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Abstract: The treatment of advanced or metastatic non-small cell lung cancer (NSCLC) has undergone a major 

change over the past decade, from a single option of platinum-based systemic chemotherapy to an increasingly 

personalized approach to treatment based on specific molecular alterations within tumors. The scope of this paper 

is to review the literature on the treatment of non-squamous NSCLC and give a broad understanding of the 

current molecular targets for which therapies currently exist, as well as other targets for which therapies may soon 

be developed. Additionally, issues of resistance with targeted therapies will be discussed. This manuscript only 

summarizes the work done to date, and in no way is meant to be comprehensive.
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Introduction 

Lung cancer is the leading cause of cancer related mortality 
in the United States, with an estimated 200,000 new cases 
and 160,000 deaths annually (1). Non-small cell lung cancer 
(NSCLC) accounts for approximately 85% of all lung 
cancers (2) and is further subtyped into adenocarcinoma, 
squamous cell carcinoma, and large cell carcinoma. Over 
the past decade it has become clear that subsets of NSCLC 
can be further subdivided based on the driver mutations 
occurring in multiple oncogenes including epidermal 
growth factor receptor (EGFR), anaplastic lymphoma 
kinase (ALK), kirsten rat sarcoma viral oncogene homolog 
(KRAS), ros oncogene 1 (ROS1), v-raf murine sarcoma viral 
oncogene homolog B1 (BRAF), human epidermal growth 
factor receptor 2 (HER2)/NEU, Ret proto-oncogene 
(RET), MAPK/Erk kinase (MEK), and C-mesenchymal-
epidermal transition (C-MET)/recepteur d'origine nantais 
(RON). Targeting therapy toward these specific genetic 
alterations is becoming the standard for NSCLC treatment.

This review aims to provide an overview on the genetic 
alternations most often seen in non-squamous NSCLC 
and treatments aimed at targeting these alterations. We 

also examine some of the mechanisms of resistance to these 
therapies and ways of overcoming resistance to further 
improve overall survival rates in these patients.

Epidermal growth factor receptor (EGFR)

EGFR is a receptor tyrosine kinase involved in cellular 
differentiation, proliferation, angiogenesis and apoptosis. 
It is estimated that 10% of NSCLC patients in the United 
States with NSCLC and 35% in East Asia have tumors with 
EGFR mutations (3,4), making this receptor an important 
molecular target for disease treatment. The classic 
activating mutations including exon 19 deletions and exon 
21 L858R substitution account for approximately 45% and 
40% of all EGFR mutations respectively (5). Many large 
studies have emerged in the last few years validating the 
clinical use of EGFR tyrosine kinase inhibitors (TKIs) over 
chemotherapy as first line treatment for NSCLC patients 
harboring EGFR mutations (3,4,6). These therapies initially 
included first line EGFR TKIs gefitinib and erlotinib, both 
of which work by reversibly binding and blocking the ATP 
binding site of EGFR’s tyrosine kinase domain preventing 
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homodimer formation and subsequent activation of the 
signaling cascade (4,6-8). 

The combination of first generation TKIs and standard 
chemotherapy regimens have historically not shown to have 
any significant benefit in patients not selected for EGFR 
mutations (9-12). The FASTACT 2 study, which used 
an intercalated approach combining intermittent dosing 
of chemotherapy with EGFR tyrosine kinase inhibition 
demonstrated encouraging progression free survival and 
overall survival specifically when selected for EGFR 
mutated NSCLC (13). This trial however, did not compare 
results with single agent EGFR TKI’s which are now 
standard of care for EGFR mutation positive tumors and 
are less toxic to the patient than combination therapy (14). 

Initial responses to EGFR-TKIs are favorable, however, 
most patients will go on to become resistant to these 
treatments within 1-2 years. There are many mechanisms 
of resistance, the most common of which is the acquired 
mutation T790M, which occurs in approximately 50% 
of patients (15,16). The T790M mechanism of resistance 
prevents drug binding to the domain through steric 
hindrance. Other resistance mechanisms to TKIs include 
transformation to small cell carcinoma, emergence of 
HER2 amplification, and MET overexpression (17). 

