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Background: The ten-eleven translocation (TET) family oxidize 5-methylcytosines (5SmCs) and promote
the locus-specific reversal of DNA. The role of TETS in acute myeloid leukemia (AML) is mostly unknown.
Methods: TETs mRNA expression levels were analyzed via Gene Expression Profiling Interactive
Analysis (GEPIA). The association TETs expression levels and methylation with prognosis by UALCAN
GenomicScape, and METHsurv. We analyzed TETS aberration types, located mutations, and structures via
cBioPortal. GeneMANIA performed the functional network. Gene ontology (GO) enrichment was analyzed
via LinkedOmics. MiWalK identified miRNAs, miTarbase, and TargetScan. Transcription factor (TF) targets
were analyzed via ChEA3. GSCAlite analyzed the role of these defined genes in cancer pathways and potential
drug targets. Finally, we selected AML patients in our department to investigate the mutated types of TETS.
Results: TETs expression level results showed TET1 (P=0.003) and TET2 (P=0.004) overexpressed in
Haferlach leukemia samples, TET3 (P=4.04e-8) downregulation in Andersson leukemia samples. TET2 and
TET3 overexpression but TET1 downregulation in the GEPIA database. Overexpression of TET2 leads to
positive outcomes (P=0.0091). The upregulation of TET?2 led to poor survival for CN-AML patients, but
downregulation of TET?3 indicated a satisfactory prognosis. The hypermethylation of TETs like cg24705708
(P=0.036), cg05976228 (P=0.022), cg19127638 (P=0.022), cg15254238 (P=0.025), cg07669489 (P=0.037)
indicate poor outcomes. Overexpression of GALNS (P=0.024) as an adverse biomarker, downregulation of
E2F5 (P=0.037), MAP7 (P=0.019), and NRIP1 (P=0.0013) indicated good prognosis. Regulatory network
analysis indicated TETS functions, including covalent chromatin modification, histone modification, DNA
methylation, or demethylation. Enrichment functions involving. TETs participate in several cancer pathways,
including DNA repair response and receptor tyrosine kinase (RTK) signaling pathway. TETS are sensitive to
belinostat, ceranib-2, docetaxel, tivantinib, and vincristine.

Conclusion: Present study showed that TETS have different expressions in AML, and the expression levels
of TET: lead to different outcomes of AML. The TETs cancer pathway analysis will also provide potential
therapy methods for AML patients with TETs aberrations.

Keywords: Acute myeloid leukemia (AML); bioinformatics analysis; ten-eleven translocation (TETS); prognosis

values

Submitted Sep 29, 2020. Accepted for publication Nov 06, 2020.
doi: 10.21037/tcr-20-3149
View this article at: http://dx.doi.org/10.21037/tcr-20-3149

© Translational Cancer Research. All rights reserved. Transl Cancer Res 2020;9(11):7259-7283 | http://dx.doi.org/10.21037/tcr-20-3149


https://crossmark.crossref.org/dialog/?doi=10.21037/tcr-20-3149

7260

Introduction

Acute myeloid leukemia (AML) is a heterogeneous disease
of the blood system characterized by the clonal expansion
and differentiation arrest of myeloid progenitor cells. The
incidence of AML increases by age, and the older patients,
the more mortality (1). An estimated 19,940 new diagnostic
AML patients, and 11,180 people die of AML in the
United States (2). However, intensive chemotherapy is not
a suitable option for many older patients with significant
comorbidities, baseline organ dysfunction, or poor
performance status, in whom the risk of complications and
treatment-related mortality is unacceptably high. The worse
thing is that relapsed AML patients only have less than
25% complete remission rate (3). Since the more efficient
salvage regimens have been into practice, the complete
response rate has increased, but these patients cannot obtain
substantial CR duration (4.9 to 9.8 months) or survival
(6.2 to 8.7 months) (4), this result did not be satisfied.
Furthermore, the numbers of AML patients gradually
increase in times. Thus, we urgently need more sensitive
and specific markers for early diagnosis, more efficient but
less side effect therapy for AML patients.

