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Introduction

Lung cancer accounts for approximately 13% of newly 
diagnosed cancers worldwide and is the leading cause 
of cancer-related deaths (1). Approximately 85% of all 
lung cancers are non-small cell lung cancer, and lung 

adenocarcinoma is the main tissue subtype, accounting 
for more than 50% of all non-small cell lung cancers (2).  
More than 70% of patients with non-small cell lung 
cancer have locally advanced or distantly metastatic 
disease at the time of diagnosis (3); however, platinum-
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based combination chemotherapy has increased the 
median survival time of these patients. Despite this 
treatment, the prognosis is still very poor, and the 
efficacy of the current first-line chemotherapy is only 
approximately 30% (4). Epidermal growth factor receptor 
(EGFR) is a transmembrane receptor tyrosine kinase that 
activates the EGFR signaling pathway to promote cell 
proliferation, invasion, metastasis, and neovascularization 
and inhibit apoptosis. EGFR mutations are mainly 
located in exons 18-21; the exon 19 deletion mutation 
(del E746-A750) and the exon 21 point mutation (L858R) 
are sensitive mutations, accounting for 85% of all 
mutations. The effective rate of treatment with tyrosine 
kinase inhibitors (TKIs) in patients with EGFR-sensitive 
mutations is 70%. Relevant reports have shown that TKI 
treatment can be extended to 9 to 13 months as a first-
line treatment (5-7). EGFR-TKIs are the main treatment 
for advanced unresectable lung adenocarcinoma, so 
EGFR-sensitive mutations are the main predictors of the 
efficacy of EGFR-TKIs (8,9). IPASS studies have shown 
that 20-30% of patients with EGFR-sensitive mutations 
are primarily resistant to EGFR-TKIs. Primary resistance 
in patients with EGFR-sensitive mutations is defined as 
disease progression within 3 months of targeted drug 
use. Therefore, knowledge of the EGFR mutation status 
of lung adenocarcinoma and the patient's sensitivity to 
drugs is necessary before choosing a treatment plan. 
Traditionally,  the method for determining EGFR 
mutation status is pathological examination after tissue 
biopsy. Because of the risks associated with tissue biopsy, 
it is often difficult to perform multiple biopsies to obtain 
sufficient tissue specimens and local tissues due to tumor 
heterogeneity. Such samples do not represent the tumor 
as a whole; thus, this method has some limitations in the 
clinic (10-12). Studies such as PIONEER have shown 
that women, nonsmokers, those with adenocarcinoma, 
and Asian patients are the dominant populations in 
whom TKIs can be used, but there are no reliable clinical 
features to accurately predict EGFR mutation status. 
Therefore, we need noninvasive early predictors to 
determine which patients are most likely to benefit from 
TKI treatment.

With the advancement of image acquisition technology, 
standardized processing and image analysis technology, more 
imaging information can be objectively extracted, accurately 
quantified and further transformed into deeply extensible 
feature data through various algorithms, and these image 
feature data can be analyzed in depth. Image features can 

reveal specific information that is closely related to disease 
occurrence, development and prognosis and can be used to 
guide disease treatment and predict disease outcome. This 
process and the emerging field are called radiomics (13). 
Radiomics assumes that microscopic changes in gene or 
protein patterns can be expressed by macroscopic imaging 
features and that macroscopic image features are closely 
related to microscopic changes in genes, proteins, and 
molecules (14). Aerts et al. (15) found that 440 image features 
were extracted from CT images of 1,019 patients with 
lung cancer and head and neck cancer. The results showed 
that a large number of imaging features were significantly 
associated with patient prognosis, while images and genomes. 
The association analysis showed that radiomics features can 
capture the heterogeneity within the tumor and are related 
to the pattern of gene expression, and some features are 
common in lung cancer and head and neck tumors. This 
study used radiomics to analyze and predict the genetic 
phenotype and sensitivity to TKI treatment and provided a 
reference for the accurate treatment of lung adenocarcinoma. 
We present the following article in accordance with the 
STARD reporting checklist (available at http://dx.doi.
org/10.21037/tcr-20-1216).

Methods

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study was 
approved by the Institutional Review Board of Shandong 
Tumor Hospital and Institute (No. 201705021) and 
individual consent for this retrospective analysis was waived.

The study subjects were patients who were diagnosed with 
stage IIIB or stage IV lung adenocarcinoma confirmed by 
pathology at Jining No. 1 People’s Hospital from 2014.10.01 
to 2017.12.31. These patients had no previous surgery, 
radiotherapy or chemotherapy. Because the study was 
approved by the hospital ethics committee for retrospective 
studies, there was no need for informed consent.