Afatanib is a second generation TKI that acts as an 
irreversible EGFR inhibitor. Phase III trials including the 
Lux-3 and Lux-6 studies showed a progression free survival 
benefit when compared with standard chemotherapy 
in patients with EGFR mutated tumors (18,19). A joint 
analysis of both trials showed that the median overall 
survival was not significantly increased for patients given 
afatanib as compared with chemotherapy. However, when 
the combined trial data were analyzed based upon the 
specific mutation present, a statistically significant benefit 
was observed in both overall and progression-free survival in 
patients with exon 19 deletions. In patients with the L858R 
mutation there was a significant benefit in progression-free, 
but not overall survival (20). The currently ongoing Lux-7  
trial is a phase IIb trial comparing afatinib to gefitinib as 
first line treatment in patients with documented EGFR 
mutations (NCT01466660).

Third generation TKIs like AZD9291 and rociletinib 
(CO1686) have emerged as potential therapeutics in tumors 
harboring acquired T790M resistance mutations (21). A 
recently published phase I/II clinical trial evaluating patients 
with acquired resistance to EGFR TKI’s showed favorable 
results with AZD9291 (22). Multiple ongoing phase III 
trials are examining AZD9291 compared to standard 

chemotherapy regimens (NCT02296125, NCT02474355). 
Further clinical trials under investigation are examining 
AZD929 in combination with novel immunotherapeutic 
a g e n t s  s u c h  a s  M E D  4 7 3 6 ,  a  P D - L 1  a n t i b o d y 
(NCT02143466, NCT02454933). In a recently published 
phase I/II clinical trial Rociletinib showed favorable results 
in patients who progressed on previous TKI therapy (23). 
More data on the use of rociletinib will be examined in the 
ongoing phase 3 TIGER-3 study, which aims to examine 
Rociletinib versus single agent chemo in patients who 
have failed at least one previous TKI and platinum doublet 
chemotherapy (NCT02322281).

T h e  N - m e t h y l - N ' - n i t r o s o g u a n i d i n e  h u m a n 
osteosarcoma transforming gene (MET) receptor kinase 
is involved in tumor-cell proliferation, mobilization and 
angiogenesis. Overexpression, amplification or aberrant 
signaling of the MET receptor tyrosine kinase has been 
implicated as a mechanism of erlotinib resistance in 
tumors with EGFR- activating mutations (24-26). MET 
activation increases the expression of some EGFR ligands 
and coactivation of EGFR and MET has been described 
to result in resistance (27). Small molecule inhibitors of 
MET have not yet demonstrated much therapeutic success. 
ARQ197 (Tivantinib) is a selective small molecule that 
inhibits MET receptor tyrosine kinase causing inhibition of 
cell proliferation and induction of cellular apoptosis, and has 
been studied in combination with EGFR TKIs. The recent 
phase III MARQUEE trial comparing erlotinib with or 
without tivatinib showed increased progression free survival 
but did not improve overall survival in nonsquamous 
NSCLC patients treated with the combination (28). The 
similar phase III ATTENTION trial was terminated early 
due to increased incidence of interstitial lung disease in the 
ARQ197 group (29). There is encouraging data for the role 
of MET inhibition using monoclonal antibodies against 
MET. Onartuzumab, a monoclonal antibody against the 
MET receptor has been shown in a recent phase II trial 
to increase progression free survival and overall survival 
in MET+ patients when combined with EGFR TKIs (30). 
This is being further investigated in an ongoing phase 
phase III trial evaluating onartuzumab in combination with 
erlotinib in patients With MET-Positive, EGFR mutant 
NSCLC (NCT01887886). 

Improving progression free survival in EGFR mutated 
NSCLC tumors by employing synergy with other small 
molecules (such as VEGF inhibitors) is another goal of 
many ongoing trials. Although a recent phase III clinical 
trial showed no benefit of bevacizumab plus erlotinib 
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versus erlotinib alone after failure of standard first-line 
chemotherapy in an unselected group of non-squamous 
NSCLC patients (31), further data suggests that there may 
be a survival benefit in patients with tumors specifically 
known to harbor EGFR driver mutations (32). Further 
clinical trials evaluating small molecules such as VEGF 
inhibitors or immune therapy with EGFR inhibitors are on-
going [NCT01532089 (VEGF), NCT01998126 (CTLA-4), 
and NCT02013219 (PDL1)]. 