Although the advance of cell biology and comprehensive
genomic analyses has shown the possible leukemogenesis
mechanisms, it is still incompletely understood. The genes
aberrations have been confirmed, one of the essential
leukemogenesis drivers, even can as biomarkers indicated
the favorable or adverse outcome of AML patients. Many
studies showed that some improved cytogenetic changes
play crucial roles in tumorigenesis and prognosis of AML,
including aberration of TP53 (5), WT1 (6), double CEBPA
mutation (7), RUNX1 (8), DNMT3A (9), FLT3 (10),
and so on. DNA’s methylation has appeared relatively
stable epigenetic process. However, with recent studies
improve the function of ten-eleven translocation (TET)
family proteins as 5-methylcytosine oxidases, the view
has been reversed. The TET family, including TET,
TET2, and TET3. Over the last decade, TET protein
or family functions and differential expression in various
types of cancers have further insight. Many studies explore
the TETs role in different cancers. For solid tumors,
TET1 accelerates the triple-negative breast cancer
exacerbation (11), but TET? as inhibitors tumorigenesis of
breast cancer cells in another study (12). In ovarian cancer,
high expression of TET3 as an adverse biomarker (13).
About hematological malignancies, TET1 mutations
have been observed in chronic lymphocytic leukemia
(CLL) (14) and T-cell acute lymphoblastic leukemia
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(T-ALL) (15), and AML (16). TET2 mutations also were
found in MDS (17) and AML (18). However, TET?3
changes less be found in hematological malignancies. In
different cancer types, the TE'Ts functions may be different.
For hematological cancers, promoting DNA demethylation
and regulate immunity is the most important biological
function of TETs (19). Significant gene methylation,
immunity tolerance, and immunity evasion significantly
influence tumorigenesis, therapy resistance, and tumor
progress. From these, we use public databases to analyse the
prognostic value of TETs in AML and observing whether
there are significant expression levels between AML samples
and normal samples. We present the following article in
accordance with the MDAR reporting checklist (available at
http://dx.doi.org/10.21037/tcr-20-3149).

Methods
Expression analysis

The Oncomine database (20) and GEPIA (Gene Expression
Profiling Interactive Analysis) (21) were preliminarily
used to analyze the TETS expression levels between tumor
samples and normal samples. The study was conducted in

accordance with the Declaration of Helsinki (as revised
in 2013).

Analyzing the aberrations types, location of mutations,
and structure of TETs

We used cBioPortal to learn the types of aberrations of
TETs, perform the aberration locations, and construct the
three-dimension structure of TETs (22).

Survival analysis

To investigate the relation TETs expression levels with
the prognosis of AML patients, we use the UALCAN to
analyze the TCGA data of AML patients (23). Further,
we use GenomicScape (http://www.genomicscape.com)
that data (GSE12417) derived from the GEO database to
validate the survival results of AML (24). Also, we analyze
the significantly correlated genes prognostic value of AML.
Finally, we explore the relation TETS methylation with the
prognosis of AML patients via METHsurv (25).

GeneMANIA analysis

GeneMANIA is a commonly used website for performing
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protein-protein interaction (PPI) network analysis and
predicting the function of preferred genes (26). This user-
friendly online tool can display gene or gene lists using
bioinformatics methods, including gene co-expression,
physical interaction, gene co-location, gene enrichment
analysis, and website prediction. We predicted the TETs
family’s function and significantly correlated genes and
visualizing the gene networks via GeneMANIA.

Constructing the miRNA networks

We search for the miRNAs that target TETs via
miTarbase (27), miRTarBase (27), and miWalk (28) in
various databases to find out. Further, we performed the
Venn diagram to find the TETS’ co-targets miRINA.

LinkOmics and ChEA3 analysis

The LinkedOmics database (http://www.linkedomics.
org/login.php) is a Web-based platform for analyzing 32
TCGA cancer-associated multi-dimensional datasets (29).
Data from the LinkFinder results were signed and ranked,
and GSEA was used to analyze GO (CC, BP, and MF),
KEGG pathways, and kinase-target enrichment. We used
LinkOmics to analyze the CC, BP, and MF), kinase-target
enrichment, and the significantly correlated genes of TETs.
Further, we used the ChEA3 to find the TE'TS’ significant
transcription factors (TFs) annotating the potential
biological functions, and constructing the network of top 10
TFs (29).

Analyzing the cancer pathway activity and drugs
sensitivity of defined genes

Cancer Analysis (GSCALite) analyzes Gene expression
associated cancer pathway activity and Drug sensitivity
for genes (30). We used the GSCALite dataset to explore
the role of defined genes in the cancer pathway, further
investigate the drug sensitivity of defined genes.

Validation of mutated types of TETs in AML patients

We selected the AML patients with TETs mutations in The
Department of Hematology, the First Affiliated Hospital of
Guangxi Medical University, to find the mutated types of
TETS in our department.
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Statistical analysis

The gene expression, survival analysis, and the protein-
protein network relations P value <0.05 is considered a
significant difference in our study.

Results
Transcriptional expression levels of TETs in AML patients

To identify the differential expression levels of TETs in
AML and normal samples, the TETs mRNA levels in
leukemia samples and control samples were analyzed by
the Oncomine (Figure 1A4,B,C) and GEPIA (Figure 1D,E,F)
databases. The results of Oncomine analysis showed that
the expression of TET1 (P=0.003) and TET2 (P=0.004)
was significant overexpression in AML patients in Haferlach
leukemia, but the TET3 (P=4.04¢-8) was downregulation
in Andersson leukemia samples. To further validate to
TETs expression level, we used the GEPIA to perform
analysis. The results indicated that TET2 and TET3
were significantly upregulated expression, but TET1 was
significantly downregulated expression.

Aberrations types and the structure of TETs

To investigate the aberrations types, aberrations locations,
3D structure of TETs, we used the C-BioPortal database to
analyze. As the results have shown the top 10 co-expression
of TETs including FLT3, NPM1, DNMT3A, CEBPA,
NRAS, IDH2, SRSF2, RUNXI1, STAG2, and ASXL1
(Figure 2A4). The most standard mutated types of TET2
and TET1 were deep deletion and missense mutations
(Figure 2B). The locations of TETs were shown in
Figure 2C.

