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The integration of cisplatin into radiation regimens was 
first developed in locally advanced cervical cancer, a 
tumour where there is the added advantage that high dose 
intracavity radiation can be given as well as external beam 
therapy (1), and the concept was later extended to head 
and neck cancers. However, progress since then has been 
slow with the addition of other radiosensitising drugs like 
gemcitabine providing only a modest survival advantage (2). 
Myelosuppression and gastrointestinal toxicity also became 
dose limiting with the doublet. DiSilvestro and colleagues 
reported a phase III trial of cisplatin based chemoradiation 
with or without the hypoxic cell sensitizer tirapazamine in 
402 predominantly Caucasian and non-Hispanic patients 
with stages IB, IIa, IIIB and IVa cervical cancer in 2014 (3). 
The GOG 219 study took 3.5 years to accrue and was closed 
in 2009 prematurely on account of lack of study drug.

The study was well conducted with an adequate dose and 
schedule of radiation and acute toxicity was within acceptable 
limits, although vomiting, diarrhea and neuropathy were 
greater in the tirapazamine arm. Node sampling was 
recorded as performed in >80% of cases, but the results are 
not reported. Similarly results have not been presented for 
parallel translational studies. The study was negative with no 
PFS or OS benefit for the addition of tirapazamine.

Tirapazamine can be described as a second generation 
sensitiser based on a benzotriazine backbone which is 
bioreductively activated in hypoxic cells (4). In cell lines it 
had previously been shown to be up to 450× more cytotoxic 
in hypoxic compared to well-oxygenated cells, producing 
both single strand and double strand breaks. Earlier studies 
with 2-nitroimidazoles in both cervix and head and neck 
cancer were often underpowered and no overall effect on 
outcome was shown. Tirapazamine also has an inhibitory 
effect on DNA repair (5) and in vitro and in vivo synergy 
with cisplatin had been demonstrated. This last finding may 

be of significance because GOG 219, in common with many 
other randomized studies of cisplatin based chemoradiation, 
had shown a lower distant metastatic rate. The individual 
patient meta-analysis carried out in 2008 showed an absolute 
risk reduction of death of 6% and a 7% reduction in distant 
metastases by the addition of cisplatin to radiation (6).

The background to the study was preclinical work 
suggesting synergy between tirapazamine and cisplatin 
confirmed by phase II studies of this combination not only 
in advanced cervical cancer with a response rate of the order 
of 30% (7,8), but also in other tumour types. There was 
one phase I study of 15 patients in chemoradiation in which 
the dose of cisplatin was halved and the tirapazamine was 
administered on days 8, 10, 12, 22, 24 and 26 (9) which led 
to the phase III study. Subsequently two randomized head 
and neck cancer studies recruiting 923 patients to assess the 
addition of tirapazamine to cisplatin based chemoradiation 
showed no survival gain but increased myelosuppression in 
the experimental arm (10,11).

The 2008 meta-analysis furthermore identified two 
studies employing additional chemotherapy after completion 
of chemoradiation in cervical cancer, and suggested this 
may be associated with a gain in survival. Subsequent 
analysis of the subgroups of the cisplatin/gemcitabine study 
showed that there was a survival gain associated with the 
continuation of chemotherapy after the chemoradiation (2). 
There are two confirmatory studies in progress addressing 
the issue of additional adjuvant chemotherapy (ANZGOG 
0972/GOG 0274 and RTOG 0724).

The above studies demonstrate that additional 
concomitant chemotherapy to cisplatin adds to toxicity 
without significant benefit, and raise the question whether 
the activity of tirapazamine is related to its hypoxic 
selectivity or to sensitization of cisplatin. A further concern 
is the extent to which chronic or transient hypoxia exists in 
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tumours of different size and vascularity, as well as the known 
heterogeneity in the oxygen tension measured in different 
parts of the same tumour (12). The message emerging over 
the last 10 years is that unless clinically relevant biomarkers 
are available, translation to clinical studies will risk rejection 
of promising compounds and premature progression to large 
phase III trials will not be cost-effective.

There have also been recent advances in our understanding 
of the genomics of cervical cancer and of the adaptive 
responses to hypoxia, which are largely mediated by HIF1α 
leading to transcriptional activation of genes which reduce 
cellular oxygen demand. There is also epigenetic repression 
of DICER leading to an epithelial to mesenchymal transition 
and acquisition of stem cell and metastatic phenotypes (13). 
Whole exome sequencing of 115 cervical carcinomas was 
reported in 2014 and besides showing differences between 
squamous and adenocarcinomas, suggested that there was 
increased expression of adjacent genes as a result of HPV 
integration and these included the growth factor ERB2 (14). 
The most frequently mutated gene set was also shown to 
involve immune response genes.

Ionizing radiation itself may disrupt the immune 
system as a result of the acute inflammation produced, 
and reactive oxygen species (ROS) may promote antigen 
presentation leading to activation of a range of cytokines 
and cellular responses depending on the redox status of 
the microenvironment (Figure 1). Several preclinical and 
clinical observations have led to interest in combining 
immune checkpoint inhibitors with radiation (16). Once the 
initial studies are complete, combination of radiosensitisers 
with immunotherapy as an adjunct to chemoradiation will 
be worth exploring, either concomitantly or sequentially.

There has also been renewed interest in exploiting DNA 

repair pathways largely as a result of the development 
of the PARP inhibitors as cytotoxic agents in BRCA 
deficient tumours. These agents produce single strand 
breaks and in combination with the HR defect associated 
with BRCA deficiency and likely other DNA repair 
deficiencies, can induce a state of synthetic lethality (17). 
Antimetabolites used as radiosensitisers including 5-FU and 
gemcitabine target homologous repair (HR) while cisplatin 
predominantly targets non-homologous end joining (18). 
Evidence of radiosensitisation by the PARP inhibitors has 
led to the initiation of a number of clinical trials in several 
tumour types targeting DNA repair molecules including 
ATM, Chk1/2 and WEE1 (19).

In summary, there are a number of therapeutic 
possibilities for enhancing radiation response, including 
hypoxic sensitization, DNA repair, growth factor inhibition 
and immunomodulation (20). The interactions between 
these processes are beginning to become clear. As these are 
developed, researchers will have to deal with the difficulties 
of drug and radiation interactions, tumour heterogeneity 
and stem cell plasticity. However, cervical cancer remains 
one of the best systems to evaluate these effects.
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Figure 1 Redox and how it might influence the immune system. The concept presented is that radiation drives a pro-oxidant state leading 
to inflammation, proinflammatory cytokines, and oxidative damage. Reactive oxygen species (ROS) also promote antigen presentation by 
dendritic cells, cytotoxic T-lymphocytes and M1 macrophages. Reproduced with permission from Schaue and McBride, 2015 (15). 
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