Anaplastic lymphoma kinase (ALK)

It is estimated that 3-5% of patients with NSCLC harbor 
a fusion mutation involving ALK. The most common 
variant contains an inversion in chromosome 2 that 
juxtaposes the 5' end of the echinoderm microtubule-
associated protein-like 4 (EML4) gene with the 3' end of 
the anaplastic lymphoma kinase (ALK) gene, resulting in 
the novel fusion oncogene EML4-ALK (33). Patients with 
ALK-rearrangements tend to be young, never or former 
light smokers, and most likely to have tumors of the 
adenocarcinoma histologic subtype (34). 

Crizotinib is an orally available ALK/MET/ROS1 TKI. 
The phase III PROFILE 1007 study compared crizotinib 
with chemotherapy as second-line therapy in ALK+ patients. 
Findings demonstrated an increase in progression free 
survival in the experimental arm but no significant increase 
in overall survival (35). Similar results were seen in the 
phase III PROFILE 1014 study comparing crizotinib with 
chemotherapy in patients with ALK-arranged NSCLC 
who had not received prior systemic treatment. Progression 
free survival was prolonged in the experimental group 
but no significant difference was seen in overall survival 
in the interim analysis. Interpretation of overall survival 
is complicated by exposure of the patients assigned to 
the control arm to crizotinib during follow-up (36). To 
investigate this treatment option further, an ongoing 
study is evaluating pemetrexed with or without crizotinib 
for patients with advanced ALK-rearranged NSCLC 
that has progressed after treatment with crizotinib alone 
(NCT02134912). 

Resistance to Crizotinib inevitably occurs within 
the first few years of treatment. Resistance mechanisms 
identified include an acquired secondary mutation within 
the ALK tyrosine kinase domain, most common being the 
gatekeeper L1196M mutation, followed by the G1269A 
mutation (37,38). Other resistance mechanisms include 
amplification of the ALK fusion gene, which is observed 

in about 9% of crizotinib-resistant cases (39), and a 
number of so-called “bypass signaling pathways” involving 
abnormal functioning of epidermal growth factor receptor 
(EGFR), KIT, and insulin-like growth factor-1 receptor 
(IGF1R) pathways (40-42). 

Patients with ALK translocated tumors often relapse in 
the CNS, which is a challenge for patients who progress 
while receiving crizotinib (43). Relapse is common in the 
CNS as it acts as a sanctuary site for metastasis given the 
inability of most chemotherapeutic agents to cross the blood 
brain barrier. Ceritinib (a second generation ALK inhibitor 
discussed below), has blood-brain barrier penetration in 
preclinical studies and showed intracranial activity in the 
ASCEND-1 trial (44). 

Certinib is a second generation ALK inhibitor that was 
recently approved based on a single-arm clinical trial which 
demonstrated durable improvement in overall response 
rates in patients who have failed crizotinib. It is currently 
undergoing phase III trials to explore the antitumor activity 
of this novel agent compared to reference chemotherapy 
in previously untreated ALK-positive, stage IIIB or IV, 
nonsquamous NSCLC (NCT01828099). A second study 
will evaluate the antitumor activity of certinib compared to 
chemotherapy in patients previously treated with chemo- 
therapy (platinum doublet) and crizotinib (NCT01828112). 
Other second-generation ALK inhibitors in development 
include Alectinib, which has demonstrated an increased 
survival benefit in phase II studies. This drug is currently 
undergoing phase III trials evaluating alectinib vs. crizotinib 
in treatment-naive ALK-positive advanced NSCLC 
(NCT02075840), as well as alectinib alone in patients after 
disease progression on or intolerance to prior ALK TKI 
therapy (NCT02271139). Additionally, phase II studies 
are currently underway for 2nd generation TKI inhibitors 
brigatinib (AP26113) (NCT02094573), and PF-06463922 
(NCT01970865). X-396 is a potent ALK inhibitor with a 
similar chemical structure to that of crizotinib, but with a 
10-fold higher potency and is currently being studied in a 
phase I trial (NCT01625234).

