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Introduction 

Extensive studies have cemented sphingolipids as reservoirs 
of critical bioactive molecules and undeniably propelled 
the study of these lipids in biology and disease. Previously 
considered purely structural lipids, sphingolipids, 
particularly ceramide and sphingosine-1-phosphate (S1P), 
are now established critical regulators of myriad biological 
processes. Sphingosine, which serves as the backbone 
structure of many sphingolipid species, was originally 
named by the German chemist, J. L. W. Thudichum in the 
1880s, in reference to the many mysteries the study of this 
lipid presented. In Greek mythology, the sphinx guarded 
the entrance to the city of Thebes and only granted entry 
to travelers who answered its riddle. Today, the field of 

sphingolipid research is one that is equally complex and 
promising. Currently, sphingolipids are being studied as 
potential targets in cancer research due to their role in 
regulating cellular and pathological processes such as cell 
growth and survival, apoptosis, inflammation, vascular 
integrity and angiogenesis. The complexity is accentuated 
by the metabolic interconnected nature of these bioactive 
lipids. The levels of sphingolipids are regulated by multiple 
enzymes either through synthesis or breakdown reactions. 
This review will describe the fundamental interconnectivity 
of metabolic sphingolipids, will review and highlight recent 
data pertaining to the subcellular compartmentalization 
of sphingolipids, and will provide evidence of the opposite 
roles that ceramide and S1P play in various cellular 
processes relevant to cancer biology. 
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Sphingolipid biosynthetic pathways

Regulation of ceramide synthesis and breakdown 

The central hub of the sphingolipid pathway is the 
bioactive lipid ceramide, which can be generated through 
different pathways (Figure 1) (1,2). The de novo generation 
of sphingolipids starts with the condensation of serine 
and palmitoyl CoA to generate 3-ketodihydrosphingosine 
in a reaction catalyzed by a family of enzymes, the serine 
palmitoyl transferases (SPTs) (3). SPTs also have the ability 
to utilize alanine and glycine instead of serine in a pathway 
that eventually forms deoxysphingolipids, a terminal class of 
lipids that is unable to exit the sphingolipid pathway due to 
the absence of enzymes that metabolize it (4,5). Following 
formation of 3-ketodihydrosphingosine, dihydrosphingosine 
is generated via a reduction reaction. The latter is 
subsequently N-acylated to dihydroceramide by ceramide 
synthases (CerS) (1,2). There are six mammalian CerS 
characterized to date. These differ by their fatty acyl 
chain length specificity and tissue distribution. As such, 
this generates ceramide species differing in the chain 
length of their fatty acid (6,7) which are then acted on by 
dihydroceramide reductase to insert a double bond at the 4,5 
position of the sphingosine backbone to form ceramide (8). 

Subsequently, ceramide can have multiple fates. Addition 
of a phosphocholine headgroup by sphingomyelin synthases 
(SMS) results in the formation of sphingomyelin (SM), a 
major component of cell membranes (9). Ceramide can also 
be glycosylated by glycosyl or galactosyl CerS to form more 
complex glycosphingolipids (2), or phosphorylated by ceramide 
kinase to form ceramide-1-phosphate (C1P) (10). Conversely, 
ceramide can be generated back from these complex 
sphingolipids via lipid hydrolases. Thus, an intricate balance 
of ceramide synthesis and breakdown is present in the cell 
and is regulated by multiple mechanisms as will be discussed 
in subsequent sections.

Ceramide and sphingosine-1-phosphate (S1P) axis

Another fate of ceramide metabolism is the generation 
of sphingosine via a deacetylation reaction catalyzed by 
ceramidases. Five of these enzymes have been cloned and 
are classified based on their pH optima of activity into acid, 
neutral and alkaline (3 alkaline ceramidases exist) (11-13). 
It should be noted that some ceramidases have reverse 
activities and can convert sphingosine back to ceramide 
(14,15). Moreover sphingosine may be reacylated by one of 
the 6 CerS and this pathway is termed the “salvage pathway” 

as it rescues ceramide back and prevents its exit from the 
sphingolipid pathway (1,2). Additionally, sphingosine can 
be targeted by sphingosine kinase isoenzymes (SK1 or SK2) 
for phosphorylation on its hydroxyl head group to yield 
S1P (16). S1P can be dephosphorylated by the function of 
S1P phosphatases to generate sphingosine (17,18). Finally, 
a nonreversible step is the breakdown of S1P by a lyase 
to generate hexadecenal and ethanolamine phosphate, 
constituting the point of exit of the sphingolipid metabolic 
pathway (19).