The relation between TETs expression levels and the
prognosis of AML patients

"To understand whether the expression levels of TETs would
have a significant influence on AML patients’ survival, we
used the UACLAN database to clarify the relation between
TETs expression and prognostic role of AML. As the results
have shown, the higher expression TET2 may lead to
positive outcomes of AML patients (P=0.0091). However,
TETI1 and TET3 expression levels did not impact the
prognosis of AML patients (Figure 34,B,C). To further
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Figure 1 The expression levels of TETS between AML and normal samples. (A) The AML samples with the higher expression of TET1 in
Haferlach leukemia (Oncomine). (B) TET2 overexpresses in AML samples in Haferlach leukemia (Oncomine). (C) TET3 downregulated
in tumor samples in Andersson leukemia samples (Oncomine). (D) TET1 was downregulated in AML samples (GEPIA). (E) TET2
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eleven translocation (TET) family, oxidize 5-methylcytosines (SmCs); AML, acute myeloid leukemia; GEPIA, Gene Expression Profiling

Interactive Analysis.

validate the impact of TETs expressions for AML patients,
we used the GSE12417 data to analyze. The results showed
that high expression TET?2 leads to poor survival for CN-
AML patients, but high expression TET?3 indicated a
protective factor (Figure 3D,E,F).

Prognostics role of significantly correlated genes in AML

To further investigate the potential role of differentially
expressed TETs in AML, the LinkFinder module of
LinkedOmics was used to analyze mRNA sequencing
data from 173 patients in TCGA. In the volcano plot, the
dark red dots show a significantly positive correlation with
TETI1, TET2, and TETS3, whereas dark green dots show
a significantly negative correlation (false discovery rate,
FDR <0.01). The top 50 significant gene sets positively

© Translational Cancer Research. All rights reserved.

and negatively associated with TET1, TET2, TET3,
as shown in the heat maps (Figure 44,B,C,D,E,F,G,H,]I).
Meanwhile, the statistical scatter plots show the
association TETs expression with significantly correlated
genes (Pearson’s correlation >0.6). From the results
of association genes, we can observe APT11C, CD63,
0S9, GALNS, NRIP1, MAP7, and E2F5 were strong
associations with TET1; ZSWIM6, QKI, SNX13, and
SSFA2 were strong associations with TET2; PDPK1
and NCOAG6 were strong associations with TET3
(Figure 54,B,C,D,E,EG,H,I.7 K,L,M). To explore whether
the strong association with TETs genes that have a
significant impact on AML patients, we used UALCAN to
analyze the TET1, TET2, TET3 strong related genes in
OS of AML patients. There were four correlated significant
genes have a significant impact on the OS of AML patients,
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Figure 4 Correlated significant genes of TETs (LinkedOmics). (A,B,C,D,E,F;G,H,I) Volcano plots and heat maps showed genes positively
and negatively correlated with TETs in AML, respectively (top 50). (D,F) Red suggests positively correlated genes, and green shows
negatively correlated genes. TETS, ten-eleven translocation (TET) family oxidize 5-methylcytosines (SmCs); AML, acute myeloid leukemia.

the high expression GALNS (P=0.024) leads to an adverse
outcome, the downregulation of E2F5 (P=0.037), MAP7
(P=0.019), and NRIP1(P=0.0013) indicated the excellent
prognosis (Figure 6A4,B,C,D).

The relationship TETs methylation with the prognosis of
AML

From the important role of methylation in tumorigenesis
and prognosis of AML patients, we used METHsurv to
analyze the TETs methylation status and the association
with prognosis for AML patients, respectively. The
locations of TETs methylation were shown in the heatmap

© Translational Cancer Research. All rights reserved.

(Figure 74,B,C) and the prognosis of TETS methylation for
AML patients was shown in Figure 84,B,C,D,E,F,G,H,I. The
hypermethylation of TET! including ¢g19127638,
cgl12548760, cg18515801, cg01093854, cg13810683,
and cg27426824, and the hypermethylation of TET2
including ¢g20586654, cg08530497, ¢g22794775,
cg09666717, and cgl17862558. TET3 has the most
frequency of hypermethylation including cg02956499,
cg13808088, cg00755592, cg15827185, cg21855109,
cg05976228, ¢g25299214, cgl17213010, cg24705708,
cg02237855, cg01244346, and cg01355757 (Figure 74,B,C).
Further, we analyzed the prognostics value of TETs
methylation in AML patients. The results indicated that

Transl Cancer Res 2020;9(11):7259-7283 | http://dx.doi.org/10.21037/tcr-20-3149



7266

Pearson-correlation: -0.7168 C
P value: 6.022e-28
Sample size: (N=169)

