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Introduction

Since the late 1990s, platinum-based doublet chemotherapy 
has been the standard of care for treating non-small 
cell lung cancer (NSCLC) patients without actionable 
mutations. ECOG 15-94 compared four regimens (cisplatin/
gemcitabine, cisplatin/docetaxel, cisplatin/paclitaxel and 
carboplatin/paclitaxel) among more than 1,200 patients 
and found equal efficacy, with all four regimens leading 
to survival rates of 33% at 1 year and 11% at 2 years in 
advanced NSCLC (stage IIIB-IV) (1). However, these 
regimens have significant toxicity, and their benefit is 
limited to patients with good performance status (ECOG 
0-1). Patients who are elderly or unfit (ECOG ≥2) have 
shorter survival and more chemotherapy-related toxicity (2). 

Often times, these patients are not offered 1st line systemic 
chemotherapy due to the unfavorable risk-benefit ratio. 
Another limitation to platinum doublet chemotherapy is its 
limited efficacy in refractory disease. While targeted therapy 
[EGFR (3), ALK (4) inhibitors], and immunotherapy 
[anti-CTLA-4 (5), anti-PD-1 (6,7)], have led to improved 
survival and response rates in NSCLC, there remain a 
significant proportion of patients who do not benefit from 
these strategies, or whom cannot tolerate them.

To meet these needs, nanoparticle delivery systems 
present a novel approach for delivering cytotoxic drugs in 
the treatment of NSCLC, both with higher efficacy and 
lower toxicity. Abraxane, or albumin-bound nanoparticle 
paclitaxel, is the first nanoparticle therapy to be FDA-
approved for use in NSCLC, based on its improved 
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outcomes and decreased adverse events (8,9). This drug is 
likely just the first of many, as nanotechnology drug delivery 
continues to be refined and further utilized. In this review, 
we discuss emerging nanoparticle therapies for NSCLC. 
We will first provide an overview of nanoparticle therapies, 
then provide specific examples of novel agents which have 
produced promising data (Table 1).

Nanoparticle therapies

The advent of nanotechnology has brought with it the 
potential for nanoparticle therapeutics in cancer therapy. 
Nanoparticles, or nanomaterials, by definition measure 
1-100 nm in at least one dimension (16,17). It should be 
noted that nanoparticle systems may be used for various 
medical purposes [e.g., imaging (18), immune adjuvants (19)] 
in addition to therapeutics, and while these agents may be 
larger, up to 200-500 nm in size, this does not necessarily 
impact their functionality or detract from their size-

dependent properties. Nanoparticles may be engineered 
as the drug delivery carrier, or the drug itself can be 
engineered at a nanoscale, in which case the drug serves 
as its own “carrier” (20-22). Nanomaterials used in cancer 
nanotherapeutics include lipids, polymers, dendrimers, 
organometallic and carbon based materials (23).

Nanotechnology drug delivery systems offer several 
advantages compared to standard chemotherapy. Due to 
their size dependent properties and additional modifications, 
nanoparticle drugs can be designed to achieve prolonged 
circulation times, greater stability, improved intratumoral 
accumulation and concentration, and decreased toxicity 
to normal tissues. As such these nanoparticle therapeutics 
represent more effective therapies with diminished side effects.

Nanoparticles have four particularly unique characteristics 
(Table 2), thanks to their size and relatively large surface area (up 
to 1,000 m2/g): (I) large “payload”, or the ability to carry large 
amounts of drug; (II) multivalent ligand binding, as higher 
density of targeting moieties leads to higher affinity binding; 
(III) combination therapeutics, as their large surface to mass 
ratio can accommodate multiple drugs simultaneously; and 
(IV) bypass of multidrug resistance mechanisms involving cell 
surface protein pumps, e.g., P-glycoprotein (24).

Physical characteristics of nanoparticles

The ideal nanoparticle drug delivery systems range in 

Table 1 Overview of nanoparticle-based therapies used in lung cancer

Drug delivery 

systems
Agent

Drug (% of 

compound w/w)
Size Composition

Surface 

modifications

Targeting 

ligands

Target  

receptor

Liposomal 

nanoparticles

Lipoplatin (10) Cisplatin (8.9%) 110 nm DPPG, SPC-

3, cholesterol, 

mPEG2000-DSPE

PEG None None

Doxil (11)/Caelyx Doxorubicin (12.5%) 85 nm HSPC, cholesterol DSPE-PEG None None

Polymeric 

nanoparticles

Abraxane (12) Paclitaxel (10%) 130 nm Albumin polymer None None None

BIND-014 (13) Docetaxel (10%) 100 nm PLA-PEG polymer PEG ACUPA PSMA

Polymeric 

micelles

Genexol-PM (14) Paclitaxel (20%) 20-50 nm mPEG-PDLLA 

copolymer

mPEG None None

NC-6004 (15) 

(Nanoplatin)

Cisplatin (39%) 28 nm PEG-P(Glu) 

copolymer

PEG None None

w/w, by weight; nm, nanometer; DPPG, dipalmitoyl phosphatidyl glycerol; SPC-3, soy phosphatidyl choline; mPEG2000-DSPE, 

methoxy-polyethylene glycol-distearoyl phosphatidylethanolamine; PEG, polyethylene glycol; HSPC, hydrogenated soy 

phosphatidylcholine; DSPE, distearoylphosphatidylethanolamine; PLA, polylactic acid; ACUPA, S,S-2-[3-[5-amino-1-carboxypentyl]-

ureido]-pentanedioic acid; mPEG, monomethoxy polyethylene glycol; PDLLA, poly (D,L-lactic acid; P(Glu), polyglutamate; PSMA, 

prostate specific membrane antigen.