Potential Therapeutic Strategies to overcome ALK TKI 
Resistance include the addition of heat shock protein 90 
(HSP90) inhibitors. ALK fusion proteins bind to HSP90 
and are thought to depend on HSP90 as a chaperone 
protein to form tertiary structure and stabilize the protein. 
A number of ongoing trials are currently testing safety and 
efficacy of HSP90 inhibitors in addition to ALK inhibitors. 
(NCT01752400, NCT01712217).

Early data suggest checkpoint inhibitor immunotherapy 
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with EGFR inhibitors may improve response and survival 
by matching the cancer’s ability to mutate and evolve, 
thus increasing the potential for durable response (17). 
These data appears to be similar with ALK translocated 
tumors hence there is current interest in adding checkpoint 
inhibitors in ALK-rearranged NSCLC patients. A current 
phase I study using nivolumab [an antibody which functions 
as a programmed cell death receptor/ligand programmed 
death receptor (PD1)/programmed cell death ligand (PDL1) 
checkpoint inhibitor] in addition to ceritinib is currently 
ongoing (NCT02393625). Alectinib is being evaluated with 
PDL-1 inhibitors in patients with tumors that are ALK 
translocated and treatment naïve [NCT02013219]. 

Kirsten rat sarcoma viral oncogene homolog 
(KRAS)

KRAS mutations are found predominately in the 
adenocarcinoma histologic subtype of NSCLC (30%) and 
less frequently in the squamous cell carcinoma subtype 
(approximately 5%) (45). Most often, these mutations are 
found in patients with a smoking history (46,47). Mutations 
in KRAS are typically mutually exclusive with aberrations 
of other oncogenic drivers including EGFR, BRAF, HER2 
mutations and ALK and ROS1 rearrangements (15). KRAS 
mutations in NSCLC predominantly occur in codons 12 
or 13 and with a lower frequency in codon 6 (48). Mutant 
Ras proteins are insensitive to GTPase activating protein 
(GAP), rendering the proteins constitutively GTP bound 
and activated, leading to stimulus-independent, persistent 
activation of RAS downstream effectors, in particular, the 
Raf (Rapidly Accelerated Fibrosarcoma)-MAPK (Mitogen-
activated Protein Kinase)-ERK (Extracellular signal 
regulated kinases) cascade (49). 

The prognostic and predictive role of KRAS mutations 
remains controversial. These mutations have not shown to 
be predictive for the use of adjuvant chemotherapy (50). 
In metastatic NSCLC KRAS mutations did not predict 
response to standard chemotherapy (51,52). KRAS 
mutations also seem to negatively predict response to 
EGFR TKIs (53-55).

At present there is no established therapy for patients 
with KRAS mutations. No direct inhibitor of KRAS exists, 
but targets downstream of KRAS, such as the MEK pathway 
have shown some encouraging results (56). The MEK1/2 
inhibitor selumetinib has shown some promising activity in 
a recent phase II clinical trial comparing selumetinib versus 
standard chemotherapy in previously treated KRAS mutant 

NSCLC patients (57). Currently, a phase III trial with 
selumetinib is ongoing (SELECT-1, NCT01933932). 

Trametinib is another inhibitor of MEK, which has 
not shown to improve survival outcomes of KRAS mutant 
patients in a phase II trial when compared to standard 
chemotherapy as a second line therapy (58). Positive 
response rates have been noted in clinical trials evaluating at 
Trametinib plus docetaxel or pemtrexed (59,60), but further 
investigation is required. Inhibition of other downstream 
signaling pathways such as PI3K and focal adhesion kinase 
(FAK), have shown benefit in KRAS positive tumors (61,62) 
and multiple clinical trials with FAK inhibitors (defactinib/ 
VS-6063) and PI3K inihibitors (BKM120) are ongoing. 