The inclusion criteria 

Pathologically confirmed lung adenocarcinoma and EGFR 
detection (16-19), all using the Amplification Refractory 
Mutation System (ARMS); plain and enhanced CT scans 
performed before treatment; oral TKI treatment; clinical 
stage IIIB-IV disease with lesions that could be measured; 
and CT evaluation performed within 3 months after 
treatment (using the RECIST 1.11.1 criteria, complete 

http://dx.doi.org/10.21037/tcr-20-1216
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or partial remission was considered treatment-sensitive, 
and stable disease or progression was considered primary 
resistance).

The exclusion criteria 

radiotherapy, chemotherapy or concurrent chemoradiotherapy 
before targeted therapy; undetermined clinical stage; CT not 
performed before and after treatment; or clinical stage other 
than stage IIIB or IV.

Chest CT examination method

A United States GE Lightspeed VCT 64-slice spiral CT 
scanner with the following scanning parameters was used: 
tube voltage of 120 kVp, automatic tube current, 0.6-mm 
collimator, reconstruction layer thickness of 3 mm, 3-mm 
layer spacing, and matrix of 512×512. An enhanced scan 
was performed with contrast agent (Ultravist 370 mg/mL; 
Schering, Berlin, Germany) injected with a double-barrel 
high-pressure syringe using a syringe pump (Ulrich medical, 
Ulm, Germany) in the cubital vein at an injection rate of 
2.3–3.0 mL/sec with a maximum dose of 100 ml, using a 
syringe pump. The arterial phase lasted from 25–30 s after the 
contrast agent was injected, and the venous phase was initiated 
60 seconds later. The images from the plain scan and arterial 
and venous phase scans were exported in Digital Imaging and 
Communications in Medicine (DICOM) format.

Image segmentation and feature extraction

In this  s tudy,  automatic  del ineat ion and manual 
modification were used for target area delineation. First, 
MIM Maestro 6.7.6 (US MIM Software) software was used 
to delineated the gross tumor volume (GTV) in the lung 
window according to the threshold. Then the automatically 
delineated GTV was modified by a radiologist with more 
than 5 years of experience. A clinician with more than 10 
years of experience also examined the area of interest. Any 
questionable areas were evaluated until an agreement was 
reached after deliberation. Feature extraction is a key step in 
radiomics, and it is important to extract the best predictive 
features. Image feature extraction 3D Slicer 4.7.0 software 
was used to extract 715 features from pretreatment CT 
scans, including 13 shape features, 78 grayscale features and 
624 wavelet transform features.

Statistical analysis and modeling

The LASSO algorithm and 10-fold cross-validation method 
were used for modeling and analysis. These analyses were 
performed with the “glmnet” software package with R 
software. P<0.05 was considered statistically significant 
(Figures S1,S2).

Results

Patients with EGFR mutation status and TKI treatment 
sensitivity Among 253 patients, 167 patients had EGFR-
sensitive mutations (89 patients with exon19 deletions and 
78 patients with exon 21 L858R point mutations), and  
86 patients had no EGFR-negative mutations. Among 
the 167 patients with EGFR mutations, 84 patients were 
sensitive to TKIs, and 83 had primary resistance to TKIs 
(Tables 1,2).

The correlation analysis between EGFR mutation status 
and imaging feature characteristics is shown in Table 3. 
Based on the model established by the imaging phenotypic 
characteristics of the plain scans, the AUC value of EGFR 
mutation status (Figure 1) was 0.6713, and the sensitivity 
and specificity were 70.3% and 89.3%, respectively. Based 
on the model established by the imaging features obtained 
during the arterial phase, the AUC value of EGFR mutation 
status was predicted to be 0.8194, and the sensitivity 
and specificity were 76.6% and 81.8%, respectively. The 
established model predicted an AUC value for mutational 
state of 0.8464, and the sensitivity and specificity were 

Table 1 General characteristics of the epidermal growth factor 
receptor (EGFR) mutation status

Feature EGFR+ (n=167) EGFR− (n=86) P value

Gender

Male 53 45 0.001

Female 114 41

Age 64 [37–79] 60 [40–77] 0.62

Stage

IIIB 41 20 0.82

IV 126 46

Smoking status

Yes 50 55 <0.001

No 117 31

EGFR+, epidermal growth factor receptor sensitive mutation; 
EGFR−, epidermal growth factor receptor have no mutation.

