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Background: Lung cancer is an intractable disease and the second leading cause of cancer-related deaths 
and morbidity in the world. This study conducted a bioinformatics analysis to identify critical genes 
associated with poor prognosis in non-small cell lung cancer (NSCLC).
Methods: We downloaded three datasets (GSE33532, GSE27262, and GSE18842) from the gene 
expression omnibus (GEO), and used the GEO2R online tools to identify the differentially expressed genes 
(DEGs). We then used the Search Tool for Retrieval of Interacting Genes (STRING) database to establish 
a protein-protein interaction (PPI) network and used the Cytoscape software to perform a module analysis 
of the PPI network. A Kaplan-Meier plotter was used to perform the overall survival (OS) analysis, and the 
Gene Expression Profiling Interactive Analysis (GEPIA) database was used for expression level analysis of 
hub genes. Further, the UALCAN database was used to validate the relationship between the gene expression 
level of each hub gene and clinical characteristics.
Results: We identified 254 DEGs, which were composed of 66 up-regulated genes and 188 down-
regulated genes. Out of these, five DEGs were identified as hub genes (CDC20, BUB1, CCNB2, CCNB1, 
UBE2C) by constructing a PPI network. The use of a Kaplan-Meier plotter to generate patient survival 
curves suggested a strong relationship between the five hub genes with worse OS. Validation of the above 
results using the GEPIA database showed that all the hub genes were highly expressed in NSCLC tissues. 
Using the UALACN data mining platform, we found that the five hub genes are correlated with tumor stage 
and the status of node metastasis in NSCLC patients.
Conclusions: We identified five hub DEGs that might provide perspectives in the explorations of 
pathogenesis and treatments for NSCLC.
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Introduction

Lung cancer is an intractable disease, and the second 
leading cause of cancer-related deaths and morbidity 
globally (1). Non-small cell lung cancer (NSCLC) is the 
most predominant histological subtype of lung cancer. The 
two histopathological subtypes of NSCLC include lung 
adenocarcinoma (LUAD) and lung squamous carcinoma 
(LUSC) (2). The 5-year survival rate of lung cancer patients 
diagnosed during the early-stages or with localized lesions 
is up to 52%. However, the overall 5-year survival rate is 
less than 17%, particularly due to delayed diagnosis and the 
frequent occurrence of drug resistance. Recently, the advent 
of immunotherapy and oncogene targeted therapy, including 
the use of epidermal growth factor receptor tyrosine kinase 
inhibitors (EGFR TKIs), has revolutionized the treatment 
of NSCLC. Compared to traditional treatments, these 
novel therapies significantly improve the quality of life and 
overall survival (OS) time of patients (3). Unfortunately, 
however, a majority of NSCLC patients develop resistance 
to EGFR-TKIs-based treatment approximately one year 
after commencing the treatment. The mechanisms for 
de novo and acquired resistance to NSCLC therapies are 
intricate and still unclear. Therefore, it is exceptionally 
urgent to explore more reliable biomarkers for the early-
stage diagnosis of lung cancer and timely surveillance of 
clinical intervention strategies, which could significantly 
reduce the appalling mortality. Previous work has shown 
that more and more potential diagnosis or prognosis specific 
biomarkers were found under the application of genomics, 
metabolomics, proteomics and other related technologies (4).  
Notably, there are numerous NSCLC basic studies and 
clinical trials that have focused on its evolution mechanisms 
and treatment strategies. For example, SHOX2, RASFF1A, 
Janus kinase (JAK)-signal transduction and activator of 
transcription (STAT) pathway and so on (5,6). However, 
the finding of new specific markers by these detection 
methods usually limited to specimen size and lacking 
data integration. With the recent advancements in 
bioinformatics tools, plenty of data can be mined from gene 
expression profiles and large databases, like GEO which 
includes plenty of patients’ information, to make a more 
holistic elaboration of the mechanisms of tumorigenesis and 
progression of lung cancer. Previous application of these 
integrated bioinformatics techniques in some lung cancer 
studies has addressed these limitations and provided new 
insights on tumor diagnosis and molecular mechanisms. 
Gene expression analysis via the chips technology has 