Table 2 Unique advantages of nanoparticle therapuetics

Large “payload”

Multivalent ligand targeting

Combination therapeutics

Bypass of multidrug resistance mechanisms
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size from 10-100 nm (Figure 1). Nanoparticles larger 
than 10 nm and greater than 50 kDa will avoid leakage 
into capillaries and removal by single-pass renal clearance 
(25,26). Nanoparticles smaller than 100 nm will escape 
capture by macrophages in the reticuloendothelial system 
(RES) (27), where sinusoids in the spleen and the fenestra 
of Kupffer cells in the liver range from 150-200 nm (28).  
Furthermore, tumor blood vessels possess wide gap 
junctions measuring 100-600 nm in size, so nanoparticles 
smaller than 100 nm will optimally penetrate and 
accumulate into tumor tissues (29-31).

Nanoparticle surfaces can also be modified to optimize 
their efficacy and targeting. Nanoparticles with hydrophobic 
surfaces are prone to macrophage capture by the RES (32,33). 
Thus, modifications to create more hydrophilic surfaces will 
help evade removal by the RES. Polyethylene glycol (PEG) 
is the most widely used modification to render nanoparticles 
more hydrophilic (32). PEGylation of nanoparticle surfaces 
prevents opsonization, blocking RES capture, and leading 
to improved circulation time and tumor site accumulation. 
Alternatively, nanoparticles can also be formed using 
block copolymers with both hydrophilic and hydrophobic  
domains (34). Neutral or negatively charged nanoparticle 
surfaces are also preferred, because positively charged 
nanoparticles are more readily taken up by the RES (35).

The shape and flexibility of nanoparticles can also be 
adjusted to improve circulating time. Spherical shaped 

nanoparticles are more likely to maintain streamlined 
movement through a vessel (36,37). Soft, flexible nanoparticles 
are less susceptible to macrophage capture (38,39).

Passive targeting (EPR) 

Passive targeting is a size dependent process that 
capitalizes both on the size and surface characteristics of 
nanoparticles, as well as the unique features of tumor vessel 
pathophysiology. Nanoparticles sized 10-100 nm and with 
the appropriate surface characteristics will evade capture 
by the RES. As a result, they are retained in the circulation 
for longer periods and have a higher likelihood of reaching 
tumor sites. Tumor tissues, meanwhile, are characterized 
by rapid cell proliferation, active neovascularization and 
an imbalance of proangiogenic growth factors. Vascular 
endothelial growth factor (VEGF), bradykinin (40),  
prostaglandins (40), nitric oxide (40), peroxynitrite 
(ONOO−), and matrix metalloproteinases (41), all increase 
the vascular permeability of tumors (42). The end result 
is an irregular, highly distorted vasculature with wide, 
leaky gap junctions that are prone to extravasation by 
nanoparticles smaller than 100 nm in size and with a 
molecular weight above 50 kDa (43). Because these tumor 
tissues have poor lymphatic drainage, nanoparticles will be 
retained in these intratumoral sites for prolonged periods 
(29,44). This combined effect, whereby nanoparticles 
exploit the leaky vasculature and impaired lymphatic 
drainage of tumors, is known as the enhanced permeability 
and retention effect (EPR) (29). The EPR effect produces 
higher intratumoral drug concentrations and simultaneously 
decreased systemic exposure to normal organs; this is a 
unique advantage of nanoparticle delivery systems and 
critical to their success in cancer therapy.

Another strategy to improve passive targeting of 
nanoparticles is via pH-sensitive release (45,46), whereby 
the cytotoxic drug payload is only delivered upon reaching 
specific conditions found in the tumor microenvironment. 
For example, pH-sensitive liposomes are designed to remain 
stable at physiologic pH, but will degrade and release their 
active agent at a lower pH. Because tumor cells utilize 
glycolysis for additional energy production (47), they have 
an acidic environment, and pH-sensitive liposomes will only 
activate at this specific location (46).

Active targeting

While passive targeting localizes nanoparticle drugs to 

A

B

C

Figure 1 Nanoparticle chemotherapeutic targeting is a size 
dependent process. Ideal nanoparticle drug delivery systems 
should be designed to range in size from 10-100 nm in diameter. 
(A) Nanoparticles smaller than 10 nm will be removed by single-
pass renal clearance; (B) nanoparticles larger than 100 nm will 
be captured by macrophages or Kupffer cells; (C) nanoparticles 
sized 10-100 nm penetrate leaky gap junctions between tumor 
endothelial cells and accumulate into tumor sites.
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intratumoral sites via the EPR effect, it does not ensure 
intracellular uptake. Active targeting is a strategy to further 
improve nanoparticle targeting within the cancer cells 
themselves. Nanoparticles are modified with specific, surface-
bound ligands which allow the drug to home with high 
affinity to corresponding receptors expressed on the cancer 
cell. Ligand binding to the cancer cell surface receptor 
triggers receptor-mediated endocytosis, which internalizes 
the drug deep into the cell. This is an important strategy, 
because the ability to bypass membrane efflux pumps may 
allow nanoparticles to overcome drug resistance.

Various moieties, such as peptides, aptamers, proteins, 
and antibodies, can be added to the surface of nanoparticles 
as ligands to facilitate conjugation with cancer cell receptors. 
Examples of cancer cell receptors that have been studied as 
targets for nanoparticles in lung cancer include the folate 
receptor (48), EGFR (49,50), transferrin receptor (51), 
epithelial cell adhesion molecules (EpCAM) (52), interleukin-4 
receptor (53), fibroblast activation protein alpha (FAPα) (54), 
and prostate specific membrane antigen (PSMA) (13).

Preclinical studies suggest that active targeting 
improves antitumor efficacy as a result of enhanced cellular 
internalization of cytotoxic agents, rather than increased 
tumor accumulation (55). This strategy allows not only 
the further specific targeting of nanoparticle therapeutics, 
but also decreased toxicity to non-tumor tissue sites. 
With improved tumor targeting, there will be less drug 
leakage, less localization of drug at normal tissues, and less 
degradation or clearance of drug. At the clinical level, this 
should result in less toxicity for the patient, and allow for 
higher therapeutic doses to be tolerated.

