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Introduction

Cervical cancer is a common solid tumor malignancy (1-7),  
with racial/ethnic, socioeconomic, and geographical 
disparities in incidence and mortality (8-20). A 2015 study 
reported that in 2012 there were an estimated 527,600 new 
cases and 265,700 deaths worldwide from cervical cancer, 
which has the fourth highest incidence rate and is the fourth 
leading cause of cancer death in women (21). In a study 
using data from the Surveillance, Epidemiology, and End 
Results Program, after adjusting for confounding factors 
such as race, marital status, stage, age, treatment, grade, 

and histology, for cervical cancer there was a significant 
difference in specific mortality from 1985 to 1989 and from 
1990 to 1994 (but not after 1995) (18). Cervical cancer’s 
high incidence rate and its persistently high mortality 
highlight its importance as a woman’s health issue.

The standard treatment for cervical cancer’s early 
stages is radical hysterectomy, with more conservative 
therapies being used for younger patients (22-26). For 
locally advanced stages, concomitant chemotherapy and 
radiotherapy are used (27-32). Recurrent and metastatic 
disease are treated usually by palliative platinum-based 
chemotherapy, which possesses a limited utility and can 
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cause significant adverse side-effects (33-38). For advanced 
cases, research dedicated to molecular targeted therapies 
has become a promising means of seeking out novel agents 
that improve patient prognosis and reduce side effects (39-41).

Clinical evidence of angiogenesis in cervical 
cancer

Formation of new blood vessels is crucial for tumor growth, 
progression and metastasis. Within the growing tumor, 
angiogenesis is required for formation of new blood vessels 
and for recruiting and sustaining its blood supply (42,43). 
The progression from cervical cancer precursor (CIN) 
lesion to invasive carcinoma can be a process of converting 
dormant tumors. Clinical observations have shown that 
angiogenesis occurs in both pre-invasive and invasive 
cervical cancers and are linked to clinical symptoms such as 
spontaneous bleeding and easy bleeding upon contact (44-47).

Angiogenesis is connected with diagnosis. Preinvasive 
and invasive cervical cancers present distinct features—i.e., 
microvessel growth along with persistent cell production—
which clinically can be directly visualized by colposcopy 
after magnification (48,49). In correspondence with these 
colposcopic findings, histological examination of tumor 
sections has revealed that malignant cervical cancer cells 
are surrounded by highly tortuous vessels with no uniform 
direction or branching and by irregularly formed vascular 
spaces (50). Moreover, during the progression from 
noninvasive to microinvasive cervical carcinoma, microvessel 
density (MVD)—a measure of tumor angiogenesis—
has been reported as increasing significantly (51).  
In fact, the different vascular patterns which present 
themselves between pre-invasive and invasive cancer can 
be used for pre-treatment differential diagnosis (52). Such 
angiogenic patterns make cervical cancer one of the most 
effectively diagnosed of all cancers.

Using 3-dimensional power Doppler angiography, tumor 
vascularity assessed for cases of cervical cancer all showed 
intratumoral blood flow (53). Ultrasound also showed a 
chaotic network of tortuous vessels traversing the cervical 
cancer tumor mass (54). A significant positive correlation 
between tumor vascularization and cervical volume has also 
been found (55). 

Angiogenesis is also linked with prognosis. It may affect 
survival in both early- and advanced-stage cervical cancer 
patients. Up-regulation of angiogenic factors correlated 
with severity of CIN lesions and invasive disease (56). 
In cervical cancer, the angiogenic factors angiogenin, 

endoglin and endostatin show a definite relationship with 
disease stage (57). Among 215 healthy subjects and 199 
early cervical cancer patients who had been treated with 
surgical resection, Kim et al. found that polymorphisms of 
vascular endothelial growth factor (VEGF) genes may affect 
cancer susceptibility and survival in cases of early cervical 
cancer by modulating tumor angiogenesis (58). MVD 
is an independent prognostic parameter for recurrence-
free survival in patients with early stage cervical cancer 
who undergo radical hysterectomy with pelvic lymph 
node dissection; MVD at or above the cut-off point of 
nine vessels per high power field had significantly poorer 
recurrence-free survival (59). In eighty-seven patients with 
cervical cancer who underwent definitive radiotherapy with 
a combination of external beam radiotherapy (45-50.4 Gy) 
and high-dose-rate brachytherapy (5×7 Gy), Dunst et al. 
found that poorly oxygenated tumors had a significantly 
increased MVD, a fact which had an overwhelming impact 
on local failure rate and survival (60). Higher tumor 
vascularity was associated with lower overall survival (OS) 
and locoregional control in carcinoma of the cervix treated 
with radiotherapy (61). Randal et al. used semi-quantitative 
immunohistochemical staining to examine cervical cancer 
tissue for VEGF, thrombospondin-1 (TSP-1), CD31 and 
CD105. They found that high levels of CD31 MVD, but 
not TSP-1, VEGF or CD105 MVD, was an independent 
prognostic factor for progression free survival. Tumor 
angiogenesis measured by CD31 MVD was an independent 
prognostic factor for cervical cancer (62). In 166 patients 
with stage IB cervical cancer treated primarily by radical 
hysterectomy and bilateral lymphadenectomy, high MVD 
was found to be an independent prognostic factor which 
adversely influenced patients’ survival (63). 