unraveled more data on the expression profile of lung 
cancer, which will facilitate comprehensive fundamental 
research and understanding of the biological functions of 
differentially expressed genes (DEGs) in NSCLC. In the 
present study, three microarray datasets were extracted 
from the gene expression omnibus (GEO) database, and 
the DEGs between NSCLC and normal tissues were 
identified. Subsequently, the Gene Ontology (GO), 
Kyoto Encyclopedia of Genes and Genomes (KEGG), 
and protein-protein interaction (PPI) network analyses 
on the DEGs were performed. The hub genes were 
then screened and the relationship between the mRNA 
expression levels of hub genes and outcome were analyzed 
to understand the underlying molecular mechanism of 
NSCLC. The workflow of our study is presented in  
Figure 1. We present the following article in accordance 
with the MDAR reporting checklist (available at http://
dx.doi.org/10.21037/tcr-20-1073).

Methods

Information of three datasets

The GEO (https://www.ncbi.nlm.nih.gov/geo/) is a 
gene expression database created and maintained by the 
National Center for Biotechnology Information (NCBI) (7).  
Established in the year 2000, the database contains high-
throughput gene expression data submitted by various 
institutions around the world. This study incorporated 
three datasets (GSE33532, GSE27262, and GSE18842) 
from GEO, all captured by GPL570 Platforms [(HG-
U133_Plus_2) Affymetrix Human Genome U133 Plus 2.0 
Array]. The GSE33532 dataset contained gene expression 
information of 80 human NSCLC tissues and 20 adjacent 
normal lung tissues. The GSE27262 dataset harboured the 
gene expression information of 25 human NSCLC tissues 
and 25 adjacent normal lung tissues, while the GSE18842 
dataset contained the gene expression information of 46 
tumor tissues and 45 adjacent normal lung tissues (Table 1).  
The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Data processing

Large quantities of high-throughput functional genomic 
researches have been collected in the GEO database. Various 
methods can be applied to process and normalize all these 
data. GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r/) 
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is an online tool based on the R software, where different 
samples under the same experimental conditions from the 
GEO series can be compared to identify DEGs (8). We 
used GEO2R online tools to screen for DEGs between 
NSCLC and matched normal tissues (9). Probe sets that 
lacked corresponding gene symbols were removed, and 
the Benjamini and Hochberg false discovery rate method 
was used to correct for the occurrence of false-positive 
results using the adjusted P value as a standard. Genes with 
an adjusted P value <0.05 and |log2 fold change| >2 were 
treated as DEGs and analyzed using the R software. The 
DEGs with log2 fold change <−2 were down-regulated 
genes, and the DEGs with log2 fold change >2 were up-
regulated genes. Next, DEGs that were common among the 
three datasets were searched using the Venn diagrams online 
tool (http://bioinformatics.psb.ugent.be/webtools/Venn/).

GO analysis and KEGG pathway enrichment analysis of 
DEGs in NSCLC

The DAVID database (https://david.ncifcrf.gov/) is an 
online bioinformatics tool that enables large scale extraction 
of biological data on the functional annotation of multiple 
genes (10). We used DAVID to perform the GO and the 

KEGG pathway enrichment analysis of the identified 
DEGs. The GO enrichment analysis consisted of the 
following: cellular component (CC) analysis, biological 
process (BP) analysis, and molecule function (MF) analysis. 
KEGG pathway enrichment analysis enables the use of 
genomic and molecular-level information to decipher the 
advanced functions and utilities of biological systems, such 
as cells, organisms, and ecosystems. A P value <0.05 was set 
as the cutoff for significance.

Construction of PPI network and module analysis

The Search Tool for the Retrieval of Interacting Genes 
(STRING) database (http://string-db.org/) identifies the 
mutual effect between known and predicted proteins in 
biological systems (11). In this work, we first constructed 
PPI networks of DEGs by the STRING database and used 
a threshold confidence interaction score of >0.9 to remove 
unconnected nodes from the network. Cytoscape is software 
for graphically displaying networks, analyzing, and editing. 
Next, we used the Cytoscape software (version 3.7.2) to 
visualize the PPI network. Molecular Complex Detection 
(MCODE) is one of the plug-ins for the Cytoscape software 
and could be used to identify densely connected regions for 
clustering a particular network. We used the MCODE to 
identify the significant modules in the PPI network, with 
the thresholds set as follows: MCODE score >5, node score 
cutoff =0.2, degree cutoff =2, k-core =2, and max. depth =100. 
Further, we used the DAVID database to perform the KEGG 
analysis of genes in the module. Genes that interacted strongly 
with other genes within the PPI network were defined as hub 
genes. Finally, we used the cytoHubba, one of the plug-ins for 
the Cytoscape software, to screen out the top five hub genes, 
as ranked by the degree method in the PPI network.