https://cdn.amegroups.cn/static/public/TCR-20-1216-supplementary.pdf
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70.3% and 83.3%, respectively. The AUC value was 
highest during the venous phase. Three-phase CT imaging 
features: The EGFR mutation group had several imaging 
characteristics with predictive potential including 5 plain 
scan image features (1 neighborhood grayscale difference 
matrix feature and 4 wavelet transform features; AUC value: 
0.614–0.663; P<0.05), 18 arterial phase image features 
(2 first-order features, 1 grayscale matrix feature, and 
15 wavelet transform features; AUC value: 0.609–0.696; 
P<0.05), and 23 venous phase features (1 first-order feature, 

1 shape feature, 1 neighborhood grayscale difference matrix 
feature, and 20 wavelet transform features; AUC value: 
0.603–0.700; P<0.05).

The correlation between TKI treatment sensitivity 
and imaging phenotypes is shown in Table 4. Based on the 
model established by the imaging phenotypic characteristics 
obtained during the plain scan period, the AUC value 
of TKI sensitivity AUC (Figure 2) was 0.7268, and the 
sensitivity and specificity were 61% and 82.5%, respectively. 
Based on the model established by the imaging features 
obtained during the arterial phase, the AUC value of TKI 
sensitivity was estimated to be 0.7793, and the sensitivity 
and specificity were 62.5% and 69.8%, respectively. Based 
on the imaging phenotype of image features obtained 
during the venous phase, the established model predicted an 
AUC value of TKI sensitivity of 0.9104, and the sensitivity 
and specificity were 76.6% and 88.9%, respectively. The 
AUC value was the highest during the venous phase. Three-
phase CT imaging features: The TKI treatment-sensitive 
group had several imaging characteristics with predictive 
potential including 3 plain scan image features (3 wavelet 
transform features; AUC value: 0.619–0.688; P<0.05),  
7 arterial phase image features (1 grayscale difference 
matrix feature and 6 wavelet transform features; AUC value: 
0.606–0.686; P<0.05) and 22 venous phase image features 
(2 first-order features, 1 neighborhood grayscale difference 
matrix feature, and 19 wavelet transform features; AUC 
value: 0.616–0.703; P <0.05).

There was no significant correlation among the 

Table 2 General characteristics of the sensitive population treated 
with tyrosine kinase inhibitors (TKIs)

Feature TKI sensitive (n=84) TKI resistant (n=83) P value

Gender

Male 23 30 0.225

Female 61 53

Age 56 [37–67] 66 [40–79] 0.51

Stage

IIIB 20 21 0.621

IV 64 62

Smoking status

Yes 40 49 0.469

No 44 34

TKI sensitive, tyrosine kinase inhibitors sensitive; TKI resistant, 
tyrosine kinase inhibitors resistant.

Table 3 Accuracy of predicting the epidermal growth factor receptor (EGFR) mutation status between the multiphase training and validation 
groups

Model Data Sensitivity (%) Specificity (%)
Positive predictive value 

(%)
Negative predictive value 

(%)
Accuracy (%) AUC

Plain 
scan

Training cohort 70.3 (45/64) 75.7 (50/66) 73.7 (45/61) 72.5 (50/69) 73.1 (95/130) 0.6713

Validation cohort 75.0 (15/20) 65.0 (13/20) 68.2 (15/22) 72.2 (13/18) 70.0 (28/40) 0.7625

Total 71.4 (60/84) 73.3 (63/86) 72.3 (60/83) 72.4 (63/87) 72.4 (123/170)

Arterial 
phase

Training cohort 76.6 (49/64) 78.7 (52/66) 77.8 (49/63) 77.6 (52/67) 77.7 (101/130) 0.8194

Validation cohort 80.0 (16/20) 80.0 (16/20) 80.0 (16/20) 80.0 (16/20) 80.0 (32/40) 0.8065

Total 77.3 (65/84) 79.1 (68/86) 78.3 (65/83) 78.1 (68/87) 78.2 (133/170)

Venous 
phase

Training cohort 70.3 (45/64) 83.3 (55/66) 80.4 (45/56) 74.3 (55/74) 76.9 (100/130) 0.8464

Validation cohort 80.0 (16/20) 80.0 (16/20) 80.0 (16/20) 80.0 (16/20) 80.0 (32/40) 0.8075

Total 72.6 (61/84) 82.6 (71/86) 80.3 (61/76) 75.5 (71/94) 77.6 (132/170)

AUC, the area under the curve value.
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Figure 1 The area under the receiver operating characteristic (ROC) curve of the epidermal growth factor receptor (EGFR) mutation status 
predicted by multiphase imaging features.