Ros oncogene-1 (ROS-1) translocation

The C-ros oncogene 1 (ROS1) is a receptor tyrosine kinase 
of the insulin receptor family that that acts as a driver 
oncogene via a genetic translocation between ROS1 and a 
number of other genes, most commonly CD74 (63). This 
translocation is seen in only 1 to 2 percent of NSCLC 
typically in younger non-smoking patients (63-65). 
Crizotinib, a potent inhibitor of ALK and MET has also 
shown activity against ROS1-rearranged NSCLC likely due 
to a high degree of homology between the ALK and ROS 
tyrosine kinase domains (66). The PROFILE 1001 phase I 
trial showed favorable response rates in patients with ROS1 
tumors treated with crizotinib (67). Phase II trials evaluating 
crizotinib in pre-treated patients with ROS1 mutations 
is ongoing NCT02499614. Other agents are currently 
being investigated for ROS1-positive lung cancer patients 
including foretinib, ceritinib, AP26113, PF-06463922 as 
well as HSP90 inhibitors (68).

Resistance to crizotinib in ROS1 mutated tumors 
is known to occur. It has been shown that in patients 
harboring CD74-ROS1 fusions, resistance to crizotinib 
was partly mediated by the ROS1 G2032R mutation (69). 
Other possible mechanisms of resistance include EGFR 
pathway activation, epithelial-to-mesenchymal transition, 
and various ROS1 tyrosine kinase mutations (65,70). A 
number of novel TKIs with activity against ROS1 are 
being investigated including AP26113, Foretinib, and PF-
06463922 (71-73), (NCT01970865). 

BRAF

BRAF (v-Raf murine sarcoma viral oncogene homolog 
B) is a downstream signaling mediator of KRAS, which 
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activates the MAP kinase pathway. BRAF mutations have 
been observed in 1 to 3 percent of NSCLC. Of NSCLC 
patients harboring BRAF mutations ~50% contain the 
classical V600E mutation (74), seen commonly in metastatic 
melanoma. BRAF V600E mutations are associated with 
light/never smoker status, micropapillary histology and 
occur more frequently in female patients (68). In contrast, 
non-V600E mutations (for example mutations within exons 
5 or 11) are seen in former or current smokers and are 
associated with poorer outcomes (75,76).

BRAF targeting TKIs including dabrafenib and 
vemurafenib are being studied in the treatment of BRAF 
mutated NSCLC. Preliminary results from a recent phase 
II trial with dabrafenib in patients harboring V600E 
mutant NSCLC have shown positive partial response 
rates (77). Several case reports show responses in NSCLC 
patients with vemurafenib (78-80). Studies with metastatic 
melanoma suggest synergy with the combination of BRAF- 
and MEK-inhibition (81), and are now being studied in 
combination in a phase II clinical trial in BRAF mutant 
NSCLC (NCT01336634).

Human epidermal growth factor receptor 2 
(HER2)/NUE

HER2 is a member of the ERBB receptor tyrosine kinase 
family and mutations have been detected in approximately 
1 to 2 percent of NSCLC tumors (68). These mutations are 
more prevalent among never-smokers and women (82,83). 
Unlike HER2 overexpression in patients with breast cancer 
and GI malignancies, NSCLC tumors have mutations that 
have not been shown to respond to anti-HER2 therapies 
(84-86). Further studies have showed favorable response 
when combining HER2 inhibitors with chemotherapy 
(83,87), and with the EGFR inhibitor, afatanib (88). A 
recent phase I trial with neratinib (an irreversible pan HER 
inhibitor) combined with the mTOR inhibitor temsirolimus 
has also showed promising clinical activity (89) and is 
currently undergoing phase II trials (NCT01827267). 

Currently, several clinical trials are investigating the 
role of HER2-directed antibodies such as trastuzumab, 
pertuzumab, as well as the HER2-targeting TKIs (afatinib, 
dacomitinib and neratinib) NCT00004883 NCT02289833, 
NCT00063154, NCT00818441.

RET

RET (rearranged during transfection) encodes a surface 

receptor tyrosine kinase found to be mutated in about 
1.5% of NSCLC patients who are generally younger, 
light or never smokers with adenocarcinoma histology 
and poorly differentiated tumors (90). The most common 
RET translocation is the KIF5B-RET fusion variant on 
chromosome 10. Additional gene fusion partners including 
CCD6, NCOA4 and TRIM33 have also been described (68).