Histological evidence of angiogenesis in cervical 
cancer

Angiogenesis in cervical cancer can be directly evaluated by 
microvessel immunohistological staining and counted under 
a microscope (64). Table 1 shows studies that investigated 
both angiogenesis and MVD in cervical cancer.

In cervical cancer, histological sections immunostained 
for CD31 were quantitatively evaluated for MVD 
(51,58,62,65-68). Besides CD31, CD34 was the other 
frequently used angiogenesis marker (69-71). In a nude 
mice model study, it was shown that a combination of 
interleukin (IL)-24 and cisplatin inhibited tumor growth 
and angiogenesis and that these effects were mediated by 
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downregulation of both VEGF and platelet-derived growth 
factor (PDGF) expression (70). 

For MVD, a statistically significant difference has been 
found between poorly differentiated and well-differentiated 
carcinomas (73). A comparison of microvessel counts from 
normal epithelium with those from CIN and invasive 
carcinoma showed a significant increase in MVD expression 
in precancerous lesions and invasive cancer.

Angiogenesis is an early event in premalignant changes 
of the cervix. A comparison of MVD levels between low- 
and high-grade pre-invasive cervical lesions revealed a 
statistically significant increase in the more advanced lesions 
(73,74). Large vascular structures were noted in the upper 
layers of the epithelium with neovascularization of stromal 
vascular papillae protruding toward the epithelial surface; 
clinically this is connected with the colposcopic finding 
of an abnormal vascular image of dysplastic lesions. The 
amount of angiogenesis appeared to be independent of the 
human papillomavirus (HPV) type (75).

Lysophosphatidic acid (LPA) concentrations

LPA is a naturally occurring, potent lysolipid present 
i n  human  b lood .  LPA’s  source s  inc lude  p l a sma  
lipoproteins (76), cancer cells (77-79), fibroblasts (80), 
adipocytes (81-83), peritoneal mesothelial cells (84), and 
activated platelets (85,86). The measurement of total LPA 
levels can be performed by radioenzymatic, fluorometric, 
colorimetric, or immunoenzymatic assay. However, 
determination of LPA molecular species requires the 
use of techniques that include capillary electrophoresis, 
gas chromatography, thin layer chromatography, liquid 
chromatography, matrix-assisted laser desorption/
ionization, and electrospray ionization mass spectrometry 
(ESI-MS) (87-98). The best method is ESI-MS, which 
can measure LPA species without interference from other 
compounds (88-90,93,94,96,98).

Meleh et al. used ESI-MS to determine LPA levels and 
reported that LPA’s mean level in the sera of 50 healthy  
controls was 2.9 μM (99). In a study of 10 controls  
(8 healthy women and 2 women with benign gynecologic 
disease), Xiao et al. used ESI-MS to show that the plasma 
LPA levels were below 2.0 μM (96). Using an enzymatic 
cycling assay, Hosogaya et al. reported that in healthy 
subjects LPA’s mean physiological level in women was 
higher than that in men (76). Using gas chromatography 
analysis, Xu et al. found that for 48 healthy controls the 
mean LPA plasma level was 0.6 μM (range, <0.1-6.3 μM) (95).

LPA concentrations were found to be significantly 
elevated in the sera from ovarian, cervical, and some 
endometrial and peritoneal cancer patients and in the 
ascites from ovarian cancer patients (94-104). It has been 
suggested that LPA is a potential marker for the screening, 
diagnosing, and monitoring of ovarian cancer (95,99,100). 
Xu et al., using gas chromatography analysis, found that 
48 ovarian cancer patients had significantly higher plasma 
LPA levels (mean 8.6 μM) when compared with 48 healthy 
controls (95). Using ESI-MS, Xiao et al. later confirmed 
that LPA was elevated in blood specimens from 8 patients 
with ovarian cancer and one with endometrial cancer (96). 
Gas chromatography analysis was used to discover that 
different LPA species were associated with late-stage or 
recurrent ovarian cancer (97). A meta-analysis done by Li 
et al. of a total of 980 ovarian cancer patients, 872 benign 
controls and 668 healthy controls revealed that LPA plasma 
levels in ovarian cancer patients were significantly higher 
than in benign controls and healthy controls (101). Using 
ESI-MS analysis, Meleh et al. reported that the mean LPA 
level for 50 ovarian cancer patients and for 65 women with 
benign ovarian tumor was 8.4 and 8.0 μM, respectively, and 
that the cut off value for the presence of ovarian tumors was 
3.9 μM (99).