A Pearson-correlation: 0.7407
P value: 1.1910-30
Sample size: (N=169)
12 -
o
= 10+
&
<
8%
ch: T T T
4 6 8 10
TETI
D Pearson-correlation: 0.7038
P value: 1.379e-26
Sample size: (N=169)
12 4
e
2 10-
3
<
O]
8
o
6
T T
4 6 8 10
TETI
G Pearson-correlation: 0.6861
P value: 7.556e-25
Sample size: (N=169)
16 -
14
~ 124
3
Z 10
8
6
o
T T T
4 6 10
TETI
J Pearson-correlation: 0.6908
P value: 2664e-25
Sample size: (N=169)
14
12 4
<
o
10 4 "
o
8
T T T T T
8 9 10 1" 12 13
TET2
M Pearson-correlation: 0.7129
P value: 1558e-27
Sample size: (N=169)
12
g 104 .
%
R os{e _—
6
a

S
8 9 10 11 12 13
TET2

16
w
w
N
w
T T
4 6 8 10
TETI
Pearson-correlation: 0.6381 F
P value: 1.058e-20
Sample size: (N=169)
14
~ ©
g
= =4
T T T
4 6 10
TETI
Pearson-correlation: -0.7135
P value: 1.357e-27
Sample size: (N=169)
15
14 4
g 1 {° 5
© [
124
11
10 -
1 T T
4 6 8 10
TETI
Pearson-correlation: 0.6727 L
P value: 129e-23
Sample size: (N=169)
134
12+
114
)
[z »
-
E

Huang et al. The role of TETs for AML

Pearson-correlation: 0.6242
P value: 1.228e-19

Sample size: (N=169)

64"

Pearson-correlation: 0.6105
P value: 1.221e-18
Sample size: (N=169)

10.0 1(‘).5 1.0 1“1.5 1é.0 1‘2.5 1(‘%.0
TET3

Pearson-correlation: 0.6458
P value: 2.566e-21
Sample size: (N=169)

T T T T T
10.0 10.5 11.0 11.5 12.0 12.5 13.0
TET3

Pearson-correlation: 0.6422
P value: 4.925e-21
Sample size: (N=169)

14

Oo L=
o
‘,.:.ﬂ‘r:?

10+

T T T T
8 9 10 " 12 13
TET2

Figure 5 Gene correlation expression analysis for TETs (LinkedOmics). (A,B,C,D,E,EG) The scatter plots show the spearman-correlation

of TETI expression with expression of in AML (H,IL]J,K). The scatter plots show the spearman-correlation of TET2 expression with

expression of in AML (L,M). The scatter plots show spearman-correlation of TET3 expression with expression of in AML. TETI, ten-

eleven translocation 1; TET?2, ten-eleven translocation 2; TET3, ten-eleven translocation 3; AML, acute myeloid leukemia.
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Figure 6 Prognostic analysis of genes correlated with TETs in AML (UALCAN). (A) The overall survival curves of E2F5. (B) The
overall survival curves of GALNS. (C) The overall survival curves of MAP7. (D) he overall survival curves of NRIP1. TETs, ten-eleven
translocation (TET) family oxidize 5-methylcytosines (SmCs); E2F5, E2F transcription factor 5 protein; GALNS, N-acetylgalactosamine-6-

sulfatase; MAP7, ensconsin, E-MAP-115; NRIP1, nuclear receptor-interacting protein 1; AML, acute myeloid leukemia.

hypermethylation of cg24705708 (P=0.036), cg05976228
(P=0.022), cg21855109(P=0.022), and cg25299214
(P=0.0028), cg17862558 (P=0.0073), cg13810683 (P=0.013),
cgl9127638 (P=0.022), cgl15254238 (P=0.025), and
cg07669489 (P=0.037) were the adverse biomarkers for
AML patients (Figure 84,B,C,D,E,F,G,H,]I).

Functional envichment analysis of TETS

To investigate the potential functional enrichment among
TETs, we used the LinkedOmics database to analyze the
significant enriched GO biological process (BP), cellular
component (CC), molecular functions (MF), and target
kinase. The main enrichments result in DNA transcription,
RNA production, energy metabolism pathway, proteolysis,
angiogenesis, and so on (Figures 9-11). The significant
kinase targets of TET1 were CDK2 and TGFBR2. For
TET?2, there were CSNK1D, IRAK4, SYK, EGFR,
MAP3K4, and NEKG6 kinase targets. TET3 has the most
numbers of kinase targets that include MYLK3, MYLK4,

© Translational Cancer Research. All rights reserved.

SGK1, CSNKI1D, PLK2, CDK2, ILK, PRKCZ, PRKCE,
MAPK10, MYLK?2, and MYLK. Among the kinase targets,
CDK2 was the TET1 and TET3 kinase co-targets, and
CSNKI1D was the kinase co-targets of TET2 and TET3
(Figures 9D,10D,11D).

Further, the protein-protein network of TETs and
the significantly correlated genes was constructed via
GeneMANIA. Both of TETS interacted with CXXC4, but
only TET3 and TET1 interacted with DNMT, there still
were many other significant interactions. The PPI network
showed that the functions of TETs were covalent chromatin
modification, demethylation, histone modification, histone
H3-K4 methylation, histone lysine methylation, and DNA
methylation or demethylation (Figure 12).