RET TKIs such as vandetanib, sorafenib and sunitinib, 
have overall not shown significant survival benefit in 
unselected NSCLC patients. Case reports have shown 
positive response rates in patients with RET translocations 
who were treated with vandetanib (91,92) and another 
inhibitor cabozantinib (93). A preliminary report from 
a phase II clinical trial NCT01639508 investigating 
cabozantinib in RET fusion positive NSCLC tumors with 
16 evaluable patients showed that 7 had partial responses  
(38 percent) and 9 had stable disease (72 percent) (93). With 
a median follow-up of two years, the median progression-
free survival was seven months and the median overall 
survival was 10 months (94). Clinical trials are ongoing going 
looking at different multi-kinase TKIs, which include RET 
as a target, including Ponatinib (NCT01813734), vandetanib 
(NCT01823068), and Lenvatinib (NCT01877083). 

MAPK/Erk kinase1 (MEK1)

MEK1 also named MAP2K1, is a serine-threonine kinase 
with mutations occurring in approximately 1% of NSCLC 
(mostly adenocarcinoma) (95). MEK itself is not an oncogene 
product, but it is the focus of many of the signal transduction 
pathways activated by known oncogenes (including BRAF 
and KRAS mutations) and tyrosine kinase receptors (95). 
Therefore, inhibition of MEK has the potential to prevent 
the subsequent downstream phosphorylation and activation 
of MAP kinase (to pMAPK/pERK) to potentially induce 
tumor regression and/or stasis (96,97). A phase two study 
looking at PD-0325901 a small-molecule inhibitor of both 
MEK isoforms, MEK1 and MEK2 did not show significant 
survival benefit in non-selected NSCLC patients (98). 

C-mesenchymal-epidermal transition (C-MET)/
recepteur d'origine nantais (RON)

Mesenchymal-epidermal transition (MET) is a receptor 
tyrosine kinase, which undergoes homodimerization by 
binding its ligand; hepatocyte growth factor (HGF) causing 
autophosphorylation of MET and ultimately leads to 
the activation of various intracellular signaling pathways 
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including RAS-RAF-MAPK and PI3K-AKT-mTOR (99). 
MET abnormalities are most often overexpression due to 
gene amplification and exon 14 skip splice mutations (100). 
Studies have suggested that approximately 40% of lung 
cancer tissue overexpresses MET (101).

In general, studies of multiple MET inhibitors have 
not shown significant improvement in survival data. In the 
last two years, three landmark phase III trials investigating 
Met targeted agents (including HGF monoclonal antibody 
ornatuzumab and small molecule met inhibitor tivantinib) 
in combination with erlotinib (an EGFR inhibitor) in pre-
treated lung cancer were suspended following interim 
analyses that indicated no improvement in survival and/or 
safety concerns (30,102-104).

Further studies with MET inhibition are ongoing, 
including a study of Crizotinib which is being evaluated in 
patients with NSCLC who have intermediate or high MET 
gene amplification (NCT00585195).

RON is a MET-related receptor tyrosine kinase. It’s 
natural ligand is macrophage stimulating protein, but beta-
1-integrins can also activate RON via c-Src-dependant 
signaling pathways (105). RON signaling has roles in the 
regulation of inflammation and the motility and activation 
of macrophages, and therefore contributes to tumor growth 
and metastasis. RON signaling activity is synergistic 
or additive with MET leading to transformation, cell 
spreading, motility and cell survival (106,107). At present 
no specific c-met/RON inhibitors exist. An early clinical 
trial for MGCD265 (a multikinase inhibitor directed 
against c-MET, VEGR1, 2, 3, RON, and Tie-2) has not yet 
reported results (NCT00975767). 

PIK3CA

The phosphatidylinositol 3-kinase (PI3K)-AKT-mTOR 
pathway is one of the most often deregulated signaling 
cascades in human cancers, including NSCLC, detected in 
2% of tumors and is more commonly seen in squamous cell 
lung cancers (108). PIK3CA encodes the catalytic subunit 
of PI3K, which is an intracellular central mediator of cell 
survival signals (109). PIK3CA mutations can occur in 
combination with other known driver mutations like EGFR 
or KRAS mutations as well as in the setting of acquired 
EGFR TKI resistance (109). Pre-clinical models have 
shown that tumors harboring PIK3CA mutations are highly 
sensitive to PI3K inhibitors (110), and further clinical 
evaluation are ongoing with other PI3K inihbitors including 
BKM120 (NCT01723800), GDC0941 (NCT01493843), 

and XL-147 (NCT00692640). 