Overcoming drug resistance

Multidrug resistance in cancer cells is commonly due to 
over expression of broad spectrum drug efflux pumps in 
the cellular membrane which non-specifically transport 
drugs out of the cell, and thereby lower intracellular 
drug concentrations (56). This leads to tumor cells with 
resistance to multiple drugs via the same mechanism.

The most prominent family of drug efflux pumps is the 
ATP-binding cassette (ABC) transporter family of efflux 
pumps. Among these, the first described drug efflux pump 
was P-glycoprotein (Pgp) (57,58), the end product of the 
ABCB1 (or MDR1) gene (59). Pgp is a transporter of cationic 
lipophilic substances, and may confer resistance to multiple 
classes of anticancer drugs, including anthracyclines (60), 
vinca alkaloids (61,62), camptothecins (63), taxanes (62), 

and epothilones (64). Studies in both small cell and NSCLC 
have shown increased MDR1 expression in up to 15-50% of 
tumor samples (65,66).

The multidrug-resistance associated protein (MRP1, or 
ABCC1) gene codes for a similar ABC transporter that is 
also associated with multi-drug resistance (67). MRP1 is 
a transporter of organic ions associated with resistance to 
anthracyclines (67,68), antimetabolites (69), vinca alkaloids 
(67,70), topoisomerase inhibitors (71), and alkylating 
agents (72). MRP1 is ubiquitously expressed in normal lung 
tissues; in NSCLC, MRP1 expression was found in 100% 
of samples, with 30% of samples showing increased MRP1 
expression (65,73).

Unlike low molecular weight drugs less than 1 nm 
in diameter, nanoparticles are 1-2 magnitude larger, 
and thus more likely to undergo intercellular uptake via 
endocytosis. These drugs are taken up via endo-lysosomal 
trafficking, into lysosomes, and are taken deep into cells, 
beyond the reach of drug efflux pumps. In doing so, these 
nanomedicines may potentially overcome multidrug 
resistance due to membrane pumps in cancer cells (74). The 
combined use of multiple drugs within a single nanoparticle 
may also provide another means for overcoming multidrug 
resistance going forward (75,76). Combination nanoparticle 
therapy can act on multiple mechanisms leading to 
synergism and lesser toxicity through decreased doses 
compared to single drug regimens (76).

Nanoparticle drug delivery systems

Various nanomaterials have been utilized in cancer 
therapeutics, including: lipids, polymers, viruses, carbon 
nanotubes and organometallic compounds. For the 
purposes of this review, we will only describe liposomes, 
polymeric nanoparticles and polymeric micelle based 
delivery systems. Other nanomaterial delivery systems are 
described elsewhere and beyond the scope of this review.

Liposomes

Lipid-based drug delivery systems, also known as liposomes, 
are closed spherical structures where amphiphilic 
phospholipids and cholesterol form one or more lipid 
bilayers surrounding an aqueous core (77). This liposomal 
structure allows storage of hydrophilic drugs within the 
aqueous core, or for hydrophobic drugs to be associated 
within the lipid bilayers. By improving the solubility of 
cytotoxic agents, liposomes extend drug circulation times 
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and increase the chance of intratumoral uptake. Cytotoxic 
agents designed with liposomal formulations include 
anthracyclines (78-80), platinums (81), camptothecins (82), 
vinca alkaloids (83), and antimetabolites (84-86).

Doxil

StealthTM PEGylated liposomal doxorubicin, also known as 
Doxil (US), or Caelyx (EU), was among the first approved 
nanoparticle chemotherapies, with FDA indications for 
ovarian cancer, AIDS-related Kaposi sarcoma and multiple 
myeloma. Doxil has been shown to have significantly less 
cardiotoxicity compared to standard doxorubicin (87-89). A 
phase I study demonstrated Doxil’s activity as a single agent 
in platinum pretreated advanced or metastatic NSCLC (78); 
among 17 patients, there was 1 PR (5.8%) and 5 SD (29.4%), 
with median TTP 9.5 weeks and median survival 18.6 weeks. 
Because of its relatively low toxicity, Doxil 20 mg/m2 IV 
was combined in a triplet regimen with docetaxel 50 mg/m2 
IV and gemcitabine 1,000 mg/m2 IV on a 2 week cycle, for  
18 patients with treatment-naïve, advanced NSCLC (17 
stage IV, 1 stage III); this triplet regimen resulted in 1 CR 
(5%) and 6 CR/PR (33%) (90). Patients received supportive 
growth factors and amifostine to help reduce toxicity; there 
were no cases of grade III-IV toxicity.

Doxil has been studied as a radiosensitizing agent for 
definitive therapy of NSCLC. In a phase I dose escalation 
study among 15 NSCLC patients, an MTD of Doxil  
25 mg/m2 every 2 weeks for three cycles concurrently 
with conventional fractionated radiotherapy resulted in 
a CR rate of 21% (79). In a subsequent Phase I/II dose 
escalation study among 15 patients with stage IIIB NSCLC, 
the combination of Doxil 25 mg/m2 IV every 2 weeks 
with docetaxel 30 mg/m2 IV weekly during conventional 
fractionated radiotherapy (total 64 Gy) achieved 6 CR 
(40%) and 13 CR + PR (87%) (91). Supportive amifostine 
was administered to all patients; toxicity included grade 
I neutropenia in five patients (20%), grade II anemia in 
three patients (12%), and grade III esophagitis in nine 
patients (36%). The combination of Doxil with cisplatin 
concurrently with conventional radiation was studied 
in a phase I of 18 patients (9 squamous cell lung cancer,  
9 squamous cell head and neck). Among all patients, there 
were 6 CR (33%) and 10 PR (55%) (92). A fourth study 
combined Doxil 20 mg/m2 every 2 weeks for three cycles 
with vinorelbine during hypofractionated accelerated 
radiotherapy (15 fractions of 3.5 Gy over 4 consecutive 
weeks, with 1 week split after the 10th fraction, for a total 

of 65.6 Gy). All patients received supportive growth 
factors and amifostine. Among 14 patients, there were  
9 PR (64.2%), 3 with minimal response (21.4%), and 2 SD 
(14.3%) (93).