The regulated miRNA network of TETs

We used miTarbase, TargetScan, and miWalk databases
to find the regulated miRNA of TETs, there were 690,
298, and 68 regulated miRNAs for TET2, TETI, and

Transl Cancer Res 2020;9(11):7259-7283 | http://dx.doi.org/10.21037/tcr-20-3149
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Networks
Shared protein domains
Co-expression

1 Co-localization

Functions

B DNA dealkylation

® DNA demethylation

% DNA methylation or demethylation

m DNA modification

m oxidoreductase activity, acting on paired donors, with incorporation
or reduction of molecular oxygen, 2-oxoglutarate as one donor, and
incorporation of one atom each of oxygen into both donors

histone H3-K4 methylation

Figure 12 Protein-protein interaction network of TETs (GeneMANTA). PPI network and functional analysis showing the gene set enriched

in the target network of TETs. The network edge’s distinct colors indicate the bioinformatics methods applied: physical interactions, co-

expression, predicted, co-localization, pathway, genetic interactions, and shared protein domains. The distinct colors for the network nodes

show the biological functions of the sets of enrichment genes. TETS, ten-eleven translocation (TET) family oxidize 5-methylcytosines

(5mCs); PPI, protein-protein interaction.

TETS3, respectively. The network of TETs and miRNAs
was constructed by miWalk (Figure 13A4). There were 9
miRNAs including hsa-miR-2278, hsa-miR-105-3p, hsa-
miR-6882-5p, hsa-miR-4732-3p, hsa-miR-4524a-5p, hsa-
miR-6866-5p, hsa-miR-5580-3p, hsa-miR-4692, and hsa-
miR-649 that their co-target genes were TETs (Figure 13B).

TF targets of TETS

Further, we used the ChEA3 to analyze the TF targets
of TET1, TET2, and TET3. Also, the analysis results of

© Translational Cancer Research. All rights reserved.

TFs indicated TFs of TETs were scattered in the nervous
system, digestive system, and peripheral blood, further
enrichment TFs functions they are the regulators of the
immune response, cell differentiation, organ development,
DNA transcription, and so on (Figure 14A4,B). Further, we
construct the encode TFs network and show the top 10
rank TFs, and the top 10 TFs of TETs are JUN, FOSLI,
ZNF263, CTCF, MYOD1, TCF12, SP1, JUND, ETSI,
and NFIC (Figure 14C,D). From these biological functions
of kinase targets and TFs, the TETs may play essential roles
in tumorigenesis and prognosis.
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Cancer pathway activity and drugs sensitivity of TETs and
correlated genes

To incite the role of defined genes in the cancer pathway,
the GSCAlite was used to perform the cancer pathway
activity, and further investigate whether have drugs
target the genes. The cancer pathway activity indicated
TETs activated the PI3K/AKT signal pathway, but have
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a bidirectional function (activation and inhibition) in the
DNA repair response, receptor tyrosine kinase (RTK),
and cell cycle. The significantly correlated genes have an
essential role in these cancer pathways as well, including
GALNS, MAP7, and ZSWIM6 as the activators in TSC/
mTOR; NCOA6, NRIP1, SNX13 are the inhibitors of
apoptosis, and other genes also as the crucial parts in these
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cancer pathways (Figure 154,B). The final goals of much
cancer research are that it can provide useful information
for therapying cancer patients, so we further analyze the
potential drug targets of these defined genes. We used
GSCAlite to construct the sensitivity of the drug of these
genes that drugs sensitivity data from Cancer Therapeutics
Response Portal (CTSP) and Genomics of Drug Sensitivity
in Cancer (GDSC). The Spearman correlation represents
the gene expression correlates with the drug. The positive
correlation means the gene’s high expression is resistant to
the drug. The results from GDSC shown trametinib was
the most resistant for TET1 and TET?2, but vorinostat
and VNLG/124 were the most sensitive of TET1 and
TET2, respectively. CD63 has the largest numbers of
resistant drugs, including navitoclax, GSK1070916,
belinostat, tubastatin A, vorinostat, phenformin, but

© Translational Cancer Research. All rights reserved.

QKI has the most numbers of sensitive drugs including
TW37, piperlongumine, bortezomib, and bleomycin
(Figure 16). Besides, the results of drug sensitivity from
CTSP indicated they have many sensitive drugs for TETS,
including alisertib, alvocidib, AT'13387, belinostat, BI-2536,
ceranib-2, CR-131-B, docetaxel, tivantinib, vincristine, but
CD63 has the most significant number of resistant drugs
(Figure 17).

The mutated types of TETs in our department

We selected the AML patients in the Department of
Hematology, the First Affiliated Hospital of Guangxi
Medical University from January 2019 to January 2020. It
only had three patients with TET2 mutations—also, the
mutated type, including missense and truncating mutation
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family oxidize 5-methylcytosines (SmCs).