OS analyses of Hub genes

The Kaplan-Meier plotter (http://kmplot.com/) is a 

Figure 1 The workflow of this study.

Three microarray datasets downloaded  
from GEO database

Identification of DEGs

GO analysis and KEGG pathway  
enrichment analysis of DEGs

Construction of PPI network and 
module  analysis

Identification of hub genes

Overall survival analyses of hub genes

Verification of hub genes

Table 1 Details of three GEO datasets

Dataset Tissue Platform NSCLC Normal

GSE33532 lung GPL570 80 20

GSE27262 lung GPL570 25 25

GSE18842 lung GPL570 46 45

GEO, gene expression omnibus; NSCLC, non-small cell lung 
cancer.
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common survival analysis tool based on European Genome-
phenome Archive (EGA), The Cancer Genome Atlas 
(TCGA), and GEO databases (12). To analyze the OS 
of two subtypes of NSCLC, LUAD and LUSC patients, 
patient samples were divided into high expression group 
and low expression group according to the median 
expression of each hub genes and assessed via K-M survival 
plot. The number-at-risk cases, the hazard ratio (HR) 
with 95% confidence intervals (CIs) and log-rank P values 
were displayed on the plot. A log-rank P value <0.05 was 
considered statically significant.

Verification of hub genes

The Gene Expression Profiling Interactive Analysis 
(GEPIA) database (http://gepia.cancer-pku.cn/) is a public 
website that could be used to analyze gene expression 
profiles and is based on the TCGA and GTEx databases (13). 
We adapted the GEPIA website to verify the comparative 
expression of the mRNAs of each hub gene in normal 
and NSCLC tissues using the parameters: |log2 fold 
change| cut-off =1 and P value cut-off =0.01. UALCAN  
(http://ualcan.path.uab.edu/index.html) is a website for 
effective analysis of cancer data based on relevant cancer 
data in the TCGA database (14). The website can be used 
to analyze genes correlated with cancer and para cancer 
staging, and prognostic factors using TCGA database 
samples. We further verified the role of hub genes in lung 
cancer by using the UALCAN database to validate the 
relationship between the expression levels of each hub gene 
and clinical characteristics, such as the stages and status of 
nodal metastasis.

Statistics analysis

Identifying DEGs applied the moderate t-test to address; 
GO and KEGG annotation enrichments use Fisher’s Exact 
test to analysis (15). All statistical analyses were executed in 
R version 3.6.3 software.

Results

Identification of DEGs in NSCLC

In this study, we downloaded the gene expression data of 
151 NSCLC and 90 matched normal tissues from three 
GEO datasets (GSE33532, GSE27262, and GSE18842). 
Genes with adjusted P value <0.05 and |log2 fold change| 

>2 were regarded differentially expressed. We first extracted 
795, 671 and 1016 DEGs from GSE33532, GSE27262 
and GSE18842, respectively, using GEO2R online tools. 
The data was saved in an excel file and analyzed using the 
R software. We identified a total of 254 common DEGs. 
Further, we picked the DEGs that were common among 
the three datasets via the Venn diagrams online tool. Among 
these DEGs, 66 were up-regulated (log2 Fold Change >2) 
and 188 were down-regulated (log2 fold change <−2) (Table 2  
and Figure 2).