Metabolic interconnectivity regulated by 
subcellular compartmentalization

Endoplasmic reticulum (ER)

The de novo production of ceramide constitutes the 
only point of entry into the sphingolipid pathway. The 
main reactions occur in the ER and once ceramide is 
produced, it is transferred to the Golgi apparatus where 
it can form SM by the addition of a phosphocholine head 
group, glycosphingolipids through the addition of sugar 
head groups, or C1P through phosphorylation (1,2). 
SM synthesis in the Golgi is thought to occur through 
sphingomyelin synthase 1 (SMS1) and sphingomyelin 
synthase 2 (SMS2) (20,21). It is believed that the ER to 
Golgi transport occurs in a non-vesicular fashion through 
the ceramide transfer protein (CERT) for SM and likely 
for C1P production and via vesicular transport for the 
generation of glucosylceramide, the precursor of complex 
glycosphingolipids (Figure 2) (22,23). After synthesis in the 
Golgi, complex sphingolipids are distributed in a vesicular 
fashion to different cellular compartments (24).

Plasma membrane 

In the plasma membrane, SM is localized primarily 
on the outer leaflet where it is hydrolyzed by acid 
sphingomyelinase (aSMase) (25). However, a small pool of 
sphingomyelin is localized in the inner leaflet of the plasma 
membrane and is used as a substrate for the action of neutral 
sphingomyelinase-2 (nSMase2) to form ceramide (26). The 
reverse reaction of conversion of ceramide to sphingomyelin 
can occur at the plasma membrane and is catalyzed by 
SMS2 (27). Furthermore, neutral ceramidase (nCDase) is 
also present in the plasma membrane, albeit on the outer 
leaflet (28). It is unclear whether the substrate of nCDase 
comes from ceramide targeted to the plasma membrane in 
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vesicular fashion or from the flipping of nSMase2-generated 
ceramide from the inner leaflet of the plasma membrane. 
Sphingosine kinase 1 (SK1) is also present in the PM and 
localizes there in response to different stimuli to produce 
S1P (29-32).

Lysosome 

The bulk of sphingomyelin degradation occurs in the lysosome 
through the action of the lysosomal form of aSMase. Defective 
activity of this enzyme is the genetic basis for Niemann-
Pick disease that is characterized by failure of growth and 
psychomotor regression in children as well as progressive 
worsening of respiratory functions (33). Ceramide generated 
in the lysosome can serve as a substrate for the generation 
of sphingosine through acid ceramidase (aCDase). The 
deficiency in the activity of this enzyme results in the lipid 
storage disorder Farber lipogranulomatosis (Farber disease). 
Affected patients suffer from progressive joint deformation 
and neurological complications, which typically result 
in early death (15,34). To date, there is no characterized 
presence of any of the two SK in the lysosome. As such, it is 
assumed that lysosomal sphingolipids must be transported 
into other organelles to exit the sphingolipid pathway.

Nucleus

SM presence in the nucleus has been reported and mapped 
to different subnuclear localizations (35). The intricacy of 
how SM gets to the nucleus is still unclear. Two distinct 
possibilities arise: the first is a vesicular transport from 
the Golgi and the second is its nuclear generation from 
ceramide that is transported from the ER. The second 
possibility is more probable as SMS activity was detected in 
nuclear enriched fractions (36). SM can be degraded in the 
nucleus by neutral sphingomyelinase-1 (nSMase1), which 
has been shown to localize to the nucleus (37). Furthermore, 
sphingosine can be generated through the action of nuclear 
ceramidases as well as S1P through sphingosine kinase two 
(SK2) (38-40).

Mitochondria 

Mitochondrial sphingolipids have also been detected. 