(Figure 184,B,C).

Discussion

Many cancers have aberrant promoter methylation, and it is
considered to have a significant relation with tumorigenesis.
For recent studies, TETs have seemed crucial regulators of
the DNA demethylation pathway in various cancers. The
functions of TET?2 aberrant mutations in AML have been

© Translational Cancer Research. All rights reserved.

well elaborated; the TET2 gene has a relationship with
leukemogenesis, therapy response, and prognosis. However,
the other member of TETS’ (TET1 and TETS3) role in
AML remains unclear. Thus, we used bioinformatics to
investigate the TETs expression levels, prognostics values,
and the potential biological functions in AML.

The aberrant mutations of TETs not only have been
studied in hematological cancer but also solid tumors,
including breast cancers (11), prostate cancer (31), colon

Transl Cancer Res 2020;9(11):7259-7283 | http://dx.doi.org/10.21037/tcr-20-3149



7278

cancer (32), and melanoma (33). TET1 was an activator
in TNBC by upregulating the oncogenic signaling,
and the high TET1 expression level may lead the drug
resistance by targeting the PI3K-mTOR pathway (11),
so the high expression TET1 may indicate the adverse
prognosis of TNBC. The research observed that TET1
has a relationship with cancer patients’ immunity
regulating (34). To date, TET?2 has seemed like the one
that closest interaction with hematological malignancies.
Cimmino et al. revealed TET2 as a tumor suppressor
in leukemia, the restoration of the TET?2 function
could inhibit the cancer cell self-renewal and leukemia
progression (35).

Further, Xu ez 4. study showed that activated the TET2
may improve the efficacy of immunotherapy efficacy
and enhance the immunity of solid cancer patients (36).
According to TET3, Cao et al. research showed that TET?3
high expression indicated the poor prognosis in ovarian
cancer patients (13). However, Ye ez al. revealed TET3 is
a tumor suppressor of ovarian cancer through inhibiting
epithelial-mesenchymal transition. These studies revealed
that the expression of TETs could be detectable in multiple
cancer types, and the functions of TE'Ts may be different in
different cancer types or even subtype of the same cancer.

In this study, TETs expression levels showed TET1
significantly decreased expression, but the TET2 and TET3
were significant upregulation in AML samples via GEPIA
analysis. The Oncomine analysis showed that TET1 and
TE'T2 were significant overexpression in Haferlach Leukemia,
but TET?3 was a significant low expression in Andersson
Leukemia. The TETS subgroups analyses indicated that TE'Ts
have significant differential expression levels between different
subtypes, age, and other clinical features, these results may be
one reason to explain the TETs different expression in various
leukemia samples. Some studies approved the expression of
TETT and TET?2 can impact the prognosis of AML patients.
In our study, the OS results showed that only the TET?2
expression level as a significant factor for AML prognosis via
UALCAN, and the TET2 high expression leads to positive
outcomes of AML patients.

Further, the validation OS results indicated TET2 and
TET3 expression levels have a significant relation with
AML prognosis, the high expression of TET? indicating
the poor prognosis, but the high expression levels of TET?3
may be the protective factor for AML patients. One of
the reasons for explaining this is that the validation of
AML patients is the cytogenetically normal. These results
indicated that the TET2 and TET3 expression levels might

© Translational Cancer Research. All rights reserved.
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have different functions in different AML subtypes. Few
studies investigated the relation between TET3 and AML.
So, the underlying mechanisms of TETSs in leukemogenesis
need to be further explored.

Many studies approve DNA methylation as a critical part
of tumorigenesis, progress, and metastasis in solid tumors.
Emerging evidence reveals that the downregulation of DNA
methylation may be a critical event for leukemogenesis
and progression (37). TET one of the main roles is
demethylation, but few studies explored the association
TET methylation with the prognosis of AML. Herein,
this study showed that some located TETs methylations
significantly impact AML patients’ outcomes.

The regulation of TETs in AML further interested us.
We constructed the gene interaction network of TETs
and explored their GO enrichment and KEGG pathway
analysis. As expected, these genes’ functions were primarily
related to covalent chromatin modification, demethylation,
histone modification, histone H3-K4 methylation,
histone lysine methylation, and DNA methylation or
demethylation.

These results indicated that the TETs as the vital
regulator of DNA transcription and methylation.
Both of these biological functions that take part in the
tumorigenesis, progress, and metastasis. These results
provide more information to explore further the TET’s
biological role in leukemogenesis and progression.

Dysregulation of miRNAs has been found in multiple
cancers; miRNAs can act as promoters or inhibitors of
tumors. Hematologic malignancies are no exception; the
miRNA’s aberrant expression may lead to hematologic
cancer, different hematopoietic lineages. Distinctive
miRNA profiles were observed in multiple cytogenetic
subtypes of AML, and the miRNA expression levels were
associated with the prognosis of AML (38). In our study,
we finally acquired nine miRNAs that targeted the TETs.
Kaymaz et al. revealed the has-miR-2278 act as the tumor
suppressor; high expression miR-2278 can inhibit leukemic
cell proliferation and induce apoptosis (39). To date, there
are no studies that explore the other eight miRINAs’ role in
any disease.