When electrogenerated chemiluminescence was used 
to analyze LPA concentrations in plasma, LPA levels from 
135 cervical cancer patients (5.11±1.92 μM) were found to 
be significantly higher than those from 40 healthy controls 
(2.31±0.45 μM) (103). After using gas chromatography 
analysis, Xu et al., reported that in 6 cervical cancer patients 
the mean level for total plasma LPA was 21.9 μM (95). 
However, ESI-MS is rarely reported as being used to 
discern LPA species in cervical cancer, and thus further 
studies are needed.

In instances where liquid chromatography/mass 
spectroscopy were used to study peritoneal effusion, LPA 
concentrations were found to be higher in the peritoneal 
effusions from 10 ovarian cancer patients than in those 
from 22 nonmalignant patients (102). In peritoneal fluid 
analyzed using a neurite retraction bioassay, LPA-equivalent 
levels were 50.2 μM (range, 5.4-200 μM) for all 62 patients 
and 94.5 μM (range, 15-200 μM) for 13 ovarian cancer  
patients (104). Using ESI-MS, Xiao et al. also found that 
LPA in the ascitic fluid from 15 patients with ovarian 
cancer (mean 18.9 μM) was higher than that found in the 
fluid from 15 patients with benign liver disease (mean  
2.9 μM) (98).

Overall, LPA concentrations were found to be higher in 



505Translational Cancer Research, Vol 4, No 5 October 2015

© Translational Cancer Research. All rights reserved. Transl Cancer Res 2015;4(5):500-526www.thetcr.org

blood specimens from cervical or ovarian cancer patients 
than in those from healthy controls, and higher in ascitic 
fluid from malignancies than from non-malignancies.

Autotaxin (ATX) as a LPA-producing enzyme

LPA is present in both cells and biological fluids. In serum or 
plasma, LPA is produced predominantly by a plasma enzyme 
called ATX (105-107). ATX (nucleotide pyrophosphatase-
phosphodiesterase 2), a secreted lysophospholipase D 
(lysoPLD) present in serum, is an enzyme that catalyzes 
the hydrolysis of lysophosphatidylcholine (LPC) into 
LPA (108). There are two LPA production pathways 
which convert phospholipds to LPA: (I) the PLA1/PLA2-
lysoPLD pathway, where lysophospholipids (LPLs) that are 
generated by a phospholipase A1 (PLA1) or PLA2 reaction 
are subsequently converted to LPA by a lysoPLD reaction; 
and (II) the PLD-PLA1/PLA2 pathway, where phosphatidic 
acid generated by a phospholipase D or diacylglycerol 
kinase reaction is subsequently converted to LPA by a PLA1 
or PLA2 reaction (106). In blood plasma, LPC is the most 
abundant phospholipid; ATX is considered the major LPA-
producing enzyme in human blood, one which produces the 
most extracellular LPA (109-111). 

In healthy subjects, Hosogaya et al. found that plasma 
LPA concentrations strongly correlated with lysoPLD 
activity. Lipid-related parameters other than LPC 
correlated only slightly or did not correlate with the LPA 
concentration, which suggests that conversion to LPC by 
lysoPLD might be the major route for LPA production 
in plasma (76). Although there are other LPA-producing 
pathways independent of ATX, a strong association 
between cancer cells and ATX production has been 
observed. Accumulating evidence for the physiological and 
pathological functions of ATX strongly support the claim 
that ATX is an important and promising therapeutic target 
(112,113).

During mice development, van Meeteren et al. noted 
that ATX was essential for blood vessel formation (114). In 
50 cultured human tumor cell lines derived from various 
tumors (CNS, lung, breast, stomach, colon, kidney, ovary, 
prostate, cervix, fibroblast, and melanoma), Kishi et al. 
found that some cells expressed a significant amount of 
ATX at both the mRNA and protein levels. Both ATX 
protein and lysoPLD activity were detected in the culture 
supernatants. The highest ATX expression was in SNB-
78 cells. Most ATX protein was detected in culture cell 
supernatant, whereas only a small amount was detected in 

cells. These results confirm that ATX is secreted by cancer 
cells (115).

ATX may promote cell migration, metastasis, and 
angiogenesis, and has been intimately linked with cancer 
development. According to Umezu-Goto et al., a variety 
of cancer cell lines (A-2058, CHO-K1, MDA-MB-231, 
parental RH7777 and RH7777-EDG2 cells) release 
significant amounts of LPC, a substrate for ATX, into 
the culture medium (108). Research on the use of ATX 
inhibitors, both as a primary and as an adjuvant therapy, 
is accelerating (110). After oral administration to mice 
of 3 mg/kg of FTY720, a competitive inhibitor of ATX, 
significantly reduced plasma LPA levels were noted (116).  
Murph et al. found that in melanoma, vinyl sulfone 
analogs of LPC irreversibly inhibited ATX and prevented 
angiogenesis in melanoma (117). Benesch et al. discovered 
that inhibition of ATX with a new ATX inhibitor, ONO-
8430506, delayed breast tumor growth and lung metastasis 
in BALB/c mice (111). 