Doxil has been assessed as salvage therapy for small cell 
lung cancer. In a Phase II study of Doxil 50 mg/m2 IV every 
4 weeks among 14 patients with recurrent small cell lung 
cancer, there were 3 SD (21.4%), but no PR/CR (94). Doxil 
30 mg/m2 was subsequently combined with vincristine  
1.2 mg/m2 and cyclophosphamide 750 mg/m2, every  
3 weeks among 30 patients with recurrent SCLC, producing 
3 PR (10%) and 15 SD (50%) (95). A Phase II study treated 
26 patients with relapsed SCLC using Doxil 15 mg/m2 
and irinotecan 125 mg/m2 every 2 weeks, resulting in 4 PR 
(12.9%) and 2 SD (6.5%) (80).

MM-398

Nanoliposomal irinotecan, also known as PEP02, or MM-
398, is a PEGylated liposomal formulation of irinotecan 
designed to offer higher drug load and stability, as compared 
to standard irinotecan. This formulation was able to carry a 
drug load of 109,000 irinotecan molecules per nanoparticle, 
nearly 10-20 times that of other liposomal formulations (82). 
In vivo studies showed that MM-398 achieved prolonged 
circulation compared to standard irinotecan, with 23.2% of 
injected dose of MM-398 present at 24 hours, versus only 
2% of injected dose of standard irinotecan remaining at  
30 minutes (82). In preclinical models, MM-398 showed 
both higher antitumor efficacy and lower toxicity compared 
to standard irinotecan in models of squamous cell lung 
cancer (96) and small cell lung cancer (96). In a Phase I dose 
finding study of 11 patients (including 1 NSCLC), a MTD 
of 120 mg/m2 IV on Day 1 of a 3 week cycle resulted in 2 
PR and 3 SD among ten patients evaluable for response, 
for a disease control rate of 50% (97). Unfortunately, the 
one NSCLC patient included in this study was removed 
from the study after prolonged treatment interruption (due 
to catheter-based infection). MM-398 was well tolerated 
with the most common hematologic toxicity being grade 
I/II anemia and neutropenia, and the most common non-
hematologic toxicity being grade I/II diarrhea, nausea and 
alopecia. There was only one episode of grade III catheter-
related infection at the MTD of 120 mg/m2 (97).

Lipoplatin

PEGylated liposomal cisplatin, or LipoplatinTM, was 
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designed by Regulon, Inc. Mountain View, CA, USA and 
has been investigated in multiple NSCLC studies in Europe. 
Lipoplatin measures 110 nm in size, and consists of a lipid 
shell [containing dipalmitoyl phosphatidyl glycerol (DPPG), 
soy phosphatidyl choline (SPC-3), cholesterol and methoxy-
polyethylene glycol-distearoyl phosphatidylethanolamine 
(mPEG2000-DSPE)], and a cisplatin-containing core (10). The 
LipoplatinTM formulation is 8.9% cisplatin and 91.1% lipid 
by weight.

Preclinical studies demonstrated that LipoplatinTM has 
antitumor efficacy (98), with up to 50 times higher intratumoral 
concentrations compared to normal tissues (99), and less renal 
toxicity compared to standard cisplatin (100). A mouse 
model study of NSCLC showed that LipoplatinTM had 
superior cytotoxicity in malignant cells but lower toxicity 
in normal cells, compared to cisplatin (101). This study 
also found a direct correlation between lipoplatin resistance 
and excision repair cross-complementing 1 (ERCC1)  
and lung resistance protein (LRP) expression (101). These 
two markers are known predictors of response to cisplatin 
(102-105), and may have similar utility for LipoplatinTM. 
DNA mismatch repair (MMR) status has also been 
identified as a predictor of response to lipoplatin, with 
MLH1-deficient cell lines showing in vitro resistance to 
lipoplatin (106).

A phase I study of 2nd-line LipoplatinTM with gemcitabine 
in 13 patients with platinum pretreated, advanced NSCLC 
found a MTD of LipoplatinTM 120 mg/m2 (107). The 
overall disease control rate was 23% (three patients), with 
median OS 29 weeks (range, 4-59 weeks) and median 
TTP 12 weeks (range, 3-36 weeks). The combination was 
well tolerated with grade III or higher toxicity (nausea/
vomiting, flu-like syndrome) only occurring at dose level 
4 (130 mg/m2). A subsequent phase II study of 88 patients 
with advanced NSCLC compared LipoplatinTM 120 mg/m2  
IV on Days 1, 8 + gemcitabine 1,000 mg/m2 IV on Days 1, 
8 of a 3 week cycle (n=47) versus cisplatin 100 mg/m2 IV 
on Day 1 + gemcitabine 1,000 mg/m2 IV on Days 1, 8 of a 
3 week cycle (n=44) (108). The ORR for LipoplatinTM and 
cisplatin were not statistically different (31.7% vs. 25.6%). 
Of note, the lipoplatin regimen achieved significantly 
better responses among adenocarcinoma histology subtypes 
(16.7% PD), compared to squamous histology (46.1% PD). 
There was less toxicity with LipoplatinTM, particularly less 
nephrotoxicity (14.6% vs. 25% grades I-IV).

A phase III multicenter study of chemotherapy-naïve, 
inoperable NSCLC compared LipoplatinTM 200 mg/m2 IV 
on Day 1 + paclitaxel 135 mg/m2 IV on Day 1 of a 2 week  

cycle (n=102) versus cisplatin 75 mg/m2 IV on Day 1 
+ paclitaxel 135 mg/m2 IV on Day 1 of a 2 week cycle  
(n=100) (109). Grade I-IV nephrotoxicity was significantly 
lower for LipoplatinTM (6.1% vs. 40%, P<0.001), as were 
grade I-IV neutropenia (33.3% vs. 45.2%, P=0.017) and 
grade I-IV nausea/vomiting (32.5% vs. 45.2%, P=0.042). 
Median OS (9 vs. 10 months) and TTP (6.5 vs. 6 months) 
were not statistically significantly different. Overall 
response rates were not statistically significant between the 
two arms. However, non-squamous histologies showed a 
better response rate (59.5% vs. 42.5%) and median survival 
(10 vs. 8 months) after 18 months, with double the number 
of surviving patients (110).

