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Introduction

Sphingosine-1-phosphate (S1P) is a lipid metabolite and 
signaling molecule that influences many different cellular 
functions. It is produced by two different sphingosine 
kinases, SphK1 and SphK2 (Figure 1) (1-3). Interestingly 
cells devoid of both SphKs are still able to grow and to 
proliferate, which demonstrates that S1P is not required 
for normal cell survival (4). Numerous studies however 
show that S1P can rescue cells from apoptosis and cell 
death induced by other stimuli, suggesting its potential 
role as a survival factor under certain pathologic conditions 
including cancer (5-15). Mice deficient of both SphK1 
and SphK2 die around embryonic day 11.5 mainly due to 
vascular and neurologic defects, which emphasizes its role 
in developmental processes (4). While various different 
phosphatases like lipid phosphate phosphatases (LPPs) (16),  
sphingosine phosphate phosphatases (SPPs) (17,18) and also 
alkaline phosphatases are able to dephosphorylate S1P (19),  

which obviously is a rather unspecific event that can be 
initiated by many different enzymes, only the retro-aldolase 
S1P-lyase is able to cleave and irreversibly degrade S1P 
into hexadecenal and phosphoethanolamine (Figure 1)  
(20-23). The activity of anabolic SphKs on one side and 
catabolic phosphatases and the S1P-lyase on the other side 
together with the availability of the substrate sphingosine 
basically determine the cellular amount of S1P. The balance 
of intracellular S1P and ceramides determines cell fate 
(Figure 1) (24). More cellular S1P induces cell survival, 
while an increase in ceramides shifts cells into apoptosis. 
A potential reason for the survival effect of S1P could be 
the induction of autophagy (25). Accumulation of S1P in 
thymocytes from S1P-lyase deficient mice however cannot 
prevent apoptosis induced by increased ceramide levels (22).  
Therfore the interconversion of S1P and ceramides may be 
more relevant for cell fate decision than the total amounts 
of these metabolites present in cells, and this may well be 
adapted by cancer cells to increase survival. Current data 
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indicate that SphK2 predominantly feeds into the catabolic 
metabolism determined by the activity of the S1P-lyase (26), 
while SphK1 is inducibly transported to the cell membrane 
to produce S1P that is subsequently secreted by cells (27). 
Spinster homolog 2 (Spns2) is a transporter integrated 
into the cell membrane that is involved in export of S1P 
from the cytosol into the extracellular matrix (28,29). S1P 
is an extracellular signaling molecule and ligand of five G 
protein-coupled S1P receptors designated S1P1-5 (30-33).  
S1P secretion can therefore lead to autocrine and paracrine 
signaling in the local tissue environment and also to endocrine 
signaling at distant locations via release into circulation. In 
fact S1P concentrations are highest in plasma and lymph, 
and very low in tissues due to the activity of the S1P-lyase 
which is predominantly expressed by tissue cells (21,22,34,35). 
These differences produce concentration gradients between 
the circulatory system and peripheral tissues which are 
important to induce lymphocyte egress from lymphoid 
organs and to maintain lymphocyte circulation (36-40).  
Neutralizing these S1P gradients by increasing the S1P 
concentration in lymphoid tissues prevents lymphocyte egress 
from thymus and lymph nodes and results in lymphopenia, 
although S1P as the primary exit signal is still present in 
blood at high micromolar levels (21,22,35,41). The reason 
for the unresponsiveness of lymphocytes to the exit signal 

S1P in blood and lymph is the premature downregulation of 
the S1P1 receptor (36,38). S1P is also a very potent inducer of 
angiogenesis and vascular barrier stability (42-45). The latter 
requires some kind of constitutive signaling activity that is 
also important for cancer cells, although under different 
circumstances. Constitutive signaling particularly of the 
nuclear factor kappa-light-chain-enhancer of activated B-cells 
(NF-κB) is frequently observed in cancer cells and under 
normal conditions prevented by receptor desensitization and 
internalization (46). How constitutive signaling of high blood 
S1P concentrations is possible is currently not clear (42).  
Recent data suggest a role of the S1P-lyase, at least for the 
endothelial barrier-stabilizing activity of S1P (47). Thus, 
many cancer-related functions of S1P are known like cell 
survival, autophagy, constitutive signaling, migration, cell 
differentiation, and development.