Figure 2 The area under the receiver operating characteristic (ROC) curve screening of a sensitive population treated with tyrosine kinase 
inhibitors (TKIs) with multiphase imaging features.

Table 4 Prediction of sensitivity to tyrosine kinase inhibitors (TKIs) in the multiphase training and validation groups

Model Data Sensitivity (%) Specificity (%)
Positive predictive value 

(%)
Negative predictive value 

(%)
Accuracy (%) AUC

Plain 
scan

Training cohort 61 (39/64) 69.8 (44/63) 67.2 (39/58) 63.8 (44/69) 65.4 (83/127) 0.7268

Validation cohort 70.0 (14/20) 65.0 (13/20) 66.7 (14/21) 68.4 (13/19) 67.5 (27/40) 0.73

Total 63.1 (53/84) 68.7 (57/83) 67.1 (53/79) 64.8 (57/88) 65.9 (110/167)

Arterial 
phase

Training cohort 68.8 (44/64) 71.4 (45/63) 71.0 (44/62) 67.2 (45/67) 70.1 (89/127) 0.7793

Validation cohort 65 (13/20) 70.0 (14/20) 68.4 (13/19) 66.7 (14/21) 77.5 (31/40) 0.8325

Total 67.9 (57/84) 71.1 (59/83) 70.4 (57/81) 67.0 (59/88) 71.9 (120/167)

Venous 
phase

Training cohort 76.6 (49/64) 88.9 (56/63) 87.5 (49/56) 78.9 (56/71) 82.7 (105/127) 0.9104

Validation cohort 65 (13/20) 90.0 (18/20) 86.7 (13/15) 72.0 (18/25) 77.5 (31/40) 0.895

Total 73.8 (62/84) 89.2 (74/83) 87.3 (62/71) 77.1 (74/96) 81.4 (136/167)

AUC, the area under the curve value.
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morphologic features of interphase imaging and the EGFR 
mutation status and sensitivity to TKI therapy.

Discussion

During the process of lung cancer diagnosis and treatment, 
the genetic characteristics of tumors are analyzed at 
the gene, molecular and protein levels by applying 
various techniques of genomics and proteomics to 
guide individualized clinical treatment. Compared with 
proteomics and genomics, radiomics has the following 
advantages: (I) Radiomics does not require biopsy; thus, 
it is a noninvasive test. (II) Radiomics features reflect of 
the entire tumor and are not limited to measurable tissue 
samples. (III) Radiomics can be applied during the whole 
process of diagnosis, treatment and prognostication of 
diseases as a real-time and reusable data analysis method.

This study aimed to investigate the potential of different 
phases of CT to predict EGFR mutation status and TKI 
treatment sensitivity. We extracted 715 radiomics features 
to quantify tumor phenotype differences. In the EGFR 
mutation prediction group, the results showed that there 
were 5, 18 and 23 features of EGFR (+) and EGFR (−) 
extracted from the plain scan and arterial and venous 
phases, respectively, and the AUC values were 0.6713, 
0.8194, and 0.8464, respectively. Rios Velazquez et al. (16) 
performed a comprehensive analysis of 352 patients with 
lung adenocarcinoma who underwent EGFR gene mutation 
detection and CT and found that imaging histology can 
effectively distinguish between EGFR (+) and EGFR 
(−) with an AUC =0.69. The sensitivity was 78.0%, the 
specificity was 53.0%, and the accuracy was 60%. Our study 
showed that the sensitivity was 70.3%, the specificity was 
89.3%, and the accuracy was 80.0%. These results were 
slightly better than those of Rios Velazquez et al.

Treatment with EGFR-TKIs prolongs progression-
free survival in patients with EGFR-sensitive mutations. 
However, patients with primary resistance to treatment for 
EGFR-sensitive mutations cannot benefit from treatment 
of TKIs. The mechanism of primary resistance in patients 
with EGFR-sensitive mutations is still unclear. There is 
no definitive way to further screen for TKI sensitivity to 
benefit patients. This study attempts to solve this problem 
by applying the CT radiomics. Coroller et al. (17) extracted 
15 imaging histological features from CT images of 127 
non-small-cell lung cancer patients before neoadjuvant 
radiotherapy and chemotherapy and found that 8 imaging 
histological features could predict treatment response 

(AUC >0.6, P<0.05). In this study, 715 features were used 
for analysis, including 3 extracted from the plain scan, 
and 7 extracted during the arterial phase. Twenty-two 
features were extracted from the venous phase were able 
to distinguish TKI-sensitive populations. The AUC values 
from plain scans and the arterial and venous phases were 
0.7268, 0.7793, and 0.9104, respectively. These findings 
indicate that there is a significant difference in the tumor 
tissue of patients who are sensitive to TKI treatment and 
that in patients with primary drug resistance to TKIs. This 
potential difference can be distinguished by the imaging 
histology obtained by CT.