LipoplatinTM has been studied as monotherapy in 
NSCLC, at a dose of 200 mg/m2 IV Days 1, 2 of a  
2 week cycle (111). Among 21 patients (19 with ≥1 prior  
chemotherapy), there were 38.1% PR and 42.9% SD. 
Toxicity included two patients (9.5%) with grade I 
myelotoxicity, four patients (19.1%) with grade I nausea/
vomiting and no nephrotoxicity.

A study was performed to assess the impact of LipoplatinTM 
on renal insufficiency (112). A total of 40 patients with 
solid tumors (including 16 NSCLC) who had median 
serum creatinine 2.4 mg/dL (range, 1.6-3.5 mg/dL) were 
treated with LipoplatinTM 150-200 mg/m2 IV Day 1 and 
gemcitabine 1,000 mg/m2 IV Day 1 on a 2 week cycle. 
Although grade I-II myelotoxicity occurred (attributed to 
gemcitabine), there were no patients with increased serum 
creatinine, suggesting that patients with renal insufficiency 
and NSCLC may be considered eligible for treatment with 
LipoplatinTM.

Polymeric nanoparticles

Polymer nanoparticle drug delivery systems, are solid, 
colloidal systems composed of a polymer matrix to which 
a cytotoxic drug is either covalently attached, dissolved, 
encapsulated or entrapped within. Polymer nanoparticles 
may be engineered either using natural polymers, such as 
albumin, chitosan and heparin, or using synthetic polymers, 
such as polyethylene glycol (PEG), poly-L-glutamic acid 
(PGA), polylactic acid (PLA), poly(D,L-lactide-co-glycolic) 
acid (PLGA), and N-(2-hydroxypropyl)-methacrylamide 
copolymer (HPMA). One advantage to the use of polymeric 
nanoparticles is the ability for “controlled release”, whereby 
the rate of biodegradation and drug diffusion through the 
polymer matrix can be tuned to achieve controlled release 
kinetics, with release durations ranging from minutes up to 
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weeks. Conjugation of PLGA to doxorubicin nanoparticles, 
for example, increased drug release from 5 days for 
unconjugated doxorubicin up to 25 days for conjugated 
PLGA-doxorubicin (113). Polymer nanoparticle formulations 
have been designed for several cytotoxic drugs, including 
taxanes (8,13,114), camptothecin (115), anthracyclines (116), 
and topoisomerase II inhibitors (117).

Abraxane

Albumin-bound nanoparticle paclitaxel, also known as 
nab-paclitaxel, or Abraxane, is FDA approved for 1st 
line therapy of advanced/metastatic NSCLC, as well as 
metastatic breast cancer and metastatic pancreatic cancer. 
In preclinical models, nab-paclitaxel demonstrated higher 
mean maximum blood concentration, higher intratumoral 
concentration, greater transport across endothelial cell 
layers, and higher antitumor activity, when compared 
to solvent based paclitaxel (118). This was corroborated 
in human pharmacokinetic studies,  which showed 
higher systemic exposure to free paclitaxel in patients 
receiving nab-paclitaxel versus those receiving solvent-
based paclitaxel (114). A phase III study comparing nab-
paclitaxel and carboplatin versus standard solvent based 
paclitaxel and carboplatin as 1st line therapy for advanced 
or metastatic NSCLC, found improved antitumor activity 
and tolerability, leading to FDA approval as 1st line therapy 
in this setting (8). Patients treated with nab-paclitaxel had 
significantly less sensory neuropathy, neutropenia, arthralgia 
and myalgia compared to those receiving solvent based 
paclitaxel. Subgroup analysis demonstrated that elderly 
patients (70 years and older) treated with nab-paclitaxel had 
improved median OS (19.9 vs. 10.4 months, P=0.009) (119).

BIND-014

BIND-014 (BIND Therapeutics, Inc.) is a PEG-PGLA 
copolymer nanoparticle containing docetaxel that is 
targeted against PSMA. PSMA is a prostate epithelial cell 
surface membrane glycoprotein found on the surface of 
both primary prostate tumor cells and metastatic prostate 
cancer cells, as well as the neovasculature of other non-
prostate solid tumors (120-122). In one study, 5 out of 5 
(100%) NSCLC tumor samples showed overexpression of 
PSMA (120). BIND-014 features an S,S-2-[3-[5-amino-1-
carboxypentyl]-ureido]-pentanedioic acid (ACUPA) moiety, 
which functions as a PSMA substrate analog inhibitor to 
target PSMA on target cancer cells (13).

In mouse models, BIND-014 showed enhanced tumor 
accumulation at 12 hours and prolonged tumor growth 
suppression compared to solvent-based docetaxel (13). 
Additional pre-clinical and clinical PK studies in both mice 
and monkeys have shown that BIND-014 achieves higher 
Cmax and AUC with reduced drug clearance and volume of 
distribution compared to solvent-based docetaxel (123).

A phase I study of 5 different solid tumors (prostate, 
cervical, NSCLC, breast and hepatobiliary) showed 
immunohistochemical detection of PSMA in prostate 
epithelium and the neovasculature of cervical, anal, 
NSCLC, and hepatobiliary tumors (124). All patients 
experienced some objective response to BIND-014 (CR, 
PR, or SD). A phase I safety and dose-finding study of  
30 patients with solid tumors (NSCLC, 6; hepatobiliary, 5; 
head and neck, 3; prostate, 2; and other solid tumors, 14), 
resulted in 3 PR (NSCLC, cervical and hepatobiliary), as 
well as 5 SD (prostate, pancreas, hepatobiliary, head and 
neck, and anal) (125). BIND-014 was shown to have a dose-
linear PK profile with prolonged circulation compared 
to solvent based docetaxel. The MTD was 60 mg/m2 IV 
on Day 1 of a 3 week cycle. A separate phase I safety and 
tolerability study was performed to assess BIND-014 on a 
weekly dosing schedule (126). A total of 27 patients were 
evaluable, including three NSCLC. PK studies again showed 
dose-linear PK and prolonged circulation. There were two 
confirmed PR (breast, esophagus), and 4 SD >12 weeks  
(including 1 NSCLC). The MTD was 40 mg/m2 on Days 1, 8, 
and 15 of a 4-week cycle, resulting in a 50% increase in dose 
exposure over 28 days compared to 3 week cycle dosing.