Figure 1 Schematic representation of the sphingolipid metabolic 
pathway. The production of bioactive sphingolipids is regulated 
in an interconnected network of reactions in which ceramide 
production is considered the central hub. De novo synthesis of 
bioactive sphingolipids begins with the condensation of serine and 
palmitoyl CoA catalyzed by serine palmitoyl transferase (SPT). 
This initial step generates 3 ketosphinganine, which is then 
reduced to dihydrosphingosine by NADPH-dependent reductase. 
Following, dihydroceramide is generated with the addition of a 
fatty acyl CoA catalyzed by dihydroceramide synthase (DH-CerS). 
Ceramide is formed by desaturation, catalyzed by dihydroceramide 
desaturase (DES). Subsequently, ceramide can have multiple fates. 
Ceramide can be converted to: sphingomyelin by sphingomyelinase 
synthase (SMS), glucosylceramide by glucosylceramide synthase 
(GCS) (and complex glycosphingolipids), and phosphorylated by 
ceramide kinase (CK) to form ceramide-1-phosphate. Ceramide 
can also be generated in a reciprocal fashion by the activities 
of sphingomyelinase (SMase), glucocylceramidase (GCase), 
and ceramide-1-phosphate phosphatase (C1PP) (catalyzed by 
enzymes shown in blue for simplicity). Further on, ceramide can 
be deacetylated by ceramidases (CDase) to form sphingosine. 
Sphingosine can also have multiple fates; it can be phosphorylated 
by sphingosine kinase (SK) to form sphingosine-1-phosphate (S1P) 
or acetylated by ceramide synthase (CerS) in the salvage pathway 
to regenerate ceramide. Finally, S1P can be dephosphorylated by 
an S1P-phosphatase (S1PP) to generate sphingosine or targeted 
by the S1P lyase (SPL) resulting in the nonreversible step that 
generates glycerolipids through the production of ethanolamine 
phosphate and hexadecenal. 
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Figure 2 Subcellular compartmentalization of the interconnected sphingolipid metabolic pathways. The de novo synthesis of sphingolipids 
originates in the endoplasmic reticulum (ER), where through a series of condensation and reduction reactions ceramide (Cer) is produced. 
Cer may also be formed in the mitochondria-associated membranes. De novo-generated Cer is transported in a non-vesicular fashion by the 
ceramide transfer protein (CERT) and via vesicular transport by four-phosphate adaptor protein 2 (FAPP2) to the Golgi. In the Golgi, Cer 
is modified to form sphingomyelin (SM), ceramide-1-phosphate (C1P) and glucosylceramide (GluCer), the latter serving as the precursor for 
complex glycosphingolipids (GSL). After synthesis in the Golgi, SM and complex GSL are delivered to the plasma membrane by vesicular 
transport. Various sphingolipid metabolic enzymes are present at the plasma membrane to regulate the levels of SM, Cer, sphingosine 
(Sph) and sphingosine-1-phosphate (S1P). S1P is produced by sphingosine kinase (SK) isoenzymes 1 and 2 and can be transported across 
the bilayer to signal via the S1P receptor (not shown). During endocytosis, membrane sphingolipids are internalized and transported 
to the lysosome via endocytic vesicles, where hydrolysis is catalyzed by acid sphingomyelinase (aSMase), acid ceramidase (aCDase), and 
glycosidase. Sph can be phosphorylated by SK to form S1P and follow the metabolic axis of glycerolipid production regulated by S1P lyase. 
Alternately, S1P can go through the salvage pathway for generation of Cer. In the nucleus, SM can be targeted by neutral sphingomyelinase 
1 (nSMase1), and subsequently, sphingosine generated via this axis can be phosphorylated by SK2. dhSph, dihydrosphingosine; 3KdhSph, 
3 ketosphinganine; dhCer, dihydroceramide; nSMase2, neutral sphingomyelinase 2; nCDase, neutral ceramidase; SMS2, sphingomyelinase 
synthase 2; S1PP, S1P phosphatase; Ma-nSMase, mitochondria-associated neutral sphingomyelinase. 
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Ceramide synthase activity has been detected in partially 
purified mitochondrial-enriched fractions suggesting the 
potential for either de novo synthesis of ceramide or salvage 
generation to occur in the mitochondria (41). Furthermore, 
the generation of ceramide from sphingosine and palmitoyl-
CoA regulated by nCDase has been identified in liver 
mitochondria (42). Lastly, a recently cloned mitochondria-
associated neutral sphingomyelinase was found to localize 
to the outer mitochondrial membrane (43,44). 

Taken together, these results point to a very specific 
compartmentalization of sphingolipid metabolism. 
Functionally, as we continue to gain the molecular tools 
to study the enzymes, it would be of utmost importance to 
assign specific functions to organelle-specific sphingolipids 
and to be able to manipulate those organelle-specific pools. 
This could have major implications for understanding 
signaling processes, and using sphingolipids as potential 
targets for disease treatments.