GO analysis and KEGG pathway enrichment analysis of 
DEGs in NSCLC

Generally, the up-regulated genes were considered to 
promote tumorigenesis, while the down-regulated genes 
suppressed tumor development. To obtain more insights 
into the function of DEGs in NSCLC, we executed a 
functional enrichment analysis of these 254 common 
DEGs via the DAVID database. The top five GO terms of 
up-regulated or down-regulated DEGs according to the 
gene counts are shown in Table 3. As shown in Table 3, the 
biological processes enriched by the up-regulated DEGs are 
mainly involved in cell proliferation, including cell division, 
mitotic nuclear division, mitosis, cell cycle, and apoptosis. 
The down-regulated DEGs prominently enriched 
the following biological process terms: cell adhesion, 
angiogenesis, the cell surface receptor signaling pathway, 
and inflammatory response. These GO functional terms are 
closely involved in the genesis and progression of NSCLC. 
The KEGG pathway enrichment analysis showed that the 
up-regulated DEGs mainly enriched in Oocyte meiosis, 
Cell cycle, ECM-receptor interaction, p53 signaling 
pathway, and Progesterone-mediated oocyte maturation. 
Meanwhile, the down-regulated DEGs particularly enriched 
in the pathways of cell adhesion molecules (CAMs) malaria, 
leukocyte transendothelial migration, vascular smooth 
muscle contraction, and PPAR signaling pathway (Table 4).  
These enriched correlated signaling pathways suggest 
that the 254 DEGs are associated with the progression of 
NSCLC.

Construction of PPI network and module analysis

Analysis of PPI networks was first done using the STRING 
database and Cytoscape software. We found that 245 genes 
of the 254 DEGs were in the STRING database. After 
removing 144 nodes without connections, the PPI network 
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Table 2 The detailed information on 254 common DEGs

DEGs Genes name

Up-regulated CDH3, ADAM12, TPX2, IGF2BP3, CCNB1, SULF1, HMGB3, FERMT1, ASPM, CRABP2, HMMR, PROM2, CXCL13,  
KIF4A, ANKRD22, GINS1, TMPRSS4, HS6ST2, SPP1, COL1A1, ADAMDEC1, ANLN, BIRC5, KIF20A, UBE2C, SIX1,  
COL10A1, CCNB2, SRD5A1, PSAT1, TYMS, CDCA7, MELK, COL11A1, KIF11, PCDH7, CEP55, PLPP2, CDC20, 
CTHRC1, RRM2, ZWINT, TOP2A, KIAA0101, GJB2, GREM1, TTK, GTSE1, THBS2, CDKN3, BUB1, NUF2, CP, CST1, 
CENPU, MMP1, NEK2, MMP12, AURKA, UBE2T, CENPF, KRT15, TFAP2A, MAD2L1, DLGAP5, MMP11

Down-regulated HBA2/HBA1, EDN1, RTKN2, EMCN, SOX7, ADARB1, CHRDL1, PPP1R14A, FAM13C, ADGRD1, GPIHBP1, MFAP4, 
KCNT2, PEBP4, ITIH5, SLC6A4, ERG, PECAM1, KCNK3, MMRN2, NOSTRIN, SYNPO2, NCKAP5, GIMAP8, OGN, 
SCARA5, CLDN5, BTNL9, PCAT19, IGSF10, SCGB1A1, CDO1, HIGD1B, CA4, SDPR, WWC2/CLDN22, TEK, CLIC3, 
GRK5, ID4, EXOSC7/CLEC3B, PLA2G1B, DACH1, VGLL3, LOC100653057/CES1, FAM150B, ANOS1, ACKR1, CXCL2, 
LIFR, STXBP6, GIMAP1, EMP2, LYVE1, ADAMTS8, HBEGF, PTPN21, GDF10, LAMP3, LIMCH1, LEPROT/LEPR,  
DNASE1L3, SPOCK2, AKAP12, CD36, FAM162B, HSPA12B, LDB2, ROBO4, SPTBN1, CALCRL, CAV1, TBX5-AS1, 
RASIP1, PPBP, JAM2, PTPRB, QKI, FOXF1, ACADL, ANKRD29, PIR-FIGF/FIGF, AQP4, GPR146, NEBL, ITGA8, MT1M, 
TNNC1, PDZD2, ADIRF, MCEMP1, HBB, SERTM1, SELE, FHL1, RHOJ, CPB2, SRPX, SSTR1, FAM189A2, SORBS2, 
LRRN3, FMO2, ABCA8, MYZAP, SOCS2, SLC39A8, AOC3, CCM2L, SFTPC, ADRB1, IL33, TCF21, NEDD4L, TGFBR3, 
HHIP, PGC, ADH1B, ARHGEF26, ARHGAP6, LPL, ZBTB16, ASPA, FABP4, EDNRB, CAB39L, SCN4B, FCN3, ZBED2, 
MYCT1, KANK3, DLC1, SFTPD, STX11, LINC00312, FAM107A, CCDC85A, PLAC9, CCBE1, PGM5, C1QTNF7, GPX3, 
FXYD1, AGER, SOX17, FOSB, RGCC, VWF, MARCO, SEMA5A, CD300LG, PIP5K1B, ABI3BP, BMP2, TIE1, MMRN1, 
AGTR1, VIPR1, WIF1, SH2D3C, CYYR1, RAMP3, MS4A15, CLIC5, NPNT, SLIT2, FGFR4, GIMAP6, FHL5, MAMDC2, 
TMEM178A, CLDN18, C2orf40, AOX1, CDH5, PDK4, GPM6A, COL6A6, FILIP1, CFD, GKN2, ANGPT1, CYP4B1,  
SMAD6, HYAL1, TMEM100, DUOX1, AFF3