As was the case for LPA, high expression of ATX in 
cancers is also associated with increased tumor progression, 
angiogenesis and metastasis (109). The ATX–LPA signaling 
axis has emerged as an important factor in many types 
of cancer. These results thus suggest that ATX-targeting 
strategies may provide a novel therapeutic approach to the 
inhibition of cervical cancer angiogenesis.

Functions mediated by LPA

LPA mediates a variety of cellular responses. Its physiologic 
and pathologic functions include the promotion of cell 
proliferation (118-131), cell survival (124,132-139), cell 
apoptosis (140-150), cell motility (91,115,151-158), cell 
migration (119,122,128,150,158-178), cell shape (179,180), 
cell differentiation (83,125,134,140,169,181-187), gene 
expression (188-202), cell transformation (203,204), 
tumorigenesis (139,205-209), cell invasion and metastasis 
(124,166,170,210-220) and other cell processes. LPA also 
enhances angiogenesis (72,118,221-229).

LPA receptors in cancer cells

The cellular responses elicited by LPA are produced by 
signaling through at least six G-protein coupled receptors 
(GPCRs) (230-243). LPA receptors were originally defined 
as an endothelial differentiation gene (Edg) family of 
GPCRs. However, at present LPA’s GPCRs are thought 
of as being divisible into two families: the Edg family 
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(106,205,233,241,244-262) and the P2Y family (78,106,205,
236,238,240,243,262, 263).

The Edg-family LPA receptors consist of LPA1/
Edg2 (247,251,252,255,256,259-262,264), LPA2/Edg4 
(230,258,262,265), and LPA3/Edg7 (231,253,262). The 
p2y-family LPA receptors are the newly discovered GPCRs 
for LPA, which include LPA4/GPR23/p2y9 (240,262), 
LPA5/GPR92/93 (235,262), LPA6/p2y5 (236,242,262), 
GPR87/95 (243,262) and p2y10 (238,262). Among the p2y-
family, LPA4, LPA5 and LPA 6 are purinergic receptors. 
The six protein receptors that interact with LPA were 
named LPA1-LPA6, with italicized gene names LPAR1-
LPAR6 representing human genes and Lpar1-Lpar6 
representing non-human genes (266).

LPA receptor expression (LPA1, LPA2, LPA3, and LPA4) 
has been examined in 50 tumor cell lines from various 
origins by using quantitative RT-PCR; results revealed 
that LPA1 was dominant in brain tumor cells, LPA2 was 
predominantly expressed in cells from colon, stomach, and 
breast cancers, and LPA3 was expressed in certain ovarian 
and prostate cancer cell lines. Overall, expression of LPA4 
was fairly low (115). 

Each LPA receptor in cancer cells has also been studied 
in the context of their respective cell lines. Up-regulation of 
LPA1 that promoted pathological functions in cancer cells 
was found in human pancreatic cancer cell lines (BxPC-3,  
CFPAC-1, PANC-1, PK-1, YAPC-PD and YAPC cells) 
(154,156,267), a breast cancer cell line (MDA-MB-231 
cells) (268,269), gastric cancer cell lines (AGS, MKN1, 
MKN28 and MKN74 cells) (269-271), a colon cancer cell 
line (DLD1 cells) (270), ovarian cancer cell lines (A2780CP, 
Caov-3, Dov-13, HEY, OVCA432, OVCAR-3 and SKOV-
3) (272-275), a melanoma cell line (B16F10 cells) (220), and 
prostate cancer cell lines (LNCaP, LNCaP-LPA1 and PC3 
cells) (130,276-278). 

LPA2 expression was found in colon cancer cell lines 
(CaCo-2, DLD1, HCT116, LS174T, LoVo, SW48 and 
SW480 cells) (196,270,279-283), ovarian cancer cell lines 
(3AO, A2780, A2780CP, CaOV-3, DOV-13, HEY, HOC-1,  
OCC-1,OVCA 420, OVCA 429, OVCA 432, OVCA 433, 
OVCAR-3 and SKOV3 cells) (152,272-274,284-286), 
pancreatic cancer cell lines (BxPC-3, CFPAC-1, HPD-K2, 
PANC-1, PK-1 and YAPC-PD cells) (154,172,267), a 
gastric cancer cell line (AGS cells) (270), a prostate cancer 
cell line (PC-3 cells) (277), and thyroid cancer cells (287).