A subsequent phase II study treated 40 patients with 
stage III/IV NSCLC with known genomic status (EGFR, 
ALK or KRAS), using BIND-014 60 mg/m2 on Day 1 of 
a 3-week cycle, with ORR as the primary endpoint (127). 
Among the 40 patients enrolled, a median of 3 doses was 
administered (range, 1-12). Out of 33 patients evaluable 
for response, there were 5 (15%) PR and 12 (36%) SD 
lasting ≥12 weeks. Among 8 patients with KRAS mutations, 
2 (25%) had PR and 3 (38%) had SD ≥12 weeks, for a 
total disease control rate of 63% among KRAS mutants. 
Grade III/IV hematologic toxicities included anemia 
(8%) and lymphocytopenia (5%), while grade III/IV non-
hematologic toxicity included fatigue (13%), dehydration 
(10%), peripheral neuropathy (3%), dyspnea (3%), and  
hypoxia (3%).

There are currently two phase II involving BIND-014 in 
NSCLC. The first is a phase II to assess safety and efficacy 
as second-line therapy in NSCLC patients who failed one 
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prior platinum-based regimen for advanced or metastatic 
disease. The primary outcome will be number of patients 
with either CR or PR, and the secondary outcome number 
of patients with adverse events. A second phase II study 
will assess BIND-014 as second-line therapy for NSCLC 
patients with KRAS mutations or squamous cell histology. 
The primary outcome will be disease control rate, and the 
secondary outcomes will include PFS, OS, duration of 
response, time to response, and safety and tolerability.

Polymeric micelles

Polymeric micelles utilize self-assembling amphiphilic 
block copolymers to form a hydrophilic outer shell region 
that surrounds a hydrophobic core (26). This approach is 
particularly useful for the delivery of hydrophobic drugs in 
an aqueous solution, although hydrophilic drugs can also 
be coupled to the outer hydrophilic surface as well (128).  
For the hydrophilic segment, many amphiphilic copolymers 
use PEG, while for the hydrophobic segment, a variety 
of polyester or poly (amino acid) derivatives may be used, 
such as PLA or PGA (26). Polymeric micelles have several 
features which improve their thermodynamic stability, 
including increased hydrophobic segment length (129), 
crystallinity (130), cross-linking of the shell or core 
(131,132), and cohesive forces between drug and core 
(133,134). In addition to their ability to solubilize drugs in 
aqueous solution, polymeric micelles are often smaller than 
50 nm in size, which allows for prolonged circulation and 
improved evasion of the RES.

GENEXOL-PM

Genexol-PM, also known as Cynviloq, is a polymeric micelle 
loaded paclitaxel formulation approved for NSCLC in 
South Korea. The drug was originally designed by Samyang 
Co, Seoul, Korea, to avoid the toxicities associated with 
Cremophor, the lipid based solvent traditionally used to 
formulate paclitaxel. Genexol-PM consists of a monomethoxy 
polyethylene glycol-poly (D,L-lactic acid (mPEG-PDLLA) 
amphiphilic diblock copolymer with a paclitaxel drug load 
within its hydrophobic core. In pre-clinical models, Genexol-
PM displayed higher biodistribution, higher maximum 
tolerated dose, and higher antitumor efficacy compared 
to solvent based paclitaxel (14). In vitro studies and mouse 
xenograft studies have also demonstrated that Genexol-PM 
may be more effective at radiosensitizing compared to solvent 
based paclitaxel in NSCLC (135).

A phase I safety and tolerability study among 21 patients 
with pretreated solid tumors (eight with lung cancer), identified 
the MTD of 390 mg/m2 IV on Day 1 of a 3 week cycle, with 
neutropenia, myalgia and neuropathy the main dose-limiting 
toxicities. The recommended dose was 300 mg/m2 on Day 1 of 
a 3 week cycle. There were 3 PR (14%), including 2 taxane-
pretreated patients (1 NSCLC) and 1 small cell lung cancer 
(taxane-naïve) (136). In another phase I study, 24 pretreated 
solid tumor patients (7 lung cancer, 11 taxane-pretreated) 
were treated with weekly dosing of Genexol-PM, and 
identified a MTD of 180 mg/m2 IV on Days 1, 8, and 15 of 
a 4-week cycle. There were 5 PR (21%), including 2 with 
lung cancer, and 9 SD (38%) (137).

In a multicenter phase II study, 69 patients with 
treatment naïve advanced NSCLC were treated using a 
combination of Genexol-PM 230 mg/m2 IV on Day 1 and 
cisplatin 60 mg/m2 IV on Day 1 of a 3-week cycle (138).  
Genexol-PM was dose escalated to 300 mg/m2 if no 
toxicities were observed after the first cycle. Among  
69 patients, 77% had stage IV disease, and histology types 
included adenocarcinoma (58%), squamous (20%), large cell 
(3%) and other (19%). The ORR was 37.7%; 20 patients 
(29.0%) achieved SD. The median response duration of  
26 responders was 19.8 weeks. Median TTP for all 
patients was 5.8 months and median OS was 21.7 months 
with a median follow-up of 9.6 months. Hematologic 
toxicity included grade III/IV neutropenia (46.4%), 
febrile neutropenia (3%), and grade III anemia (3%). 
Non-hematologic toxicity included grade III peripheral 
neuropathy (13%), grade III/IV myalgia (5.8%), and 
grade III/IV arthralgia (7.3%). There was no grade IV 
neuropathy. Dose reductions were required for 7 patients 
(10%) due to toxicity.