Tumorigenesis involves the changes of multi-omics that
include gene aberration, changes of TF and the kinases,
and so on. Single gene aberration may not be attributed
to cancer. So, we find the significantly correlated genes
of TETs, exploring their association and investigating the
prognostic role in AML patients, finding the significant
TFs and kinases, and incite their functions. For TETs,
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there are four significant correlated genes (GALNS, E2F5,
MAP7, and NRIP1) that significantly impact the prognosis
of AML patients. High expression GALNS indicated
the poor outcomes of AML patients, downregulation of
E2F5, MAP7, and NRIP1 as the protective factors of
AML patients. Ho ez a/. study approved GALNS can as
the diagnostics biomarker of multiple cancers (40), but no
study of GALNS in AML. Aberrational E2F5 expression
has been observed in various cancers. Kothandaraman
et al. study revealed the E2F5 could act as a biomarker for
diagnosing epithelial ovarian cancer (41). A study showed
that E2F5 accelerated prostate cancer cell migration and
invasion by regulating TFPI2, MMP-2, and MMP-9 (42).
Many studies result revealed that targeted E2F5 can inhibit
cancer development by various miRNAs (43-45). Research
indicated that the E2F5 upregulation in AML, but the E2F5
function in AML, did not further be explored. The BP of
E2F5 is related to cell cycle progression and transformation,
and acting downstream of the TGF pathway (46). Aberrant,
the changes of MAP7 have been observed in multiple
cancers as well. Zhang et al. revealed MAP7 corporates with
RC3HLI as the regulator of cell-cycle progression in cervical
cancer cells by activating NF-«B signaling (47).

Further, Zhang er al. study showed MAP7 was a
promotor of migration and invasion in cervical cancer by
regulating autophagy (48), this result indicated the high
expression MAP7 might lead to a poor prognosis for the
patients with cervical cancer. According to AML, a study
observed that high expression MAP7 indicated the short OS
of young patients with CN-AML (49). There was a study
that found that suppressed NRIP1 can inhibit breast cancer
growth and cell-induced apoptosis (50). Both of the selected
correlated significant genes indicate that high expression
as an adverse biomarker for AML. However, the role of
the selected significant genes in AML and the relation with
TE'Ts still unclear. It is needed to be further investigated.

The kinases play critical roles in gene expression and
signaling transduction. For TETs, there are so many
significant kinases, including CDK2, TGFBR2, CSNKI1D,
IRAK4, SYK, EGFR, MAP3K4, MYLK3, MYLK4, SGK1,
PLK2, ILK, PRKCZ, PRKCE, MAPK10, MYLK2, and
MYLK. Their main functions are the regulators of the cell
cycle, cell growth, energy metabolism. Among the kinases,
only CDK2 has a significant relation with AML. Shao
et al. research showed that inhibiting the CDK2 can
enhance all-trans-retinoic acid efficacy in AML cells (51).
Further, Ran et 4l. also revealed CDK2 interacted with
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CR6-interacting factor 1 (CRIF1) to inhibit the leukemia
cell cycle (52). The function of CDK2 is a regulator of the
cell cycle. Dysregulation of the cell cycle is an essential
part of tumorigenesis and drug resistance for some cancer
types. Some research has already investigated the anticancer
agents, targeting therapy the cell cycle (53,54). Regrettably,
no study investigates the other kinases in AML. However,
most of these kinases work as the promotor in various
solid cancers, such as MYLK, promoting the migration
and invasion of bladder cancer (55) and gastric cancer (56).
PRKC as the accelerator of colon cancer (57). Inhibiting
CSNKI1D can weaken the migration and invasion ability of
TNBC (58), and so on. These studies indicated that most of
these kinases might act as an essential role in tumorigenesis
and prognosis.

Many factors regulate gene expression; the TFs may
be one of the most critical regulatory factors because
most regulators impact gene expression by directly or
indirectly affecting TFs. Our study used ChEA3 to find the
TETs’ TFs and annotated them. The GO enrichment of
ENCODE TFs revealed they are the regulators of DNA
and RNA production. Among the TFs, Jun is the one most
significantly related to TETs. Most of these TFs play a key
role in different cancer types. Aberrant jun (including c-jun,
jun-B, and jun-D) expression has been observed in multiple
cancers. Activation of C-Jun can promote liver cancer
development and sorafenib resistance (59). The expression
of jun has been observed in AML, as well as. Inhibiting the
jun can induce the death of leukemia cells by regulating
unfolded protein response (60). The ETSI proto-
oncoprotein is a member of the Ets family of transcription
factors that share a unique DNA binding domain, the ETS
domain. ETSI regulates the leukemic progenitor cell by
effecting the autocrine GM-CSF transcription (61). Spl
has a significant relation with drug resistance in AML
by regulating the ERK-MSK MAPK signaling pathway
to impact the survivin expression (62). For this, high
expression Spl may lead to the poor outcome of AML. The
other top TFs do not have any study related to AML, but
most of them serve as the promotor of tumorigenesis and
progression in multiple solid cancers. These clues indicate
that the related TFs of TETs also play a key role in AML
as well.