LPA3 expression was found in colon cancer cell 
lines (DLD1, HCT116, LS174T and SW480 cells) 
(270,282,283), pancreatic cancer cell lines (BxPC-3, 

CFPAC-1, PANC-1, PK-1 and YAPC-PD cells) (154,267), 
ovarian cancer cell lines (3AO, A2780CP, Caov-3, 
OVCAR-3, Dov-13, HEY, OVCA432 and SKOV-3 cells) 
(272-275,285), a gastric cancer cell line (AGS cells) (270), 
and a prostate cancer cell line (PC-3 cells) (277,278,288).

LPA4, LPA5 and LPA6 play diverse roles in the activation 
of tumor progression in pancreatic cancer cell lines (PANC-
sh4, PANC-sh5 and PANC-sh6 cells) (289). LPA4 was 
expressed in both human colon cancer cell lines (CaCo-2, 
DLD1, HCT116, LoVo, SW48, and SW480 cells) (196,285) 
and a human ovarian cancer cell line (SKOV-3) (290). LPA5 
was expressed in human colon cancer cell lines (CaCo-2, 
DLD1, HCT116, LoVo, SW48 and SW480 cells) (196). 
LPA5 was also expressed in a human melanoma cell line 
(B16F10 cells) (220). Like other known P2Y receptors, 
GPR87 was found to be located mainly on the cell surface, 
with the overexpression of GPR87 found preferentially 
in squamous carcinoma cells (291). The presence of other 
non-Edg and non-purinergic family LPA receptors in 
cancer cell lines has rarely been reported.

In contrast with studies of other cell lines, studies 
of LPA receptors in cell lines from cervical cancers are 
relatively scarce. A report from Chen et al. found that 
the LPA receptors expressed in cervical cancer cells are 
the Edg-family receptors LPA1, LPA2 and LPA3, which 
were noted as being up-regulated in cervical cancer cell 
lines (CaSki, HeLa and SiHa cells) (72). Glatt et al. found 
that up-regulation of both GPR87 transcript and protein 
was detectable in cervical cancer samples, most often 
in squamous cancer. They demonstrated that GPR87 
contributes to the proliferation and survival of tumor  
cells (291).

Angiogenic factors in cancer

Angiogenesis is a complex process that plays an essential 
role in tumor growth and metastasis (292,293). In general, 
the diffusion limit of oxygen is approximately 100 μm, 
which requires that all mammalian cells be located within 
100-200 μm of blood vessels (294). Without a blood supply, 
tumors must depend solely on diffusion for oxygen and 
nutrients, which results in their maintaining a size of less 
than 1 mm in diameter in order for survive (64). Thus, 
the cancer cells in microscopic solitary tumors without 
angiogenesis generally remain dormant and occult for long 
periods of time. Only angiogenic macroscopic primary 
tumors and metastases are clinically detectable (64).

Factors responsible for angiogenesis include VEGF, 
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interleukin-8 (IL-8), PDGF, basic fibroblast growth 
factor (bFGF), the angiopoietin/Tie2 receptor complex, 
angiogenin, insulin-like growth factor (IGF), IGF-
binding protein 1 (IGFBP-1), CXC chemokine receptor 4 
(CXCR4) and its ligand CXCL12 (129,295,296). IL-8 and 
VEGF are the two most potent tumor-derived angiogenic  
factors (297-300).

VEGF as an angiogenic factor

VEGF express ion part ic ipates  in  carc inogenes i s 
(210,278,290,301-305). For human cancer, VEGF is 
the most important pro-angiogenic factor (293). In a 
study which examined the immnoexpression of VEGF in 
CIN, it was found that a progressive increase in VEGF 
immunoexpression was present as the tumor grade 
intensified (306). VEGF was distinguished by its being 
induced by either hypoxia or glucose deficiency (307,308). 
In solid tumors, some cancer cells expand outside the area 
of oxygen diffusion during tumor growth and become 
hypoxic, resulting in upregulation of VEGF and thus 
the occurrence of angiogenesis (309). After exposure to 
hypoxia for a few hours, different cell cultures showed 
dramatically increased VEGF messenger RNA levels which 
returned to background levels when a normal oxygen 
supply was resumed. Moreover, the production of VEGF 
was specifically induced by immediate proximity to necrotic 
tumor foci (307). Hypoxia inducible factor-1 (HIF-1) is 
considered a crucial mediator for the cellular response to 
hypoxia (309).

IL-8 as an angiogenic factor

HIF-independent mechanisms for angiogenesis have been 
described which involve a number of other molecules 
and transcription factors (309). IL-8 can be activated to 
preserve the tumor angiogenic response when VEGF 
production is suppressed. In HIF-1α knockdown DLD-1  
colon cancer cells, induction of IL-8 was also found to 
preserve the angiogenic response. Moreover, an antibody 
that neutralized IL-8 substantially inhibited angiogenesis 
and tumor growth in HIF-knock down DLD-1 but not in 
wild type DLD-1 xenografts (310). These studies suggest 
a compensatory angiogenic role for IL-8 when VEGF 
production is suppressed.