Studies have shown that the heterogeneity of lung cancer 
may be related to genetic subtype mutations or to changes 
in related growth and angiogenic factors and in the tumor 
microenvironment (18). The intratumoral density provided 
by CT images can indirectly provide relevant information 
for tumor heterogeneity analysis from an overall level. In 
previous studies, radiomics features were generally extracted 
from a single phase. Although both plain and enhanced scan 
images reflect density information, plain scans mainly reflect 
differences in tissue components, cell density, necrosis, 
hemorrhage, and cystic changes. The density in secondary 
scans is heterogeneous, and enhanced scans can also reflect 
the heterogeneity of the blood supply of the tumor. The 
radiomics method can quantify these differences.

To further clarify the predictive performance of each 
phase in radiomics, this study used multiphase CT images 
as the research object and obtained imaging features from 
each different time phase to predict EGFR mutation status 
and TKI sensitivity. Therapeutic sensitivity has a high 
diagnostic value. The AUC value of the imaging phenotype 
was the largest in the venous phase for the following 
reasons: the capillary cells of normal lung tissue are 
continuous with each other, the cells are tightly connected, 
and the basement membrane is intact; thus, macromolecular 
contrast agent cannot leak into the intercellular space. 
Tumor blood vessels have different characteristics from 
normal blood vessels: the microvessels in the tumor are 
immature, the basement membrane is incomplete, and the 
permeability of the microvessels in lung cancer is increased, 
which facilitates the leakage of macromolecular contrast 
agent into the microvessels and the intercellular space. 
Therefore, intravenous injection of a contrast agent easily 
penetrates into the surrounding tissues, and the tumor 
heterogeneity is more obvious with the high background 
of the leaked contrast agent (17-19,22). The AUC values 
of EGFR mutations predicted in phase III of this study 
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and those of the imaging phenotypes of the populations 
sensitive to TKI treatment were also the highest during the 
venous phase after enhancement; these were higher than 
values obtained during the plain scan and arterial phase.

The angiographic features of EGFR mutation status 
and TKI treatment sensitivity were predicted by different 
time phases. The AUC values of the features after wavelet 
transform were the highest. The EGFR mutation status 
group had the following results predicted: During the 
plain scan period, the neighborhood gray difference matrix 
was detected after the wavelet transform. The AUC value 
of intensity was 0.663, the AUC value of the first-order 
skewness feature obtained during the arterial phase was 
0.696 after wavelet transform, and the AUC value of the 
grayscale zone matrix uniformity feature obtained during 
the venous phase was 0.7 after wavelet transform. The 
TKI treatment sensitivity group had the following results 
predicted: the AUC value of the neighborhood grayscale 
difference matrix contrast feature after wavelet transform 
was 0.688, and the neighborhood grayscale difference 
matrix intensity feature obtained during the arterial phase 
had an AUC value of 0.686. The venous phase was wavelet 
transformed. The gray level cooccurrence matrix feature 
had an AUC value of 0.703. Aerts et al. (15) used wavelets 
to analyze the stability of image features and obtained the 
four most stable results. Two of them were wavelet features. 
The results of the wavelet transform feature ensured the 
repeatability and stability of the feature analysis.

All the patients included in this study had advanced lung 
adenocarcinoma (stage IIIB-IV), which limits the use of this 
method in patients with early stage disease. However, there 
is potential value in differentiating patients who will benefit 
from EGFR-TKI sensitivity, and in subsequent studies, 
we will include early lung cancer patients to increase the 
sample size. This study was a retrospective analysis. In 
clinical trials, prospective collection of independent cohorts 
is used as a reference standard to verify a definitive statistical 
association or biological marker. Further prospective studies 
will be conducted to further verify the effectiveness of the 
prediction model.

In conclusion, CT imaging features can predict the 
EGFR mutation status and screen a sensitive population 
for TKI treatment, especially features obtained during the 
venous phase.
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