All cancer research aims to provide the underlying
mechanisms of tumorigenesis, a biomarker of diagnosis
and prognosis, and even find the new therapy target for
cancer patients. Thus, patients with cancer can lengthen
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their lifespan, even cure the disease. Most cancer-related
gene aberrant mutations act as the critical parts of multiple
cancers’ tumorigenesis and tumor progression via the
cancer pathway. In the present study, we used the GSCAlite
to explore the role of TETs and the significantly correlated
genes in cancer pathways, further investigating the potential
drug targets of these genes. Among the cancer pathway, the
PI3K/AKT signaling pathway has a significant relation with
drug resistance in AML (63).

Furthermore, the PI3K/AKT signaling pathway is the
regulator of leukemic cell fate that inhibits it can promote
leukemic cell apoptosis (64). From these, a study explored
the efficacy of targeting the PI3K/Akt signaling pathway in
AML (65). Since the TETs are the positive regulator of the
PI3K/Akt signaling pathway, we may conclude TETS are the
promotor for AML. In AML, the oncofusion proteins, self-
renewal activity, and leukemogenic program in hematopoietic
cells have a significant association with a dysregulation in
the DNA repair pathway, the accumulation of DNA damage
that seems like the oncogenic driver of AML. Through these
mechanisms, the DNA repair pathway may be the novel
potential therapeutic target of AML. Yang ez al. revealed that
combinatorial therapy with AT-101 and IDA could eliminate
leukemia stem-like cells via blockage of DNA damage repair
(66). In our study, TETT as activator but TET2 and TET3
have a bidirectional role in the DNA repair pathway.

Further research should focus on the underlying relation
TET2 and TET3 with DNA repair response. About 40—
60% AML patients with receptor tyrosine kinases (RTKs)
or their downstream effector’s mutations (67,68). Among
the RTKs, FLT3 and C-KIT have been well explored in
AML. Most RTKs indicate the poor prognosis of AML.
The inhibitors of FLT3 (69) and ¢-KIT (70) have been
introduced to the practice. Both of these TETs acts as the
activator or inhibitor in the RTK pathway. So, the TETs
may have a different role in different AML types. The
TSC/mTOR signaling pathway’s role is not unclear in
cancer, the primary function of the TSC/mTOR signaling
pathway is that it regulates the inflammatory responses (71),
but there is not cancer research. Apoptosis is one of the
essential types of cancer cell death. Many chemotherapy
drugs achieve efficacy by inducing cancer cell apoptosis.
The significantly correlated genes that NCOA6, NRIP1,
and SNX13 inhibit the apoptosis. These genes may be as
possibly a factor for the drug resistance of cancer patients.
However, no study investigated the functions of NCOA6
and SNX13 in cancer. For the vital role of TETs and the
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significantly correlated genes in the cancer pathway, we use
GSCAlite to explore them’ potential target drugs. Finally,
we found the alisertib, alvocidib, AT'13387, belinostat,
BI-2536, ceranib-2, CR-131-B, docetaxel, tivantinib,
and vincristine are the drugs that TETs sensitive. These
results can provide useful information for the clinician to
choose the drugs for therapy, TETs mutation, or correlate
significant AML patients’ genes.

Conclusions

In the present study, we comprehensively analyze the TET’s
expression levels, prognostics role, methylation, biological
functions with AML patients. Also, further explored the
significant TFs, kinases, cancer pathways, and drug targets
of TETs. Our results suggest that TET1, TET2, and
TET3 were differentially expressed in AML, CN-AML
patients were benefited from overexpression of TET3, but
overexpression of TET2 leads to adverse prognosis for
CN-AML and other AML patients. The hypermethylation
cg24705708, cg05976228, cg21855109, cg25299214,
cgl17862558, cg13810683, cgl912763, cgl15254238, and
cg07669489 of TETs were the adverse biomarkers for AML
patients. We found that significantly correlated genes,
including GALNS, E2F5, MAP7, and NRIP1, can be the
novel prognostic biomarker for AML. Regulatory network
analysis suggested TETs regulate covalent chromatin
modification, demethylation, histone modification, histone
H3-K4 methylation, cell cycle, and immune response
through pathways involving the significant kinases, TFs, and
miRNA. Finally, cancer pathway analysis of TETs activates
the PI3K/AKT signal pathway, but have a bidirectional
function (activation and inhibition) in the DNA repair
response, receptor tyrosine kinase (RTK), and cell cycle.
Drug sensitivity analysis results reveal that trametinib was
the most resistant for TET1 and TET?2, vorinostat, and
VNLG/124 were the most sensitive of TET1 and TET?2 by
GDSC, respectively. Both TETs are sensitive for alisertib,
alvocidib, AT'13387, belinostat, BI-2536, ceranib-2, CR-
131-B, docetaxel, tivantinib, vincristine by CTSP.
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