IL-8, in addition to being a tumor-derived pro-
angiogenic factor, is also a proinflammatory chemokine 
which can be induced by thrombin, HPV infection, 

pseudomonas  or  ch lamydia  t rachomat i s ,  gas t r ic 
inflammation, or by chemical substances like palmitic acid, 
IL-1β, eicosapentaenoic acid, or tumor necrosis factor-α 
(TNFα) (311-323). Turpin et al. reported that thrombin may 
drive tumorigenesis in colitis-associated colon cancer (324).  
Zhong et al. reported that thrombin promoted IL-8 
secretion, epithelial ovarian cancer cell invasion and 
induction of epithelial-mesenchymal transition (325). 
The leading cause of cervical cancer is latent infection by 
oncogenic HPV. In culture cell lines positive for HPV-16 
oncoproteins, the expression of angiogenic modulators, 
which includes pro-angiogenic molecules such as bFGF, 
IL-8, transforming growth factor, TNFα, and VEGF, 
was higher in these cells when compared to control 
keratinocytes (326). Also, overexpression of HPV-16 E6 and 
E7 oncoproteins in non-small cell lung cancer cells from 
never-smokers significantly promoted angiogenesis and an 
enhanced expression of HIF-1α, VEGF, and IL-8 (327).  
These studies support the hypothesis that IL-8’s pro-
inflammatory effect may also contribute to angiogenesis.

LPA and angiogenic factors

LPA may contribute to angiogenic homeostasis by 
producing angiogenic factors (328). The most important 
LPA down-stream angiogenic factors are VEGF and 
IL-8. The other LPA-downstream factor is epidermal 
growth factor receptor (EGFR), whose pathway may also 
be linked with VEGF-directed angiogenesis (329). LPA 
may transactivate EGFR expression in ovarian, colon or 
prostate cancers (212,330,331). In cervical malignancy, 
EGFR was expressed abnormally when compared with 
normal squamous epithelium (332). However, for a number 
of epidermal cancers upregulation of EGFR was primarily 
associated with tumor cell growth due to uncontrollable 
division of cancer cells, not angiogenesis (333-340).

LPA and VEGF

LPA may induce VEGF expression in cancer cells 
(210,218,273,288,301-305,341-348). This finding is usually 
based on studies concerned primarily with ovarian cancer 
cells (210,301-304,342,343,345), and less frequently with 
studies of prostate cancer cells (278,305), colon cancer  
cells (344) or lung cancer cells (346). In ovarian cancer cells, 
besides hypoxia LPA may induce VEGF expression and 
stimulate ovarian tumor growth, migration, and invasion 
through transcriptional activation (210,273,286,290,301-
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304,343,345). In fact, treating ovarian cancer cells with 
LPA resulted in VEGF protein levels that were elevated 
1.5-fold in SKOV-3 cells, 1.9-fold in CAOV-3 cells, and 
threefold in OVCAR-3 cells (302). All the Edg-family LPA 
receptors—LPA1, LPA2, and LPA3—were detected in 
ovarian cancer cells; however, only LPA2 and LPA3 were 
found to play a role in LPA’s stimulation of ovarian tumor 
growth (273,302). In contrast to the observation that most 
ovarian cancer cells express elevated levels of LPA2 and 
LPA3 mRNA and variable levels of LPA1 mRNA, normal 
ovarian epithelial cells were found to express LPA1 mRNA 
but to have low levels of LPA2 and LPA3 mRNA (349). 
These findings—that the expression of LPA2 or LPA3 
during ovarian carcinogenesis contributed to ovarian 
cancer aggressiveness—suggest that the targeting of 
LPA production and action may possess potential for the 
treatment of ovarian cancer (273).

LPA and IL8

In ovarian cancer cells, besides VEGF LPA may also induce 
IL-8 secretion (286,348,350,351). Knockdown of either 
LPA2 or LPA3 receptors inhibited the production of IL-6,  
IL-8, and VEGF in SKOV-3 and OVCAR-3 cells (273). 
IL-8 has also been identified as an LPA-regulated factor 
in ovarian cancer cells and, through its up-regulation, 
as a contributor to cancer development and progression 
(286,350). 

LPA may also induce secretion of both VEGF and IL-8 
proteins in colon cancer cells. However, LPA was found 
to induce the secretion of more IL-8 than VEGF (352). 
In colon cancer DLD1 cells, Shida et al. found that LPA 
induced a dose-dependent increase in the secretion of 
both IL-8 (19-fold increase at 20 μM) and VEGF (1.4-fold  
increase at 20 μM). LPA, at concentrations that are 
present physiologically, enhanced DLD1 cell migration, 
proliferation, and adhesion, along with enhancing the 
secretion of angiogenic factors, all of which are crucial for 
cancer metastasis (352). 

