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Introduction

Breast cancer is one of the prevalent cancer types in female 
in the United States and world-wide (1). Three major 
molecular subtypes of breast cancer have been identified by 

the genetic profiles in tumors: estrogen receptor positive 

(ER+), human epidermal growth factor receptor 2 positive 

(HER2+), and triple negative breast cancer (2,3). About 

70% of human breast cancers are ER+, and most ER+ 

Original Article

Applying gene set analysis to characterize the activities of 
immune cells in estrogen receptor positive breast cancer

Yi-Hsuan Chang1*, Yu-Chiao Chiu1*, Yu-Ching Hsu2, Hui-Mei Tsai2, Eric Y. Chuang1,3, Tzu-Hung Hsiao2

1Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan; 2Department of Medical Research, 

Taichung Veterans General Hospital, Taichung, Taiwan; 3Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National Taiwan 

University, Taipei, Taiwan

Contributions: (I) Conception and design: YH Chang, YC Chiu; (II) Administrative support: EY Chuang, TH Hsiao, HM Tsai, YC Hsu; (III) 

Provision of study materials or patients: YH Chang; (IV) Collection and assembly of data: YH Chang; (V) Data analysis and interpretation: YH 

Chang, YC Chiu, TH Hsiao; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors;

*These authors contributed equally to the work.

Correspondence to: Eric Y. Chuang. Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan. 

Email: chuangey@ntu.edu.tw; Tzu-Hung Hsiao. Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.  

Email: d93921032@gmail.com.

Background: Estrogen receptor (ER) is a crucial biomarker for subtyping breast cancer. The present study 
aimed to understand the influence of infiltrated immune cells to patients’ outcome in estrogen receptor 
positive (ER+) breast cancer.
Methods: Gene expression profiles of three breast cancer cohorts downloaded from Gene Expression 
Omnibus (GEO) were used in this study. We utilized gene set enrichment analysis (GSEA) to estimate the 
activities of immune cell infiltration based on 31 published immune gene sets. Each gene set was tested 
for ER+ associated prognostic value. GSEA was applied to identify biological functions associated with 
prognostic immune gene sets.
Results: Nine subtypes of immune cells showed ER+ specific association with patient survival; seven of them 
formed two co-activation clusters, including: (I) activated CD4, CD8, effector memory CD4, and (II) regulatory 
T cell, dendritic cell, eosinophil, and mast cell, substantially representing innate and adaptive immunity. Among 
them, activated CD8 and mast cell were independent prognostic factors in multivariate Cox regression. Functional 
annotation analysis revealed their involvement in breast cancer subtyping, relapse, and metastasis.
Conclusions: We devised a gene set analysis to comprehensively investigate the involvement of ER specific 
immune cell activities and prognosis in breast cancer. Our work provides hints of the interaction between 
infiltrated immune cells and activated oncogene in ER+ breast cancer and may contribute to the biological 
basis for the development of immunotherapy.

Keywords: Gene set; tumor infiltrating lymphocyte (TIL); breast cancer; estrogen receptor (ER); gene expression; 

survival analysis

Submitted Apr 01, 2016. Accepted for publication Apr 07, 2016.
doi: 10.21037/tcr.2016.04.09

View this article at: http://dx.doi.org/10.21037/tcr.2016.04.09

https://crossmark.crossref.org/dialog/?doi=10.21037/tcr.2016.04.09


177Translational Cancer Research, Vol 5, No 2 April 2016

© Translational Cancer Research. All rights reserved. Transl Cancer Res 2016;5(2):176-185tcr.amegroups.com

breast cancer patients benefited from hormone therapies, 
such as tamoxifen (4-6). However, still 30% of ER+ tumors 
do not respond well to hormone therapy (7).

Previous studies showed the tumor infi ltrating 
lymphocytes (TILs) were associated with prognosis and 
treatment response of breast cancer (8-12). For example, 
large amount of TILs were prone to decreased recurrence 
in triple negative breast cancer (8). High levels of TILs 
also increased trastuzumab benefit in HER2+ disease (8). 
However, most of these studies focused on the HER2+ and 
triple negative subtypes. The role of TILs in ER+ breast 
cancer was rarely discussed.

Recently, FDA approved ipilimumab (anti-CTLA4 
antibody), nivolumab, and pembrolizumab (anti PD-1 
antibody) for cancer immunotherapies to inhibit the 
immune checkpoint blockade, PD-1 and CTLA-4  
(13-15). One of the determining factors of responses to 
immunotherapy is the presentation of neoantigens and 
the activation of immune system. Although the roles of 
different immune cells in cancer progression have been 
individually studied and reviewed (16,17), a systematic study 
which comprehensively investigates all various types of 
immune cells in specific subtype of breast cancer remains an 
unchartered territory.

In this study, we utilized a gene set enrichment approach 
to analyze subtypes of TILs. Using genome-wide expression 
profiles derived from breast tumors, the landscape of 
immunology in breast cancer and its association with tumor 
prognosis were explored. The findings could provide a 
biological basis of tumor infiltrating immune cells in ER+ 
tumors and benefit the development of immunotherapy.