DEGs, differentially expressed genes.

Figure 2 Identification of DEGs from GSE33532, GSE27262, and GSE18842 datasets. (A) Volcano plot of GSE33532 via R software; 
(B) volcano plot of GSE27262 via R software; (C) volcano plot of GSE18842 via R software; (D) 66 DEGs were up-regulated in the three 
datasets (log fold change >2); (E) 188 DEGs were down-regulated in three datasets (log fold change <−2). DEGs, differentially expressed 
genes; log2 FC, log2 fold change.
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Table 3 GO analysis of DEGs in NSCLC

Expression Category Term Count P value FDR

Up-regulated BP Cell division 15 4.2E−11 6.2E−08

BP Mitotic nuclear division 13 1.4E−10 2.0E−07

BP Sister chromatid cohesion 8 1.2E−07 1.8E−04

BP G2/M transition of mitotic cell cycle 8 8.7E−07 1.3E−03

BP Apoptotic process 8 5.7E−03 8.0E+00

CC Cytoplasm 30 3.3E−03 3.7E+00

CC Nucleus 29 1.2E−02 1.3E+01

CC Nucleoplasm 25 1.2E−05 1.3E−02

CC Cytosol 24 5.7E−04 6.5E−01

CC Membrane 14 4.0E−02 3.7E+01

MF ATP binding 12 1.9E−02 2.1E+01

MF Calcium ion binding 8 1.6E−02 1.7E+01

MF Chromatin binding 6 1.4E−02 1.6E+01

MF Metalloendopeptidase activity 5 7.9E−04 9.3E−01

MF Protein serine/threonine kinase activity 5 4.9E−02 4.5E+01

Down-regulated BP Cell adhesion 18 1.1E−06 1.8E−03

BP Negative regulation of transcription from RNA polymerase II promoter 14 1.5E−02 2.2E+01

BP Angiogenesis 13 1.0E−06 1.7E−03

BP Cell surface receptor signaling pathway 10 9.7E−04 1.6E+00

BP Inflammatory response 10 8.3E−03 1.3E+01

CC Integral component of membrane 64 7.1E−03 8.3E+00

CC Plasma membrane 56 1.9E−03 2.3E+00

CC Extracellular region 38 1.8E−07 2.2E−04

CC Extracellular exosome 37 2.5E−02 2.7E+01

CC Extracellular space 30 1.7E−05 2.1E−02

MF Protein binding 88 4.8E−02 4.9E+01

MF Heparin binding 10 1.1E−05 1.5E−02

MF Ion channel binding 6 3.1E−03 4.1E+00

MF Ras guanyl-nucleotide exchange factor activity 6 3.3E−03 4.4E+00

MF Receptor activity 6 4.1E−02 4.4E+01

GO, Gene Ontology; DEGs, differentially expressed genes; NSCLC, non-small cell lung cancer; BP, biological process; CC, cellular  
component; MF, molecule function; FDR, the false discovery rate.
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Table 4 KEGG pathway analysis of DEGs in NSCLC

Expression Pathway ID Name Count P value FDR

Up-regulated hsa04114 Oocyte meiosis 6 8.7E−05 8.4E−02

hsa04110 Cell cycle 6 1.5E−04 1.4E−01

hsa04512 ECM-receptor interaction 5 4.5E−04 4.3E−01

hsa04115 p53 signaling pathway 4 2.7E−03 2.6E+00

hsa04914 Progesterone-mediated oocyte maturation 4 5.6E−03 5.3E+00

Down-regulated hsa04514 Cell adhesion molecules (CAMs) 7 4.1E−03 4.6E+00

hsa05144 Malaria 5 1.8E−03 2.1E+00

hsa04670 Leukocyte transendothelial migration 5 3.5E−02 3.4E+01

hsa04270 Vascular smooth muscle contraction 5 3.7E−02 3.5E+01

hsa03320 PPAR signaling pathway 4 3.5E−02 3.4E+01

KEGG, Kyoto Encyclopedia of Gene and Genome; DEGs, differentially expressed genes; NSCLC, non-small cell lung cancer; FDR, the 
false discovery rate.