In cervical cancer, it was reported that LPA induced 
IL-8 secretion, angiogenesis, and tumor growth. VEGF 
levels induced by LPA receptor expression were quite low. 
LPA/IL-8 signaling was mediated through activation of 
LPA2 and LPA3 through the Gi/nuclear factor-κB (NF-κB) 
pathway (72).

For other angiogenic factors, that LPA induces their 
expression in human cancer cells has been reported rarely. 
For example, in one study LPA did not significantly alter 

matrix metallopeptidase 2 secretion or activation in DLD1 
cells (352). On the other hand, most ovarian cancer cell 
lines, including OVCAR-3, Caov-3, and SKOV-3, do not 
seem to express functional levels of PDGF receptors (353). 
PDGF and bFGF do not seem connected with angiogenesis 
due to LPA receptor over-expression (72).

Targeted therapy of angiogenic factors

The clinical use of angiogenesis inhibitors may be a 
promising direction in pharmacological research (43,293). 
For advanced and recurrent cervical cancer, targeted agent 
therapy, alone or combined with chemotherapy, has been 
under evaluation and shows promise. Several LPA receptor 
analogues and small molecules which target LPA receptors 
have been discovered which were found to be efficacious 
in attenuating tumor pathology (354,355). Agents 
targeting VEGF and EGFR signaling pathways are the 
most investigated molecular targeting agents for cervical 
cancer (355). However, EGFR inhibitors have not shown  
promise (41).

VEGF as an anti-angiogenic target

Currently, VEGF and its receptors are the only targets used 
in anti-angiogenesis therapy (356). For advanced cervical 
cancer, in 2014 a prospective randomized Phase III clinical 
trial (GOG 240) which explored the impact of adding the 
antiangiogenic agent bevacizumab to a combination of 
cisplatin and either paclitaxel or topotecan showed a small 
but significant therapeutic benefit of 3.7 months added 
to median OS without significant deterioration in health-
related quality of life (357,358). Bevacizumab, a monoclonal 
antibody for VEGF, was associated with an increased 
incidence of hypertension, thromboembolic events, and 
gastrointestinal fistula when compared with chemotherapy 
alone. On August 14, 2014, the US Food and Drug 
Administration approved bevacizumab for the treatment of 
persistent, recurrent, and metastatic cervical cancer when 
used in combination with other chemotherapeutic agents 
(cisplatin-paclitaxel-bevacizumab or topotecan-paclitaxel-
bevacizumab regimens) (357,359).

However, in general the clinical effects of antiangiogenic 
agents may easily cause drug resistance, and thus their 
usefulness is usually transient (360). For most tumors, 
anti-angiogenesis treatments targeting VEGF had 
only a limited OS benefit compared with conventional 
chemotherapy alone; moreover, these treatments tended to 
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induce resistance and tumor cell invasion by selecting for 
highly invasive tumor cells or hypoxia-resistant cells (361).  
Specifically, intrinsic resistance has also been associated 
with bevacizumab (362,363). Although the GOG 240 
clinical trial report on bevacizumab has encouraged its use 
for advanced cervical cancer treatment, in view of its high 
cost, limited OS benefit, and rapid induction of resistance, 
further exploration and evaluation of anti-angiogenic 
agents must be taken into consideration (41,363-367).  
Moreover, in a study to determine whether markers of 
tumor angiogenesis were associated with cervical cancer 
survival, high CD31 MVD but not VEGF was found to 
be an independent prognostic factor for progression-free 
survival (PFS) and OS (62).

The other VEGF-directed multi-targeted anti-
angiogenic tyrosine kinase inhibitors such as cediranib and 
pazopanib have shown some therapeutic benefits in ovarian 
cancer, with both resulting in improvements in PFS and 
OS (39). However, prospects for their use as treatments 
for cervical cancer remain uncertain (366). The usefulness 
of novel anti-angiogenic agents thus merits further 
investigation.

IL-8 as an anti-angiogenic target

LPA may promote angiogenesis in both normal and cancer 
cells via up-regulation of IL-8. Table 2 lists reports that 
simultaneously investigate both angiogenesis and LPA-
induced IL-8 up-regulation.

LPA treatment increased the angiogenic capability 
of cultured chondrocytes and resulted in enhanced 
capillary tube formation, monolayer permeability, 
migration, and cell growth in human umbilical vein 
endothelial cells (HUVECs). Angiogenin, IGFBP-1, IL-8,  
monocyte chemoattractant protein 1 (MCP-1), matrix 
metallopeptidase 9, and VEGF mRNA protein expression 
were significantly enhanced in LPA-treated chondrocytes. 
LPA2, 3, 4 and 6 were expressed in chondrocytes (296).