In another multicenter phase IIB study, the combination 
of Genexol-PM with cisplatin was directly compared 
against solvent-based paclitaxel with cisplatin (139).  
A total of 276 patients with advanced NSCLC were 
randomized to either Genexol-PM 230 mg/m2 IV on Day 1 
and cisplatin 60 mg/m2 IV on Day 1 of a 3-week cycle (n=140) 
versus solvent-based paclitaxel 175 mg/m2 IV on Day 1 and 
cisplatin 60 mg/m2 IV on Day 1 of a 3-week cycle (n=136). 
Histology subtypes included adenocarcinoma (50.4%), 
squamous cell (40.2%), large cell (1.8%) and other (7.6%). 
ORR for the Genexol-PM arm was 44%, compared to 42% 
for the solvent-based paclitaxel arm. Median PFS (5.4 vs. 
5.5 months), median OS (15.1 vs. 14.0 months) and 1-year 
survival rates (62% vs. 55%) were not significantly different. 
Incidence of grade III/IV toxicity was similar between both 
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arms. Grade III/IV neutropenia was higher in the Genexol-
PM arm (P=0.04), but there was no significant increase in 
febrile neutropenia (P=0.8). As such, this study demonstrated 
noninferiority for Genexol-PM with cisplatin compared to 
standard solvent-based paclitaxel with cisplatin in NSCLC.

Genexol-PM was studied in combination with gemcitabine 
in a phase II study for advanced NSCLC (140). A total of  
43 patients were treated with Genexol-PM at 230 mg/m2  
IV on Day 1 and gemcitabine 1,000 mg/m2 IV on Day 
1 and Day 8 of a 3-week cycle. Histology types included 
adenocarcinoma (65%), squamous (19%), and other (16%). 
Twenty-three patients (53%) were EGFR wild type,  
3 patients (7%) EGFR mutant, and 17 patients (40%) 
were unknown. The ORR was 46.5%, with 0 CR and  
20 PR. Median PFS was 4.0 months, and median OS was 
14.8 months. Grade III/IV toxicity occurred in 22 patients 
(51.2%). Grade III/IV hematologic toxicity included 
neutropenia (16%) and neutropenic fever (9%). The 
most common grade III/IV non-hematologic toxicities 
were pneumonia (12%), asthenia (7%), pulmonary 
thromboembolism (7%), myalgia (5%), peripheral 
neuropathy (5%), diarrhea (2%), skin rash (2%), and 
dyspnea (5%).

Preliminary results from a phase II study combining 
Genexol-PM with carboplatin were presented at the ASCO 
2014 Annual Meeting (141). A total of 80 patients with 
stage IIIB/IV NSCLC were treated with Genexol-PM  
230 mg/m2 IV on Day 1 and Carboplatin AUC 6 IV on 
Day 1 of a 3-week cycle for a maximum of 6 cycles. Clinical 
responses included 40.7% PR, and 48.2% SD. Hematologic 
toxicity was manageable, varying from grade I-III, and 
included 22 patients (27.5%) with grade III neutropenia.

NC-6004

NC-6004 is a 28 nm diameter, polymer-metal micellar 
nanoparticle composed of a hydrophilic PEG outer shell 
and an inner core that contains a coordinate complex of 
polyglutamate [P(Glu)] with cisplatin (15). In comparison 
to other cisplatin-containing polymeric micelles, this 
formulation was able to achieve a relatively much higher 
drug composition of 39% by weight. NC-6004 is extremely 
stable in distilled water with prolonged decay, and even 
under diluted conditions, showed a sustained release 
pattern >150 hours with no initial burst of drug release. 
NC-6004 showed prolonged plasma circulation, increased 
intratumoral accumulation and decreased accumulation in 
normal organs, when compared to standard free cisplatin 

in mouse models. In vivo antitumor activity of NC-6004 
was demonstrated in mouse models of both lung and colon 
cancer, and interestingly, the investigators were also able to 
achieve complete tumor regression in 6 out of 10 mice with 
colon adenocarcinoma.

In a preclinical study using rodent models, NC-6004 
showed decreased clearance and longer circulation time 
compared to standard cisplatin (142). NC-6004 achieved 
an AUC0-t 65 times that of cisplatin (P<0.001) and a Cmax  
8 times that of cisplatin (P=0.001). Meanwhile, the CLtot of 
NC-6004 was one-nineteenth of that of cisplatin (P<0.01). 
NC-6004 also showed greater tumor accumulation 
compared to cisplatin. Peak tumor platinum concentrations 
for NC-6004 occurred at 48 hours after administration, 
compared to 10 minutes after administration for cisplatin. 
Intratumoral maximum concentration (Cmax) was  
2.5 times higher for NC-6004 than cisplatin (P<0.001), 
and intratumoral AUC was 3.6 times higher for NC-6004 
than cisplatin. For gastric cancer implanted mice, NC-6004 
showed antitumor activity equivalent to or greater than 
cisplatin. Meanwhile, NC-6004 resulted in significantly less 
neuropathy and nephrotoxicity compared to cisplatin. A 
separate preclinical study also found that NC 6004 resulted 
in decreased ototoxicity among guinea pigs, with decreased 
platinum distribution and lower platinum concentration in 
the organ of Corti (P<0.01), when compared to standard 
cisplatin (143). NC-6004 has also been found to be effective 
in mouse models of oxaliplatin-resistant tumors (144).