in these 245 DEGs had 101 nodes and 363 edges (Figure 3).  
In the PPI network, the average node degree was 2.96 
and the average local clustering coefficient was 0.333 (PPI 
enrichment P value <1.0e−16). Using the MCODE in 
Cytoscape, only one module with score >5 was identified, 
and the module contained 22 nodes and 220 edges (Figure 4).  
Interestingly, we found that all the genes in the module 
were up-regulated. Then, we explored the function of this 
module by using the STRING database to perform KEGG 
pathway enrichment analyses of the module genes. The 
results of the KEGG pathway enrichment analysis showed 
that the module genes were concerned with oocyte meiosis, 
cell cycle, progesterone-mediated oocyte maturation, and 
the p53 signaling pathway (Table 5).

Hub gene analysis

The top five hub genes (CDC20, BUB1, CCNB2, CCNB1, 
UBE2C) were screened using the cytoHubba plug-in of 
the Cytoscape software and found that all the five were 
contained in the module genes. Further, we used the 
Kaplan-Meier Plotter to perform the OS analyses of the 
top five hub genes in NSCLC tissue. The log-rank P value 
and HR with 95% CIs were computed and represented on 
the plot in the OS analyses (Figure 5). As shown in Figure 5,  
our results showed that the high expression level of hub 
genes is correlated to worse OS in LUAD patients, while no 
statistical significance in LUSC patients.

Verification of hub genes

Subsequently, we used the GEPIA database to verify 
the mRNA expression of each hub gene in NSCLC and 
matched normal tissues (Figure 6). As shown in Figure 6, the 
mRNA expression levels of these five hub genes were higher 
in LUAD and LUSC samples than in non-cancer samples 
(P<0.01). This study further used the UALCAN database 
to validate the relationship between the expression level of 
each hub gene and the LUAD cancer stage and to verify the 
relationship between the expression level of each hub gene 
and the status of node metastasis in LUAD tissue samples. 
As shown in Figures 7 and 8, the expression level of the five 
hub genes was correlated to both tumor stage and the status 
of node metastasis in LUAD patients.

Discussion

The present study explored potential biomarkers and the 
molecular mechanisms of NSCLC using the profile of three 
profile datasets (GSE33532, GSE27262, and GSE18842) 
extracted from the GEO database. Firstly, we identified 
254 common DEGs from the three datasets of lung tumor 
tissues and matched normal lung tissues of NSCLC 
patients. These DEGs include 66 up-regulated genes and 
188 down-regulated genes. Then, we assessed the biological 
function and pathways enrichment analysis of these DEGs. 
Our results show that a majority of the up-regulated genes 
enrich in proliferation-related processes, including cell 
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Figure 3 Construction of the PPI network. The nodes represent proteins, and the edges represent the interaction of proteins, while green 
and yellow circles indicate downregulated and upregulated DEGs, respectively. PPI network, protein-protein interaction network; DEGs, 
differentially expressed genes.

division, cell cycle and apoptosis. In the case of a genetic or 
epigenetic alteration of these genes, the proliferation of cells 
could get out of control and result in tumor development 
and progression (16,17). Besides, the down-regulated genes 
mainly enrich cell adhesion, angiogenesis, cell surface 
receptor signaling pathway and inflammatory response. 
Expression of the down-regulated genes would affect the 
biological behavior of tumor cells, for instance, the tumor 
microenvironment, intercellular adhesive ability, and the 
status of intracellular and extracellular signal transduction 
pathways (18,19). In a word, the expression alteration of the 
up-regulated genes and the down-regulated genes might 
promote tumor development and progression in NSCLC 
cells. Therefore, we can’t wait to further prove that these 
DEGs could play a role in carcinogenesis, tumor growth, 
invasion and metastasis in NSCLC.