The sphingolipid rheostat

A key feature of tumor cells is unrestricted cell growth 
and enhanced survival, although isolated tumor cells are 
frequently more sensitive and die earlier than related normal 
primary cells when taken into cell culture, pointing to 
exogenous factors that promote tumor growth and survival 
in vivo (48). While early reports focused on sphingosine 
and its blocking activity on protein kinase C (PKC) (49,50), 
which can be attributed to its competition with the PKC 
activator phosphatidylserine (PS) for PKC binding, further 
studies revealed significant non-PKC mediated side effects 
that pointed to other relevant signaling events (51,52). 
Subsequently S1P and ceramides as the closest sphingosine 
metabolites came into the focus as potential mediators of 
sphingosine-related effects (53,54), although sphingosine 
itself still has unique physiological functions apart from 
ceramide and S1P signaling (55). Ceramide evolved as a 
pro-apoptotic molecule (56,57), while S1P was regarded as 
a pro-survival factor (8,9). These opposing physiological 
functions of the two closest metabolites of sphingosine 
shaped the concept of the sphingolipid rheostat (24). It 
postulates that the intracellular balance of ceramide and 
S1P generation determines cell fate (Figure 2). Increased 
ceramide production would lead to apoptosis while 
increased S1P production would promote cell survival (24).  
S1P-induced autophagy was later on identified as a possible 
mechanism to promote cell survival and to avoid ceramide-
induced apoptosis (25,58). Cellular production of S1P by 
SphKs appears to be a key event of this hypothesis, and 
indeed many publications report increased expression 

Sphingomyelin

Ceramide

Sphingosine

Cell survival

Apoptosis

Sphingosine 1-
phosphate

Hexadecenal + 
Phosphoethanolamine

Sphingomyelinase

Ceramidase

Sphingosine kinase

S
ph

in
go

lip
id

 d
e 

no
vo

 S
yn

th
es

is

S1P-lyase

Different phosphatases

Ceramide synthase

Sphingomyelin synthase

Figure 1 The sphingolipid metabolism. The degradation of 
sphingosine-1-phosphate (S1P) by S1P-lyase is the only irreversible 
step in this pathway. Ceramide and S1P have antagonizing functions, 
which makes their balance essential for cell fate.
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particularly of SphK1 in different tumors (59). On the other 
hand, accumulation of S1P in thymocytes of S1P-lyase 
deficient mice did not prevent ceramide-induced apoptosis 
and thymus atrophy, indicating that the sole presence of 
high amounts of intracellular S1P was not sufficient to 
rescue them from cell death (22). In addition specific SphK 
inhibitors failed to inhibit tumor cell growth and viability, 
also questioning the relevance of the sphingolipid rheostat 
concept in cancer (60). Since intracellular targets of both 
S1P and ceramide are still not worked out very well, defining 
relevant intracellular signaling processes for both metabolites 
will be required to understand this system more thoroughly 
and to potentially use it for medical interventions.

S1P receptor signaling 

In contrast to ceramide, S1P is also an extracelluar signaling 
molecule and a ligand for five G protein-coupled cell surface 
receptors. Type 1 and type 2 S1P-receptors are particularly 
often described in the literature in the context of cancer. S1P1 
signaling is frequently linked to promotion of tumor cell 
survival, providing an alternative pathway for S1P-mediated 
vitality (13,61). A major downstream signaling molecule 
of S1P1 is the serine/threonine kinase Akt (62-65). S1P1 is 
also known to induce cell migration, and several studies link 
S1P1 expression and function with tumor cell migration, 
invasion, and metastasis (66-68). Notably S1P2 appears to 
induce opposing effects at least on germinal center B cells 
by dampening Akt activation, growth, and S1P1-mediated 
migration (69,70). Loss of function mutations in S1P2 are 
thus linked with the occurrence of germinal center-like (GCB) 
diffuse large B cell lymphomas (DLBCL) (71,72). In contrast 

to the concept of the sphingolipid rheostat where SphKs play 
a major role for the intracellular generation of S1P, signaling 
of S1P receptors requires the presence of extracellular S1P, 
which can be produced locally by tumor cells via SphKs, but 
it can also be provided via the circulatory system from distant 
sources. Tumor angiogenesis is an important step in the 
development of solid cancers, and S1P is a strong angiogenic 
factor that mainly acts via activation of S1P1 on endothelial 
cells (45,73-77). Evidence exists that S1P1-mediated 
angiogenesis can also be opposed by S1P2 signaling (78). 