Opposing roles of ceramide and S1P in cellular 
biology 

Apoptosis vs. cell survival 

Cellular amounts of ceramide and S1P are important 
regulators of cell survival. Extensive literature has described 
the effect of ceramide on cell death. The first reports 
described an effect of exogenous C2-ceramide treatments 
on induction of DNA fragmentation and programed cell 
death in leukemia cells (45). This was very selective to 
ceramide as dihydroceramide was unable to induce the same 
biology (46). Furthermore, exogenous addition of SMase to 
fibrosarcoma cells was demonstrated to induce DNA damage 
and apoptosis (47). At the time, that was the first report of 
an endogenously generated ceramide mediating an apoptotic 
function. Subsequently many stimuli were shown to induce 
ceramide generation and apoptosis and these included 
TNF-α, Fas ligand and ionizing radiation (1). Most of these 
effects were thought to occur through the hydrolysis of 
SM either by neutral or acid sphingomyelinase activities. 
However, the first reports of the involvement of de novo 
ceramide synthesis in mediating apoptosis came from 
studies on daunorubicin. These studies demonstrated a 
role for daunorubicin-generated ceramide in mediating cell 
death that was inhibited by the ceramide synthase inhibitor, 
Fumonisin B1 (48). Following these initial studies, many of 
the subsequent literature elaborated on different stimuli that 
induce ceramide generation and cell death in multiple cell 

lines. Interestingly, ceramide levels can also be regulated by 
inhibition of ceramide breakdown including inhibition of 
sphingosine kinase or S1P lyase (49,50). 

The mechanism by which ceramide induces cell death 
involves activation of both the intrinsic and the extrinsic 
pathways of apoptosis. The intrinsic pathway is characterized 
by mitochondrial outer membrane permeabilization 
(MOMP) and cytochrome c release. Interestingly, MOMP 
directly correlates with the level of ceramide in the outer 
mitochondrial membrane (51). However, some studies 
suggest that ceramide is not sufficient to induce MOMP 
but rather its synergism and activation of BAX is required 
for apoptosis (52-54). Ceramide can also induce MOMP 
through caspase-2 and caspase-8 activation. This can occur 
following glycogen synthase kinase-3β (GSK3β) activation 
in response to induction of cathepsins, downregulation 
of AKT or activation of protein phosphatase 2A (PP2A) 
(55-58). Finally, ceramide has also been shown to induce 
the mitochondrial translocation of PKC-δ which induces 
cytochrome c release and caspase-9 activation (59).

The extrinsic pathway of apoptosis is mediated mainly 
through receptor activation of endogenous caspases 
and cell death. Many receptors engage the extrinsic 
pathway and these include TNF receptors and the 
TNF-related apoptotic ligand (TRAIL) receptors. It is 
widely believed that these receptors generate ceramide 
at the plasma membrane and localize to ceramide-
enriched membrane platforms (60,61). Much of the 
understanding of ceramide function comes from cancer 
cell resistance to the extrinsic pathway of apoptosis and 
the modulation of that resistance by sphingolipids and 
ceramide generation. For instance, resistance to TRAIL-
induced cell death is overcome by expression of ceramide 
synthase 6 (CerS6) (62). Furthermore, TNF receptor 
1 promotes the formation of ceramide at the plasma 
membrane through nSMase2 activation. Failure of that 
activation is associated with resistance to TNF-induced 
apoptosis of breast tumors (62). A last possible way of 
ceramide activating the extrinsic pathway is through 
downregulation of the FLICE protein, an endogenous 
inhibitor of caspases-8. This has been shown to occur in 
glioblastoma and prostate cancer (63,64).

The role of S1P as an anti-apoptotic regulator was first 
described in 1996, when it was demonstrated that S1P 
negatively regulates ceramide-mediated apoptosis (65). 
Early studies implicated SK1-derived S1P in cell survival, 
since overexpression of SK1 in NIH 3T3 fibroblasts and 
HEK293 cells was demonstrated to prevent apoptosis 
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induced by ceramide and serum depravation (66). Numerous 
studies have since investigated the regulatory role of S1P in 
cell survival, establishing this bioactive lipid as a regulator of 
cancer cell proliferation, with elevated levels of SK1 and S1P 
present in various tumor tissues and cancers (67,68). S1P 
is a pleiotropic and mitogenic bioactive sphingolipid that 
is present in both tissues and circulation. S1P can regulate 
pro-survival cellular responses in an autocrine or paracrine 
manner (inside-out signaling), by activating a class of 
G-protein coupled receptors, S1P receptor 1-5 (S1PR1-5).  
Additionally, S1P can regulate cellular responses by S1PR-
independent mechanisms (69), as it has been shown to 
promote growth and survival in S1PR-deficient mouse 
embryonic fibroblast (70). 