In cervical cancer, all three Edg receptors are expressed 
in cervical cancer cells. A study of the LPA receptor 
signaling cascade that used a mice model showed for the 
first time that knocking out the receptors LPA2 and LPA3, 
but not LPA1, decreased cervical cancer tumor growth 
and tumor MVD (72). Priming cervical cancer cells with 
LPA increased angiogenesis, as was shown by endothelial 
growth via HUVEC assay, and by endothelial migration 
via permeability assays. In cell cultures, knocking out the 
receptors LPA2 and LPA3 also inhibited angiogenesis, 

whereas cell proliferation was not influenced by knocking 
down any two or all the three Edg-family receptors. This 
study revealed that LPA may promote angiogenesis, and 
that angiogenic suppression that blocks the receptors LPA2 
and LPA3 may inhibit tumor growth in vivo (72). Overall, 
in cervical cancer cells the most important LPA-related 
angiogenic factor was IL-8.

In first-trimester placental trophoblasts, the primary 
LPA receptor is LPA1. LPA enhanced growth-regulated 
oncogene—α, IL-8 and MCP-1 expression in a time- and 
dose-dependent manner (222).

In breast cancer cell lines (Hs 578T, MCF-7, MDA-
MB-231, MDA-MB-435S, SK-BR-3, T-47D, and ZR-
75-1 cells), sphingosine-1-phosphate (S1P), but not LPA, 
controlled the expression of VEGF. LPA and S1P had 
indirect angiogenic properties, as was shown by induced 
secretion of angiogenic factors by breast cancer cells primed 
with these LPLs (341).

LPA mediates IL-8 expression in human endometrial 
stromal cells through its LPA receptors. In endometrial 
specimens obtained from 38 premenopausal women 
undergoing hysterectomy for leiomyoma, and in decidua 
or placenta specimens that were obtained from 12 women 
who had received an elective termination of pregnancy, 
LPA enhanced IL-8 expression in a dose- and time-
dependent manner and enhanced capillary tube formation 
and proliferation of human endometrial microvascular 
endothelial cells (224). Through the LPA1 receptor, LPA 
induced IL-8 expression and thus may have played a role in 
the angiogenesis of the endometrium and placenta (224).

In ovarian cancer cells, Fang et al. found that LPA 
induced expression of IL-8 mRNA mainly through 
transcriptional activation. Using IL-8 gene promoter 
luciferase assays in which cell lines were transfected with 
the plasmid pIL-8-Luc, they confirmed that LPA activates 
the IL-8 gene promoter in ovarian cancer cells. By contrast, 
in the control there was only a limited increase in luciferase 
activity in OVCAR-3 cells transfected with pGL2-Luc. The 
LPA2 receptor was identified as the one that most efficiently 
linked LPA to IL-6 and IL-8 production (286).

In in vitro ovarian cancer cells (HEY, OCC1, and 
SKOV3), Schwartz et al. found that LPA at concentrations 
of 5-15 μM induced increases in mRNA levels (2- to 
7-fold increase) and in protein secretion (2- to 12-fold 
increase) of IL-8. In a breast cancer cell line, MCF7 cells 
responded to LPA by increasing the secretion of IL-8. LPA 
was found to regulate the mRNA and protein levels of the 
proinflammatory and proangiogenic factor IL-8 in ovarian 
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cancer cells (350).
In cultured granulosa-lutein cells, LPA-induced IL-8 

mediated tube formation in HUVEC assay, which suggests 
that in preovulatory follicles LPA may play a role in the 
angiogenesis of corpus luteum (223).

Additionally, in ovarian cancer cells LPA induced cell 
migration and the secretion of IL-8, a pro-angiogenic  
factor (368). This study suggests that LPA is potentially 
related to both tumor metastasis and angiogenesis. Also, it 
found that Al-LPAs induced diverse signaling pathways in 
ovarian cancer cells.

Overall, LPA may induce angiogenesis mediated by IL-8 
in normal or cancer cells. In cervical cancer, IL-8 is the 
most important, if not the exclusive, mediator. Targeting 
the LPA/IL-8 axis may thus be a promising pharmacological 
approach for cervical cancer treatment.

Conclusions

Because of recent advances in cervical cancer prevention by 
HPV vaccination, better screening and earlier treatment 
for CIN, and more aggressive management of invasive 

cancer, cervical cancer has become more preventable and 
treatable. However, its incidence and mortality remain high. 
For metastatic or recurrent disease, targeted molecular 
translation may be either an alternative to cytotoxic 
chemotherapy or an additional treatment. Angiogenesis 
has a clinical, pathological and molecular meaning for 
cervical carcinoma. Bevacizumab, a recombinant humanized 
monoclonal antibody which binds with the angiogenic 
factor VEGF, has been demonstrated to have a significant 
clinical effect, with 3.7 months of OS improvement for 
cervical cancer patients. The ATX-LPA-IL-8 axis signaling 
cascade may also have potential for the anti-angiogenic 
treatment of cervical cancer (Figure 1). Molecular therapy 
that targets this pathway may improve the prognosis of 
patients with advanced cervical cancer, and thus merits 
further investigation.
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