, KRT83, and RP1-
37E16.12. The risk mortality was 63% higher in patients 
with a high expression of KRT83 than in patients with a low 
KRT83 expression; the risk of mortality was 52% higher in 
patients with a high expression of ADH1B than in patients 
with a low ADH1B expression. FIGF and SFTPD were 
associated with a low risk of mortality in pediatric patients 
with OS.

Pathways involved in survival

Through Reactome pathway analysis, six enriched pathways 
that were most likely involved in the survival of pediatric 
patients with OS were identified (Table 4): glycolysis/
gluconeogenesis, arachidonic acid metabolism, cytokine-
cytokine receptor interaction, neuroactive ligand-receptor 
interaction, tight junction, and complement and coagulation 
cascades.

Seven-mRNA prognostic model

For each patient, a risk score was generated from the 
independent prognostic values of the seven mRNAs using 
the following formula: risk score = 0.242257 × SCGB3A1 
+ 0.168999 × MUC17 + 0.415514 × ADH1B + 0.488864 
× KRT83 + 0.360864 × RP1-37E16.12 – 0.2991 × FIGF 
– 0.39576 × SFTPD. The distribution of patients with 
different survival risk scores of these seven mRNAs and 
mRNA-related survival time are shown in Figure 1A,B, 
respectively. The expression heatmap of the 7-mRNA 
signature is shown in Figure 1C. Pediatric patients with 
OS were assigned to low- and high-risk groups according 
to the risk scores (Figure 1D). Log-rank test indicated 
that pediatric patients with OS in the low-risk group had 
significantly longer survival (P<0.05) than patients in the 
high-risk group (Figure 1D). The area under the ROC 
curve was 0.858 (Figure 2). These findings indicate that 
the 7-mRNA prognostic model is promising, sensitive, and 
specific in predicting the survival outcomes of pediatric 
patients with OS.

Discussion

In the present study, a 7-mRNA model was proposed to 
predict the prognosis of pediatric patients with OS. Of the 
genes with differential mRNA expression in the TARGET 
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Table 1 mRNA species related to survival resulted from Kaplan-Meier and Cox P value method analysis