S1P inhibits the intrinsic apoptotic machinery by 
regulating the release of cytochrome c and Smac/DIABLO 
from mitochondria, blocking the activation of executioner 
caspases and regulating Bax oligomerization (49,71,72). 
SK1 can also regulate the extrinsic apoptotic pathway by 
activating phosphatidylinositol-3 kinase (PI3K)/AKT and 
nuclear factor (NF)-κB (NFκB) signaling downstream of 
TNF receptor activation (73,74). In fact, inhibition of SK1 
in apoptotic resistant cells enhances sensitivity to TNF-
mediated cell death (75). 

SK1/S1P play an important  role  in regulat ing 
chemotherapeutic responses, as inhibition of SK1 enhances 
sensitivity to apoptotic chemotherapeutic agents (76). 
Negative regulation of S1P, either through SK1 or S1P 
lyase, prevents drug resistance in tumor cells treated with 
the chemotherapeutic agent cisplatin (77). In triple-negative 
breast cancer cell lines, SK1 is overexpressed and this 
phenotype correlates with poor prognosis and resistance 
to doxorubicin therapy. Attenuation of SK1 expression 
sensitizes cells to chemotherapeutic drugs by regulating 
oncogenic signaling via ERK1/2 and AKT, thus representing 
a potential target for combinatorial therapy (78-80). In in 
vivo prostate cancer models, the efficacy of docetaxel and 
camptothecin treatment is mediated by inhibiting SK1, 
which results in decreased tumor cell growth (65,81). 
Furthermore, the generation of SK1 inhibitors has spurred 
the focus on SK1 as a potential drug target (82,83). Recent 
studies demonstrate that SKI-II inhibits growth of acute 
myeloid leukemia cells via a caspase-dependent mechanism 
and suppresses leukemic xenograft tumor growth in severe 
combined immunodeficient (SCID) mice (84). The S1P 
receptor antagonist FTY720 (Fingolimod), synergizes 
with ciplastin to reduce survival of melanoma cell lines by 
inhibiting the PI3K/AKT/mTOR pathway (85). The role of 

S1P in regulating oncogenic signaling via the PI3K pathway 
has also been shown in non-small cell lung cancer (NSCLC) 
cells (86). 

The particular contribution of SK2 in cell survival is not 
as well established. Inhibition of SK2 using small-molecule 
inhibitors reduces the growth of prostate cancer cells by 
downregulating Myc and the androgen receptor (AR) (87). 
Using RNAi or the SK2-specific inhibitor ABC294640, 
another group demonstrated that SK2 regulates apoptosis in 
multiple myeloma (88). Other studies indicate only partial 
overlapping roles for the two SK isoenzymes in regulating 
cell survival, and suggest an optimal role for SK2 as a cancer 
therapeutic target (89). 

Cell cycle regulation 

The initial characterization of ceramide in cell growth 
arrest came from studies in the Hannun laboratory on 
serum-starved Molt-4 leukemia cells. It was noticed that, 
following serum withdrawal, cells arrested in G0/G1 
phase with accumulation of ceramide from sphingomyelin 
hydrolysis. Conversely, exogenous addition of C6 ceramide 
recapitulated the same phenotype (90). Subsequent studies 
suggested that this effect was possibly mediated through 
the retinoblastoma (Rb) gene product (91). Studies on the 
involvement of ceramide in G0/G1 arrest demonstrated 
also the involvement of nSMase2 in mediating confluence 
induced growth arrest (92). This was attributed to the 
dephosphorylation of β-catenin in a protein phosphatase 
1-γ (PP1C-γ) dependent manner, suggesting a signaling 
mechanism mediating this effect (93). Recent studies have 
identified dihydroceramide-mediated regulation of G0/G1 
arrest induced by cell confluence in neuroblastoma cells (94). 