Based on these preclinical studies, an open-label, dose-
escalating phase I study of NC-6004 was conducted among 
17 patients with advanced solid tumors in the UK (145). 
Tumor types included: colon [4], lung [3], esophagus 
[2], melanoma [2], pancreas [2], GIST [1], renal [1], 
mesothelioma [1], and hepatobiliary [1]. Patients were 
treated with NC-6004 IV on Day 1 of a 3 week cycle, 
with the MTD identified as 120 mg/m2 IV on Day 1 of a 
3-week cycle and the recommended dose 90 mg/m2 IV on 
Day 1 of a 3-week cycle. The maximum number of cycles 
received was four cycles (three patients), and mean number 
of cycles was 2.4. Pharmacokinetic data showed that 
maximum plasma concentration and AUC of ultra-filterable 
platinum after NC-6004 were 1/34 and 8.5 folds of those 
with free cisplatin. NC-6004 was well tolerated from a 
hematologic toxicity standpoint, with only one episode of 
grade III thrombocytopenia at 10 mg/m2 and one patient 
with grade I thrombocytopenia at 90 mg/m2. Regarding 
non-hematologic toxicity, the most common adverse events 
were fatigue (52.9%), nausea (47.1%), vomiting (42.1%), 
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and renal impairment (35.3%). There was no observed 
ototoxicity or neuropathy at any dose level. SD was 
observed in seven patients (41.2%) for longer than 4 weeks, 
including two patients with lung cancers. At dose levels 
10-60 mg/m2, only 2 out of 8 patients achieved SD (25%), 
while at doses 90-120 mg/m2, 50% and 67% achieved SD, 
suggesting higher efficacy with higher doses of NC-6004. 
Overall, median PFS was 49 days.

A phase Ib/II dose escalation and expansion study of NC-
6004 is currently enrolling patients with advanced stage IIIB/
IV squamous and non-squamous NSCLC on second- or 
third-line therapy, as well as other patients with advanced 
solid tumors, to be treated with the combination of NC-6004 
and gemcitabine. The primary outcomes will be maximum 
tolerated dose of NC-6004, and the secondary outcomes will 
assess overall response rate, based on CR and PR.

Conclusions

The recent introduction of immunotherapy has made a 
significant impact in the treatment of lung cancer, with 
improved outcomes including higher response rates, 
PFS and OS. KEYNOTE-001 treated 495 patients with 
advanced NSCLC using pembrolizumab, an anti-PD-1 Ab, 
in advanced NSCLC; the objective RR among all patients 
was 19.4%, with median duration of response 12.5 months, 
median duration of PFS 3.7 months and median duration 
of OS 12.0 months (7). In CheckMate 017, a total of  
272 patients with advanced pre-treated squamous cell 
NSCLC were randomized to either anti-PD-1 therapy with 
nivolumab or docetaxel. Compared to docetaxel, nivolumab 
produced higher median OS (9.2 vs. 6.0 months), and 
higher response rates (20% vs. 9%). Median PFS was  
3.5 months for patients treated with nivolumab (6).

While both of these studies demonstrated the utility 
of immunotherapy alone in NSCLC, it is unclear how to 
use immunotherapy in combination with chemotherapy. A 
phase II study randomized 204 patients with chemotherapy 
naïve, advanced NSCLC to treatment with carboplatin 
and paclitaxel plus either “concurrent” ipilimumab (anti-
CTLA-4 Ab), “phased” ipilimumab, or placebo (5). 
“Concurrent” dosing consisted of ipilimumab given up 
front with the first four cycles of chemotherapy, while 
“phased” dosing required that the first two cycles of 
chemotherapy be given alone, and then ipilimumab was 
added for subsequent cycles. Though this study suggested 
a PFS benefit from “phased” dosing of ipilimumab, there is 
currently no standard approach to the use of chemotherapy 

with immunotherapy for NSCLC. More importantly, for 
the many patients who do not respond to immunotherapy, 
chemotherapy may be their only remaining treatment 
option. Consequently, the need to improve chemotherapy 
remains as vital as ever.

Targeted therapy has improved treatment of NSCLC 
compared to chemotherapy as well (3,4), but is also a 
strategy that has its limitations. EGFR mutations only 
occur in approximately 10-20% of North American 
or European populations with lung adenocarcinomas, 
although this number may be as high as 60% in Asian 
populations (146). ALK and ROS1 mutations are much less 
common, and occur in approximately 5% and 1% of lung 
adenocarcinoma, respectively (146). In addition to patients 
who do not have these targetable mutations, there are also 
patients who have mutations but develop resistance to 
target inhibitors. Resistance to EGFR inhibitors has been 
attributed to secondary EGFR mutations (T790M) in up 
to 60% of patients (147); other less frequent mechanisms 
for EGFR resistance include HER2 amplification, c-MET 
amplification, and PI3KCA mutations (148). In contrast, 
resistance to ALK inhibitors occurs due to secondary 
mutations in only 1/3 of cases, with other mechanisms 
including EGFR co-activation, KIT amplification, KRAS 
activation or IGF-1 receptor activation (149). For patients 
who develop resistance to targeted therapy, chemotherapy 
remains the standard for restoring responsiveness.

Chemotherapy for NSCLC has not significantly been 
improved since the 1990s. Systemic toxicity associated with 
platinum doublet chemotherapy regimens presents one of 
the key challenges in this arena. Nanoparticle therapies 
present a new arsenal of effective, but less toxic anticancer 
agents to fit this need. Through their unique size, 
nanoparticles employ the EPR effect, resulting in increased 
intratumoral concentrations and decreased systemic toxicity 
to normal tissues. Clinically these formulations demonstrate 
significantly better tolerability compared to standard 
chemotherapy formulations, including: (I) decreased 
cardiotoxicity for nanoparticle anthracyclines; (II) less 
neuropathy and renal toxicity for nanoparticle platinums; 
and (III) less neuropathy and myelosuppression for 
nanoparticle taxanes. Due to their unique size dependent 
properties, nanotherapies are able to carry higher amounts 
of cytotoxic drug, bind to multivalent ligands for improved 
tumor targeting, and overcome membrane pump drug 
resistance mechanisms, all which may contribute to higher 
antitumor efficacy as well. As nanotechnology improves, 
this should inevitably result in a growing number of new 
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anticancer agents, each with their own unique advantages.
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