Inside-out signaling

The concomitant presence of S1P receptors and SphKs 
in one cell shaped the concept of inside-out signaling 
(79,80). SphKs are intracellular enzymes, and in order to 
stimulate S1P receptors on the cell surface, S1P needs to 
be released by cells (Figure 3). This release is supported by 
ATP binding cassette (ABC) transporters, a large family 
of ubiquitously expressed integral membrane proteins that 
actively transport ligands across biological membranes 
(81). Although several reports indicate the involvement 
of ABC transporters in S1P exportation (82-86), other 
studies did not find a specific role of ABC transporters for 
S1P exportation from erythrocytes and endothelial cells 
(87,88). A clear function as a S1P-transporter however 
could be assigned to the membrane protein Spns2 (28,29). 
Recent reports indicate the involvement of Spns2 in tumor 
angiogenesis, cancer cell survival and migration (89,90). 
As mentioned before, many tumors upregulate expression 
of SphKs, particularly SphK1 (59), and it is an appealing 
hypothesis to suggest that tumor cells produce their own 
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survival factor S1P that is secreted by ABC transporters 
and/or Spns2 into the tumor matrix to induce autocrine and 
paracrine survival signals via S1P-receptors, particularly 
S1P1 (Figure 3). But so far there are no reports available 
demonstrating increased S1P concentrations in tumors 
compared to normal tissues, and also the contribution of 
systemic S1P supply via the circulatory system is not clear. 
Blocking strategies for systemic S1P by either using an anti-
S1P antibody (91) or an S1P-neutralizing L-aptamer (92)  
hold promise that systemic eradication of S1P could 
dampen tumor progression (45,93-99). 

Adaptation

Adaptation is a process that allows cells to survive and 
proliferate under difficult conditions. A classical case of 
adaptation is the occurrence of drug resistance, and there 
is strong evidence that S1P and particularly the expression 
of SphK1 confers resistance of cancer cells to different 
therapeutic drugs and treatments (77,82,95,100-111).  
A common mechanistic pattern is S1P-mediated increase in 

vitality and prevention of ceramide-induced apoptosis (101,109) 
together with S1P receptor-mediated survival signaling 
(108,111). Another variant of adaptation is the establishment 
of constitutive NF-κB signaling via the S1P1-STAT3  
axis (46,112). The signal transducer and activator of 
transcription-3 (STAT3) is a transcription factor for S1P1, 
so that S1P1 expression is elevated in STAT3-positive 
tumors. As a positive feedback-loop, upregulation of S1P1 
activates STAT3 and results in increased interleukin-6 (IL6) 
production, which accelerates tumor growth and metastasis 
in a STAT3-dependent manner (46,112). 

Immune escape mechanisms

Degenerated cells are usually detected and killed by 
immune cells. Obviously this endogenous defense system 
is not working properly anymore when tumors are formed. 
One reason for a failed immune response against tumors are 
certain immune escape strategies of the tumors that prevent 
either their recognition or their efficient attack by the 
immune system. Accumulation of regulatory T cells (Tregs) 
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for example blocks the onset of an immune response, and 
S1P1 expression in T cells impairs their generation and their 
immune suppressive function (65,113). Under physiological 
conditions, increased expression of S1P1 therefore reduces 
the amount and activity of Tregs. Tumors however reverse 
the activity of S1P1 signaling in T cells by promoting the 
migration of Tregs into the tumor in a STAT3 dependent 
manner (114). Concomitantly activity and accumulation 
of CD8 T cells in tumors are reduced (114). There is also 
evidence that S1P released by apoptotic cells within tumors 
induce the generation of regulatory macrophages (14). 
These tumor-associated macrophages infiltrate tumors and 
promote tumor growth by, for example, activating hypoxia 
inducible factor 1α and releasing vascular endothelial 
growth factor (14). 

Concluding remarks

Main functions of S1P include inhibition of apoptosis and 
induction of cell survival, cell migration, and angiogenesis. 
Tumor cells make use of this system to enhance their growth 
and proliferation, to invade tissues, to adapt to different 
environments, and to hide from the immune system. 
Although S1P signaling is used by tumor cells for their 
benefit, none of the S1P-related receptors and enzymes 
are proto-oncogenes except for S1P2, which is involved 
in GCB-DLBCL lymphoma development when loss-of-
function-mutations occur. Because of the tumor-promoting  
role of S1P signaling, agonists and antagonists for S1P 
receptors, inhibitors of SphKs, and S1P-blocking substances 
are promising candidates for cancer treatment.
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