More importantly, some studies on ceramide function 
in growth arrest concentrated on a potential role of 
ceramide in regulating cell cycle checkpoints. This is of 
particular interest as cell cycle regulators represent one 
of the major areas where focus is intense to develop novel 
chemotherapeutics to treat malignant tumors. The most 
developed of these studies suggest the major function of 
ceramide to occur at the G1/S transition through two 
signaling avenues. The first involved the activation of p21 
and the dephosphorylation of Rb (95) and this can occur 
both in a p53-dependent and independent manner (96).  
The second involves the inhibition of the G1 cyclin-
dependent kinase CDK2 (97). Interestingly, recent studies 
suggested a third mechanism by which ceramide can control 
the G1/S transition. In response to all trans retinoic acid 
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(ATRA), nSMase2 is activated and appears to mediate a G1 
arrest that is dependent on the dephosphorylation of S6 
kinase with no effect on either Rb or p21 (98). Ceramide 
has also been implicated in the G2/M cell cycle checkpoint. 
Increase of ceramide levels in NIH 3T3 cells mediated 
by threo-1-phenyl-2-decanoylamino-3-morpholino-1-
propanol (PDMP), a glucosylceramide synthase inhibitor, 
demonstrated decreased activity of cyclin dependent kinase 
CDK1 and cell cycle arrest at the G2/M checkpoint (99).  
Likewise, inhibition of ceramide generation via the 
knockdown of β-glucosidase, also demonstrated regulation 
of G2/M arrest induced by the chemotherapeutic agent 
paclitaxel (100). Increase in ceramide levels has also been 
reported to occur right after the G2/M progression to 
regulate Rb dephosphorylation (101). More recent studies 
suggest that in rhabdomyosarcoma cells, ceramide induces 
a G2/M arrest that is concomitant with increased p21 and 
downregulation of cyclin D (102). The other suggested 
that ceramide suppresses survivin which controls the G2/M  
transition (103). As such, the distinct mechanisms of 
how ceramide controls the G2/M checkpoint, as well 
as its application to endogenous situations of ceramide 
upregulation, require further investigation. To note, 
there has not been to date studies that pointed to roles of 
ceramide in either the S phase checkpoint or in the mitotic 
spindle checkpoint.

Cell cycle progression is also regulated by S1P 
signaling as a mechanism to promote cell proliferation 
(104,105). Early reports identified the involvement of 
SK1 in cell cycle regulation activated in response to 
ganglioside GM1 mitogenic signaling (106). These authors 
found that inhibition of SK1 mediated by D,L-threo-
dihydrosphingosine, results in a concomitant decrease 
in CDK2, and important regulator of G1 cell cycle 
progression. Following, SK nuclear activity was detected 
and found to correlate with cell cycle transition from G1 
to the S phase (107). While both SK isoforms have been 
associated with cell cycle progression in glioblastoma cell 
lines (108), other conflicting studies have characterized SK2 
as the only nuclear SK isoform, and correlated SK2 activity 
with G1/S cell cycle arrest (39). SK1-mediated regulation of 
G1 to S phase cell cycle progression has been investigated 
by loss of function studies utilizing RNAi in MCF7  
cells (49) and in genetic studies of intestinal tumor epithelial 
cells (109). Mechanistically, these studies show that SK1 
regulates the G1/S transition by increasing the expression of 
CDK4 and c-myc. Additional studies in breast cancer cells 
show that SK1 downregulates CDK1 and CHK1, which 

modulate spindle checkpoint function and cytokinesis (110). 
Pharmacological inhibition of SK1 using SKI-II and SKI-
178 have also demonstrated regulation of CDK1 in natural 
killer-lymphocyte leukemia cells and associate this role 
with a G2/M cell cycle arrest (111). Conversely, inhibition 
of S1P receptor signaling with FTY720 in MDA-MB-361 
breast cancer cells induces cell cycle arrest at the G0/G1 
phase and a decrease in cells at S and G2/M phase. FTY720 
treatment in these cells increases the anti-proliferative effect 
induced by single dose ionizing radiation (112). 

Moreover, studies from the Obeid lab identified SK1 
as a target of p53, a tumor suppressor and cell cycle 
regulator (113). While SK1 is elevated in p53 deficient 
mice, a double knock out model showed increase of 
cell cycle inhibitors p21 and p16 and decreased tumor 
formation. Though these studies have characterized S1P 
as an important regulator of cell cycle progression, the 
targets and biochemical pathways involved may be cell 
specific. 

Senescence

Cellular senescence is a process by which cells lose the ability 
to proliferate. It is different from quiescence in that it is 
thought to be irreversible and associated with aging. The first 
observation implicating ceramide in senescence regulation 
came from the Obeid laboratory; ceramide was found to 
increase in senescent human diploid fibroblast due to neutral 
sphingomyelinase activity (114,115). This was also associated 
with dephosphorylation of Rb and inhibition of AP-1 
activation (114,116). Subsequent studies showed induction 
of β-galactosidase by exogenous ceramide addition in these 
fibroblasts (117), and in human umbilical vain endothelial 
cells (118). Furthermore, exogenous treatment of ceramide 
in these cell lines was also found to dephosphorylate Rb, 
commonly seen with ceramide-induced cellular senescence. 
Recent evidence suggests that metformin, a drug used in 
the treatment of diabetes, can reverse ceramide-induced 
senescence in C2C12 myoblasts (119). However, it is unclear 
if the action of metformin is in the same pathway or in a 
parallel pathway to ceramide. While most of these studies 
implicated a neutral-sphingomyelinase generated ceramide 
in the induction of senescence, a recent study suggest 
that the lack of CERT, and thereby the lack of transfer of 
ceramide from the ER to the Golgi resulted in premature 
senescence in mouse embryonic fibroblasts (120). 