The five hub genes (CDC20, BUB1, CCNB2, CCNB1, 
UBE2C) hub genes were more highly expressed in NSCLC 
tumor tissues than the normal tissues. Importantly, we 
identified that these hub genes associated with a significantly 
worse OS, tumor stage and the status of node metastasis in 
LUAD patients. Thus, the genes could provide new insights 
on tumorigenesis and progress molecular mechanisms for 
NSCLC studies. Especially, these genes might be used as 
surveillants for LUAD recurrence diagnosis and therapy 
response, as well as potential targets for the development of 
new treatments for LUAD.

Cell division cycle 20 (CDC20) is a cell cycle regulatory 
protein involved in nuclear translocation before anaphase 
and chromosome separation (20). According to Wang et al.,  
CDC20 is an oncogene, highly expressed in various cancers, 
including pancreatic, breast, prostate, and lung (21). 
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Figure 4 Module with score >5 obtained from the PPI network. The nodes represent proteins, the edges represent the interaction of 
proteins, yellow circles indicate upregulated DEGs, and all module genes are upregulated DEGs. PPI network, protein-protein interaction 
network; DEGs, differentially expressed genes.

Table 5 KEGG pathway analysis of module genes in the PPI network

Pathway ID Name P value FDR Genes name

hsa04114 Oocyte meiosis 1.20E−07 8.50E−05 CCNB1, MAD2L1, CCNB2, BUB1, AURKA, CDC20

hsa04110 Cell cycle 2.09E−07 1.48E−04 CCNB1, MAD2L1, CCNB2, BUB1, TTK, CDC20

hsa04914 Progesterone-mediated oocyte maturation 1.55E−04 1.10E−01 CCNB1, MAD2L1, CCNB2, BUB1

hsa04115 p53 signaling pathway 3.22E−03 2.26E+00 CCNB1, CCNB2, RRM2

KEGG, Kyoto Encyclopedia of Gene and Genome; PPI network, protein-protein interaction network; FDR, false discovery rate.

Inhibition of the activity of CDC20 induces cell cycle arrest 
at the G2/M phase and accelerates cell apoptosis resulting 
in suppression of NSCLC cell growth (22,23). Notably, a 
previous study suggested that CDC20 could be a potential 
therapeutic target and prognostic biomarker for NSCLC 
patients (23). However, the elaborate molecular mechanisms 
of CDC20-induced lung carcinogenesis, tumor progression, 
and EGFR-TKIs-induced resistance is still obscure and 
should be urgently explored.

The cancer oncogene BUB1 (mitotic checkpoint 
serine/threonine kinase) plays a role in tumorigenesis 

by phosphorylating mitotic checkpoint complexes and 
activating spindle checkpoint (24). A previous reported 
that BUB1 is highly expressed in LUAD, and the over-
expression is associated with cancer progression (25). 
Another research showed that BUB1 is an independent 
predictor of poor prognosis in lung cancer patients (26). 
The type I and type II binding TGF-β (TGFBRI and 
TGFBRII), and BUB1 activate TGF-β signaling cascade 
and result in NSCLC tumor cell proliferation, inflammatory 
tumor microenvironment, epithelial-mesenchymal 
transition (EMT), and tumor migration, and invasion (27). 
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Figure 6 The mRNA expression of each hub gene in normal and NSCLC tissues via GEPIA. (A-E) 5 hub genes had higher expression 
levels in lung cancer tissues relative to adjacent non-tumor tissues (* means difference was statistically significant). Red color means cancer 
tissues, and grey color means adjacent non-cancer tissues. NSCLC, non-small cell lung cancer; GEPIA, gene expression profiling interactive 
analysis.
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Figure 7 Expression of each hub gene based on individual cancer stages in LUAD. (A-E) The expression of CDC20, BUB1, CCNB2, 
CCNB1, and UBE2C was correlated with cancer stages. LUAD, lung adenocarcinoma; CDC20, cell division cycle 20; BUB1, budding 
uninhibited by benzimidazoles 1; CCNB2, cyclin B 2; CCNB1, cyclin B 1; UBE2C, ubiquitin-conjugating enzyme E2C.
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Figure 8 Expression of each hub gene based on the status of node metastasis in LUAD. (A-E) The expression of CDC20, BUB1, CCNB2, 
CCNB1, and UBE2C was associated with node metastasis status. LUAD, lung adenocarcinoma; CDC20, cell division cycle 20; BUB1, 
budding uninhibited by benzimidazoles 1; CCNB2, cyclin B 2; CCNB1, cyclin B 1; UBE2C, ubiquitin-conjugating enzyme E2C.
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Therefore, BUB1 could be a novel prognostic biomarker 
for lung cancer. Oncogenes generally regulate vast cellular 
events that affect the biological behavior of tumor cells. As 
such, research should explore the molecular role of BUB1 
in NSCLC.