Programmed death receptor (PD1) and 
programmed cell death ligand (PDL1)

PDL1 is a cell surface signaling molecule that binds 
to PD1 on T-cells, causing anergy and prevention of 
secretion of pro-inflammatory cytokines in cytotoxic 
T-cells and transformation of helper T-cells into immune-
suppressing T-regulatory cells (111). In a healthy host, this 
immune checkpoint mechanism prevents over-activity or 
inappropriate activation of the adaptive immune system. 
When PDL1 is overexpressed by cancer cells, an appropriate 
immune response to the tumor is suppressed (111). The 
rationale behind PD1 and PDL1 as treatment targets is 
that preventing the interaction of the receptor and ligand 
will increase anti-tumor immune activity. PDL1 has found 
to be expressed on the surface of 45-50% of NSCLC 
cells regardless of subtype (112). PDL1 overexpression 
is associated with presence of EGFR mutations, solid 
predominant subtype, and advanced pathologic stage 
(113-115). The prognostic significance of elevated PDL1 
in NSCLC h as been unclear, with two studies focused 
exclusively on the adenocarcinoma substype reporting 
an opposite effect on overall survival (115,116), though a 
recent meta-analysis in NSCLC in general (which included 
the adenocarcinoma studies) found overall decreased overall 
survival with increased PDL1 expression (117).

Immune checkpoint inhibition using PD1/PDL1 
disruption has been studied in multiple malignancies, now 
including NSCLC. In 2012, a phase I trial of nivolumab 
(a monoclonal antibody against PD1) in a variety of 
solid tumors demonstrated an objective response in 5 of  
49 patients with non-small-cell lung cancer with six 
additional patients with NSCLC who had stable disease 
lasting at least 24 weeks (118). Some responses were quite 
durable: in the overall cohort, responses lasted for 1 year or 
more in 8 of 16 patients with at least 1 year of follow-up (118). 
Trials of other immune checkpoint inhibitors are ongoing. 
Early results from a phase I/II clinical trial of MEDI4736, 
(an antibody against PDL1) have demonstrated a response 
rate of 10% in adenocarcinoma (119,120). Though overall, 
the response rates to PD1/PDL1 checkpoint inhibition have 
not been as robust as in the squamous subtype, there may 
be subpopulations within adenocarcinoma that may receive 
additional benefit. Patients with a smoking history (121), and 
higher levels of PDL1 expression (112,118) have been found 
to have a more robust response to PD1/PDL1 checkpoint 
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inhibition. The EGFR positive population, with higher levels 
of PDL1 expression as above, may represent a subgroup of 
adenocarcinoma patients with a potential for benefit from 
PD1 inhibition.

Ongoing studies of PDL1/PD1 inhibition in NSCLC 
(including adenocarcinoma) include a phase III trial of 
pembrolizumab (an antibody against PD1) versus placebo 
with or without standard adjuvant chemotherapy for 
resected stage IB-IIIA NSCLC (Clinicaltrials.gov identifier: 
NCT02504372) and two phase I studies of the novel anti-
PDL1 antibodies MPDL3280A, a dose-escalation study 
in a variety of malignancies and a tolerability study in 
NSCLC patients who have undergone stereotactic ablative 
radiotherapy (Clinicaltrials.gov identifier NCT01375842 
and NCT02400814).

Conclusions

As this review article has attempted to illustrate, there are 
numerous molecules that have been identified as potential 
targets for the treatment of non-squamous NSCLC. 
Although not covered in this review, many novel molecular 
targets for the treatment of squamous cell NSCLC are on 
the horizon as well. A great deal of research is currently 
underway to further our understanding of these molecular 
targets and ways that they can be translated to ultimately 
prolong survival and improve quality of life in patients with 
this disease. The most promising part of this research effort 
is in its ability to bring us closer to a more personalized 
approach to patient care, which will hopefully result in 
overall improvement in patient outcomes.
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