Despite limited studies focusing on the role of S1P in 
regulating senescence, is not surprising that the metabolic 
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interconnectivity of these lipids supports a role for SK/
S1P in this response. Deletion of SK1 in p53 null mice 
results in induction of senescence and decreased thymus 
tumor burden (113). Recent studies have shown that SK2-
generated S1P inhibits senescence by promoting telomerase 
stability. S1P regulates senescence and cell proliferation 
by binding the catalytic subunit of the telomerase reverse 
transcriptase (TERT) and thus stabilizing the enzyme 
during DNA replication (121). 

Autophagy

Autophagy is a cellular protective mechanism aimed at the 
degradation of unused cellular metabolites and organelles 
to preserve cellular energy. However, cancer cells use 
this mechanism to promote their survival and as such, 
understanding the processes that regulate this phenomenon 
can lead to its efficacious targeting. Ceramide has long been 
implicated in autophagy (122-125). Many mechanisms have 
been proposed to elucidate the role of ceramide in regulating 
autophagy (126,127), the most convincing of which show 
regulation of the mTOR pathway and nutrient uptake (128). 
Some studies have implicated ceramide in the generation of 
autophagic vacuoles by upregulating Beclin-1 and inhibiting 
protein kinase B (122); others implicate ceramide in 
regulating the dissociation of Beclin-1 and Bcl-2 to promote 
autophagy (129). Interestingly enough, there seems to be 
a consensus that regulation of autophagy seems to occur 
through the long-chain dihydroceramides (122,130-132).  
The drug fenretinide has been used extensively in these 
studies due to its dual action as an activator of SPTs as well as 
an inhibitor of dihydroceramide desaturase, which results in 
the accumulation of dihydroceramide. Briefly, fenretinide was 
shown to induce autophagy in breast, pancreatic and cervical 
cancer cell lines (133-135).

S1P has also been implicated as a regulator of pro-
survival autophagy (136,137). In PC-3 prostate cancer 
cells, exogenous S1P and dihydro-S1P treatment induced 
autophagy upon serum starvation (138). Similarly, increased 
expression of SK1 and depletion of the S1P phosphatase 
phosphohydrolase-1 promotes autophagy as determined 
by the formation of LC3-positive autophagosomes (139). 
In these studies, autophagy was specifically induced by 
SK1, since both dimethylsphingosine and overexpression 
of a catalytically inactive SK1 mutant abrogated autophagy 
induction. Interestingly, S1P-induced pro-survival 
autophagy is characterized by inhibition of mTOR but 
independent of AKT signaling (140). The role of dihydro-

S1P in promoting autophagy is controversial (139). Loss 
of function studies demonstrated the need for S1PR5 in 
S1P-induced ER stress and autophagy (141), although 
the receptor specificity may be cell specific (125). Other 
studies showed that in a subpopulation of T-cell acute 
lymphoblastic leukemia (T-ALL), the use of SK1 and SK2 
inhibitors induced the unfolded protein response (UPR) 
leading to ER stress, and autophagic cell death (142). 