The mitotic cyclin B (CCNB) is one of the highly 
conserved members of the cyclin family and is involved 
in the regulation of proliferation and cell cycle. CCNB 
exists in two isoforms, CCNB1 and CCNB2, the former of 
which controls the G2/M transition phase of the cell cycle, 
while the latter is essential for TGF-β-mediated regulation 
of the cell cycle (28,29). Recent evidence indicates that 
the overexpression of CCNB1 and CCNB2 in many 
malignant tumors has bad outcomes, including NSCLC 
(30,31). Ectopically expressed CCNB1 could promote 
the proliferation of NSCLC cell lines such as A549 and 
H1299 (32). Using NSCLC cell lines (A549 and H1299) 
and datasets (GSE31210 and GSE50081) of lung cancer 
patients with worse prognostic information, Park et al. 
indicated that the dysregulated transcription expression of 
CCNB1 is a crucial mechanism for the tumorigenesis and 
progression of NSCLC (33). Also, the level of serum anti-
Cyclin B1 autoantibodies increases with cancer stages and 
histological grades, which underpins the significance of 
screening in early-stages and monitoring recurrence in the 
advanced stages of lung cancer (34). Besides, it has been 
shown that the overexpression of CCNB2 is correlated with 
the degree of differentiation, metastasis, clinical stage, and 
poor prognosis of NSCLC patients (30,35,36). Therefore, 
CCNB1 and CCNB2 could be biomarkers for NSCLC 
screening and research should focus more on studies 
providing better strategies for individualized treatment of 
lung cancer patients.

The ubiquitin-conjugating enzyme E2C (UBE2C), also 
known as UbcH10, is an oncogene in many malignant 
tumors, which plays a significant role in the growth and 
malignant transformation of tumor cells (37). Relative to 
adjacent non-tumor tissues, the expression of UBE2C is 
high in many cancers, such as lung cancer and stomach 
cancer (38). A study exploring lung cancer reported that 
the high expression of UBE2C in lung cancer tissues is 
related to advanced pathological stages. The results of 
the PCR array analysis showed that UBE2C regulates 
the expression of genes related to tumor growth (39). 
Zhao et al. reported that the expression level of UBE2C is 
negatively associated with the postoperative survival time 
of NSCLC patients. Further, in vitro studies showed that 
the expression level of UBE2C is negatively related to the 

sensitivity of SK-MES-1 cells to paclitaxel (40). Therefore, 
UBE2C could be not only a prognostic marker but also a 
therapy responsive factor for NSCLC. Despite the above 
outstanding work, it is worth noting that more effort is 
required for to researching the mechanism of UBE2C in 
NSCLC.

The CDC20, BUB1, CCNB2, CCNB1, and UBE2C 
genes are involved in multistep carcinogenesis and the 
evolution of NSCLC. Evidence from previous literature 
indicates that the five hub genes are directly related to 
poor prognosis in NSCLC. This study can provide great 
perspectives to explore pathogenesis and adjust treatment 
strategies for NSCLC. However, the genes identified in 
fundamental experimental studies cannot be easily verified 
in clinical trials, which poses a big challenge for researchers. 
The lack of empirical validation is a limitation of our 
research. Therefore, further experimental studies need to 
be conducted in larger population size to authenticate these 
results.

Conclusions

Bioinformatics analysis of three different microarray 
datasets identified five hub genes (CDC20, BUB1, CCNB2, 
CCNB1, and UBE2C) from the DEGs between normal and 
NSCLC tissues. Some basic studies showed that the five 
hub genes are associated with poor prognosis in NSCLC. 
As such, these genes could serve as potential biomarkers 
for the diagnosis and design of targeted therapies for lung 
cancer. Meanwhile, our results also suggest that laying more 
emphasis on research based on these hub DEGs might fill 
the gap in the molecular mechanisms of NSCLC.
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