Gene Kaplan-Meier value HR HR.95L HR.95H Cox P value

MUC17 0.024729 1.000261 1.00006 1.000463 0.011048

SCGB1A1 0.002324 1.000069 1.000009 1.000129 0.023514

KRT83 0.005254 1.007786 1.00261 1.012988 0.003153

CFAP57 0.043358 1.007527 1.00099 1.014106 0.023945

SFTA3 0.014252 1.001505 1.000187 1.002826 0.025206

ADRB3 0.028427 1.003499 1.000898 1.006108 0.008347

AGR3 0.006579 1.002917 1.000391 1.005449 0.023561

RP11-598P20.5 0.034737 1.001679 1.000369 1.002991 0.011985

CYP4F8 0.037341 1.000538 1.000086 1.00099 0.019618

ALDH1A1 0.004767 1.000117 1.000041 1.000194 0.002573

TNXB 0.03894 1.000203 1.000056 1.000351 0.006823

GABRB3 0.039065 1.000312 1.000038 1.000587 0.025833

CFAP73 0.006869 1.003911 1.000594 1.007239 0.020798

MYOC 0.011729 1.005669 1.001098 1.01026 0.015002

RAB25 0.021731 1.004769 1.000384 1.009173 0.033002

C19orf33 0.039076 1.003781 1.000497 1.007076 0.023996

IGF2 0.00266 0.999955 0.999915 0.999996 0.029667

CLEC4M 0.016707 1.004171 1.000466 1.00789 0.027301

HP 0.038545 1.002115 1.000463 1.003771 0.012093

GABRA5 0.047178 1.001137 1.000161 1.002113 0.022432

TRIM49C 0.017894 1.002371 1.000414 1.004332 0.017556

MEIS3 0.019896 0.997913 0.99598 0.999849 0.034657

MYC 0.024538 1.000058 1.000026 1.000089 0.000315

TNFRSF21 0.004399 0.999503 0.999153 0.999853 0.00539

ACKR4 0.024598 1.007749 1.001252 1.014288 0.019331

HERC5 0.000518 0.997795 0.996052 0.999542 0.013366

TRIM16L 0.007439 0.996127 0.993405 0.998857 0.00545

SYT2 0.042662 0.994201 0.988901 0.999528 0.032928

ST8SIA6 0.007765 0.980774 0.964442 0.997383 0.023464

HSD11B1 0.021879 1.012085 1.00466 1.019566 0.001387

DRD2 0.026452 0.983503 0.967999 0.999256 0.040187

NDST3 0.009417 0.988577 0.979798 0.997434 0.011583

UNC5A 0.032069 1.001864 1.000307 1.003423 0.018925

MUC4 0.023129 1.00491 1.001114 1.00872 0.011196

TRABD2A 0.019783 0.99763 0.995713 0.999551 0.015626

EFHC2 0.001406 0.991072 0.984883 0.997299 0.005012

ZNF488 0.008545 0.975283 0.95449 0.996528 0.022827

GDNF 0.013354 1.00078 1.000016 1.001544 0.045517
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database, seven mRNA species (SCGB3A1, MUC17, 
ADH1B, KRT83, RP1-37E16.12, FIGF, and SFTPD) were 
found to be closely related to the survival of pediatric 
patients with OS. The combination of the seven mRNA 
species could sensitively and specifically predict survival 
outcomes in pediatric patients with OS. Further study and 
confirmation of this 7-mRNA model is required in the 
future to predict the prognosis of pediatric patients with 
OS.

The abnormal transcription process is one of the factors 
influencing the development of OS. Activated protein 
1 complex (AP-1) is composed of fos and jun proteins, 
which are the products of c-fos and c-jun proto oncogenes, 

respectively. AP-1controls cell proliferation, differentiation, 
and bone metabolism (23-26). Leaner et al. recently found 
that AP-1-mediated transcriptional inhibition leads to a 
reduction of migration, invasion, and metastasis in OS 
mouse models (27). When delivered via nanoparticles, the 
enzyme dz13 cleaves human c-jun mRNA and inhibits the 
growth and progression of OS in mouse models (28). Myc is 
a transcription factor, and its amplification is related to the 
pathogenesis of OS and chemotherapy resistance (29). The 
overexpression of myc in bone marrow stromal cells leads to 
OS and fat loss. Myc has been found to be amplified in the 
U2OS cell line; it has high resistance to adriamycin, and is 
increased in the Saos-2 methotrexate-resistant cell line (30). 
In addition, myc is considered to be the target treatment of 
OS. The downregulation of myc enhances the therapeutic 
effect of methotrexate on OS cells (31). These findings 
suggest that mRNAs, especially mRNAs resulting from 
abnormal transcription processes, may be good markers for 
the prognosis of OS.

In the present study, SCGB3A1, MUC17, ADH1B, 
KRT83 ,  RP1-37E16 .12 ,  FIGF ,  and SFTPD  mRNA 
species were found to be highly related to the survival 
o f  ped ia t r i c  pa t ient s  w i th  OS.  MUC17  encodes 
mucin17, which functions in epithelial cells to provide 
cytoprotection and signal transduction, maintain luminal 
structure and homeostasis of the mucosal surface, and 
confer anti-adhesive properties to cancer cells that lose 
their apical/basal polarization (32). ADH1B encodes 
alcohol dehydrogenase 1B (class I), β polypeptide [which 
metabolizes a wide variety of substrates, including ethanol 
(alcohol beverage)], retinol, other aliphatic alcohols, 
hydroxysteroids, and lipid peroxidation products (33). 
SFTPD encodes pulmonary surfactant protein D, which is 
an innate immune system collect in (34). SCGB3A1 is a type 
of secretory immunoglobulin, and its biologic functions are 
mainly unknown (35). KRT83 is a hair keratin (36). FIGF or 
c-fos-induced growth factor is a VEGF that promotes the 
metastasis of cancers to lymph nodes (37). RP1-37e16.12 
is a filamentous actin-binding protein that is associated 
with the guanine nucleotide exchange factor and regulates 
actin cytoskeleton organization (38). Although the roles of 
these genes in OS progression are not well understood, the 
KEGG pathway databases indicate that they are related to 
neuroactive ligand-receptor interaction, arachidonic acid 
metabolism, cytokine-cytokine receptor interaction, tight 
junction, and complement and coagulation cascade signaling 
pathways. The neuroactive ligand-receptor interaction 
pathway is related to OS tumorigenesis and poor prognosis 

Table 2 mRNA species related to survival resulted from univariate 
and multivariate Cox analysis of overall survival

Gene HR Z P value

SCGB3A1 1.060302 0.547207 0.000424

FIGF 0.982092 –0.1604 0.000785

INMT 1.236569 2.016269 0.001369

SLC34A2 1.124608 1.184404 0.001438

PGC 1.16949 1.520409 0.001506

MUC17 1.189722 2.081223 0.002025

SFTPB 1.115756 1.345639 0.00209

SCGB1A1 1.188812 2.662658 0.002559

TCF21 1.116229 1.238056 0.002667

NAPSA 1.024285 0.209626 0.003016

ADAMTS8 1.07829 0.748342 0.003384

SFTPA2 1.0807 1.009918 0.005021

ADH1B 1.213052 2.400327 0.005168

KRT83 1.453494 3.173515 0.005172

RP1-37E16.12 1.282076 2.675284 0.005424

HPSE2 1.187637 1.876842 0.006284

SFTPD 0.853388 –1.2376 0.006428

MAP1LC3C 1.16887 1.191472 0.007302

PTGER1 1.222665 2.059195 0.007467

SCGB3A2 1.284029 2.292198 0.007753

SFTPC 1.08178 1.140528 0.008273

C4BPA 1.142128 1.43618 0.008797

CXCL17 1.045608 0.354362 0.009551
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Table 4 The seven mRNA species related pathways