Cell motility and invasion 

The cellular balance of sphingolipids metabolites, ceramide 
and S1P, plays an important role in regulating adhesion, 
migration and invasion, which are important precedents of 
cancer metastasis (143). The opposing roles of ceramide 
and S1P have been studied in vivo and in vitro cancer 
models. Increased expression of CerS2 and ceramide 
levels correlate with poorly invasive phenotypes of breast 
cancer cell lines. Mechanistically, CerS2 overexpression 
correlates with activation of metalloproteinases (MMP) and 
degradation of extracellular matrix, resulting in decreased 
invasion (144). CerS2 expression also correlates with 
less metastasis in human bladder cancer cell lines (145). 
The overexpression and increased metabolic function 
of aCDase in prostate cancer cells, results in decreased 
levels of long chain ceramide species and increased 
adhesion and migration on the ECM. Furthermore, acute 
treatment with C6 ceramide nanoliposomes suppresses 
tumor migration in a PKCζ-dependent manner to 
promote stress fiber depolymerization and focal adhesion 
disassembly (146). In addition, inhibition of aSMase—
and thus decreased generation of ceramide—in Hela 
and MDA-MB-231 cells, reduced invasion in vitro (147).  
At the same time, other studies have identified a role for 
aSMase-derived ceramide in adhesion and metastasis. 
aSMase-deficient mice show reduced hematogenous 
melanoma metastasis. Melanoma cells triggered secretion of 
aSMase from platelet cells, resulting in increased ceramide 
and clustering of α5β1 integrin in melanoma cells to 
promote adhesion (148,149). 

The role of SK1 in cell migration and invasion is an 
area of intense research focus (150). Migration regulated 
by extracellular S1P is dependent on the expression of 
specific S1PR, with S1PR1 and S1PR3 generally promoting 
migration and S1PR2 inhibiting it with some exceptions. 
The migratory role associated with different S1PRs is 
regulated by downstream coupling to different Gi proteins 
and consequently, activation of distinct downstream 
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signaling pathways (136). For instance, coupling of S1PR2 
to G12/13 results in Rho activation and inhibition of Rac 
and cell migration (151). Moreover, the role of S1PR in 
migration is also regulated by tissue distribution; for example, 
in Jurkat and U937 immune cells, S1PR3 but not S1PR1, is 
required for S1P-mediated migration and adhesion to the 
endothelial monolayer (152,153). While in melanoma and 
glioblastoma cells, expression of S1PR2 is predominant, thus 
S1P signaling results in reduced migration (136,154,155). 
The role of SIP in migration is further regulated by the 
extensive crosstalk with growth factor signaling (136). In 
MCF7 and glioblastoma cells, EGFR signaling promotes the 
translocation and activation of SK1 to the membrane (79,156). 
And is possible that this signal is amplified in a loop, since in 
other cells S1P has been shown to stimulate the expression 
of EGFR (157). Furthermore, through different S1PRs, 
S1P also mediates EGFR and VEGFR2 transactivation to 
regulate migration (158,159).

In addition to its pro-migratory role, S1P also regulates 
tumor cell invasion to promote metastasis (160,161), 
making this potent bioactive lipid, a “swiss army knife” for 
cancer cells. While S1P can also promote the secretion and 
activation of proteases and metalloproteinases to degrade 
the ECM, it can also transcriptionally regulate PAR and 
PAI-1, which are key modulators of invasion (162-164). 
More recently, our group described a mechanism by which 
EGF and S1P induce cell adhesion and invasion (165). By 
regulating ERM proteins, sphingolipids regulate cellular 
cytoskeleton dynamics and invasion (166,167). Furthermore, 
it is probable that different pools of S1P target different 
processes in cancer cells, as some studies have implicated 
that inhibition of SK2 upregulates SK1 protein, activity 
levels, and increases intracellular S1P (89). On the other 
hand, SK1 inhibition does not regulate SK2, but decreases 
intracellular S1P and increases ceramide. In this study, 
inhibition of SK2 resulted in a more dramatic regulation of 
invasion, supporting a non-overlapping role for SK1 and 
SK2 in cancer cells (89). Clearly, the multifaceted role of 
S1P in migration and invasion requires additional focus and 
investigation in order to understand the complex regulation 
of these processes as they represent important targets for 
cancer therapeutics. 

Conclusions

Our current model of sphingolipid signaling has been 
defined by a vast number of studies that have provided 

deeper understanding of the mechanism of enzyme/lipid 
regulation as well as associated cellular targets. What is 
becoming clear is that the various levels of complexity 
associated with bioactive sphingolipid metabolites continue 
to riddle and challenge us to consider novel mechanistic 
avenues. Recent advances in molecular and analytical 
tools have been instrumental in uncovering intricacies 
and new paradigms. While ceramide and S1P have been 
traditionally considered to play pro-death and pro-growth 
roles, respectively, newer roles are continuing to surface 
and perpetuating the enigmatic facet of these lipids. For 
instance, SK2-derived S1P has been implicated in both pro- 
and anti-apoptotic functions (68). In addition, is becoming 
clear that not all ceramide species “are created equal” and 
that different chain length ceramides may play different 
roles in promoting or suppressing tumors (68). We expect 
that advances in the field will allow us to clearly characterize 
these new models. 
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