Category Term Count P value

KEGG_PATHWAY Glycolysis/Gluconeogenesis 5 3.3E–2

KEGG_PATHWAY Arachidonic acid metabolism 5 2.4E–2

KEGG_PATHWAY Cytokine-cytokine receptor interaction 11 1.3E–2

KEGG_PATHWAY Neuroactive ligand-receptor interaction 13 4.3E–3

KEGG_PATHWAY Tight junction 5 7.3E–2

KEGG_PATHWAY Complement and coagulation cascades 5 3.6E–2

Table 3 Seven mRNA species which were most closely related to survival

ID Coef. Exp(coef.) Se(coef.) Z Pr(>|z|)

SCGB3A1 0.242257 1.274122 0.136497 1.774825 0.075927

FIGF –0.2991 0.741483 0.15569 –1.92115 0.054713

MUC17 0.168999 1.184118 0.086462 1.954604 0.05063

ADH1B 0.415514 1.515149 0.128483 3.234008 0.001221

KRT83 0.488864 1.630463 0.134531 3.633843 0.000279

RP1-37E16.12 0.360864 1.434568 0.113838 3.169984 0.001524

SFTPD –0.39576 0.673166 0.163477 –2.42091 0.015482

(39,40). Although arachidonic acid is not carcinogenic  
(40-43) ,  arachidonic  ac id  can be  converted into 
p r o s t a g l a n d i n  E 2  a n d  o t h e r  p r o s t a g l a n d i n s  b y 
cyclooxygenase-2 (44), which plays a role in regulating 
the migratory and invasive behavior of cells during 
the development and progression of cancer (16,45). 
Abnormality in cytokine-cytokine receptor interaction 
is related to OS genesis and poor prognosis (46,47). 
Abnormality in tight junction promotes a malignant 
phenotype of OS cells and causes poor prognosis (48-50).  
Imbalanced complement and coagulation interaction 
promote tumor growth (51,52). These findings indicate that 
the seven identified mRNA species have the potential to be 
used as prognostic markers in pediatric patients with OS. 
Multivariate Cox analysis-generated independent prognostic 
values indicated that SCGB3A1, MUC17, ADH1B, KRT83, 
and RP1-37E16.12 are related to high mortality in pediatric 
patients with OS, and FIGF and SFTPD are associated with 
a low mortality rate. In particular, the high expression of 
KRT83 and ADH1B led to higher risk of mortality in these 
patients. These findings further suggest that these mRNA 
species might be able to serve as prognostic markers. 
The prognostic model using the sum of the independent 

prognostic values of the seven mRNA species could be used 
as prognostic markers among pediatric patients with OS, 
with high sensitivity and specificity.

Many approaches have the potential to improve the 
prognosis of OS patients, including immunotherapy 
in activating monocytes and macrophages against OS 
cells (53-56), the inhibition of the mammalian target of 
rapamycin-mediated signal transduction pathway (57-60), 
the inhibition of tyrosine kinases (61-63), and the use of 
novel antifolates. Combination target therapy may have the 
greatest potential for improvement in outcomes. However, 
whether this improvement in outcomes among OS patients 
is achieved by these approaches correlates with the 7-mRNA 
species predictive value requires further investigation.

The predictive value of the 7-mRNA model was not 
validated in the present study. Therefore, a validation study 
using OS tissues from pediatric patients is warranted.

Conclusions

Seven mRNA species were found to be closely related to 
overall survival in pediatric patients with OS. A prognostic 
model using a combination of these 7-mRNA species has 



6739Translational Cancer Research, Vol 9, No 11 November 2020

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2020;9(11):6733-6742 | http://dx.doi.org/10.21037/tcr-20-2407

Figure 1 Evaluation of the predictive value of the 7-mRNA prognostic model. Distribution of the patients with different (A) mRNA-related 
risk scores and (B) mRNA-related survival time; (C) expression heatmap of the seven identified genes in the high- and low-risk groups; (D) 
overall survival curve of pediatric OS patients generated through Kaplan-Meier survival curve analysis between low-and high-risk groups. 
OS, osteosarcoma.
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receiver-operating characteristic; AUC, area under the curve.
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the potential to predict the prognosis of pediatric patients 
with OS; however, this requires further verification.
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