Methods

Immune gene sets and microarray data sets

A total of thirty-one immune cell associated gene sets, 
collected from a previous research (18), were used in 
the study. We analyzed three data sets of breast cancer, 
GSE4922 (19), GSE2034 (20) and GSE2990 (21). The gene 
expression profiles were downloaded from Gene Expression 
Omnibus (GEO) (22). A total of 714 samples were used in 
the study, and the summary of the three data set was list in 
Table S1. Patients without survival information or ER status 
were excluded, and all samples were divided into subgroups 
based on ER status (ER+ and ER−). We took GSE4922 as 
the training data set and GSE2034 and GSE2990 as the 
validation data sets.

Gene set enrichment score

In gene set analysis, we used gene set enrichment scores to 
represent gene activities of immunological gene sets. The gene 
set enrichment score was defined as the averaged normalized 
expression value of the member genes in a given data set. 
Suppose a gene set s consist N genes and the log2-transformed 
expression level of gene j in sample i be xj,i. The enrichment 
score is defined as below:

,
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where   jµ  is the mean value of gene j in a gene set among 
samples, and *

jσ  is the standard deviation.

Statistical analysis

Patient survival information in the data sets was retrieved 
from the GEO database. Both Kaplan-Meier estimator 
method (23) and Cox hazard proportional model (24) were 
applied. In Kaplan-Meier analysis, patients were divided 
into two groups based on the median of gene set enrichment 
score. For multivariate analysis, the analyzed risk factors in 
the Cox hazard proportional model were the status of lymph 
node (LN) involvement, enrichment score of cell cycle 
indexing genes (25), consensus ER+ prognostic genes (26),  
and the immune cell associated gene sets. Association 
between each pair of immune gene sets was calculated by 
Pearson correlation.

Annotation of biological functions by gene set enrichment 
analysis (GSEA)

GSEA (27) was applied to identify the gene sets enriched 
in the sub-clusters of 211 breast cancer samples. The gene 
sets are collected from the Molecular Signatures Database 
(MSigDB) v5.0 (28). A total of 3,951 gene sets including the 
gene set of C2-curated chemical or genetic perturbations 
(CGP), C3-transcription factor targets (TFT), C5-gene 
ontology biological process (GO-BP), and C6-oncogenic 
signatures were analyzed in this study.

Results

Study overview

To explore the association of TILs and patient’s survival in 
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ER+ breast cancer, 31 previously defined gene sets were 
used to present the subpopulation of TILs. The immune 
cell gene sets were applied for survival analysis. The overall 
analysis flowchart is showed in Figure 1. The samples were 
first divided into two groups according to the ER status, and 
the enrichment score of each gene set was computed for each 
sample. Then, for each group, the enrichment scores were 
applied for Cox regression analysis. Statistically significant 
gene sets were identified based on the threshold of Cox P 
value <0.05. Moreover, to validate the results from survival 
analysis, we included two other datasets, GSE2990 and 
GSE2034. The results were consistent to what we found in 
the discovery dataset. The survival analysis results for the 
three datasets were visualized by Kaplan-Meier plots.

Further investigation of the immunological interactions 
between each survival associated immune cell gene sets was 
performed by Pearson correlation on the enrichment scores. 
Gene sets that showed strong interactions were grouped. Based 
on the enrichment scores of these gene sets we performed the 
unsupervised hierarchical clustering with respect to samples. 
Two clusters were chosen for subsequent analysis. One of 
them was patients with better survival and the other was the 
opposite. Finally, GSEA software was executed to provide 
functional interpretations of these two clusters.

Predictive immune signatures for breast cancer prognosis

To identify the activities of immune cell subtypes that 
may affect the clinical outcome of breast cancer patients, 
enrichment score of each gene set was calculated for each 
sample and was then applied to univariate Cox regression 
model. The yielded hazard ratios and P values are listed in 
Table 1. Nine of the 31 immune cell gene sets were found 
with statistical significance (P<0.05) in the ER+ group while 
only one of them in the ER− group. For the ER+ group, 
the significant gene sets were assigned to two groups, the 
protective and the risk group, according to the hazard ratio. 
The risk group included four gene sets: activated CD8, 
activated CD4, effector memory CD4, and NK56 dim, and 
the protective group contained five gene sets: mast cells, 
Th2, Treg, eosinophil, and DC. Among the nine gene sets, 
the activated CD8, activated CD4, effector memory CD4, 
Th2 and Treg gene set were related to adaptive immune 
system, and the NK56 dim, mast cells, eosinophil, and DC 
gene sets are associated with innate immune system. This 
implied that certain immunological signaling pathways 
and the cooperation of the innate and adaptive immune 
systems may affect the prognosis of the breast cancer patient. 
Previous studies also showed some relation between immune 
system and cancer microenvironment (29,30). Although the 
mechanisms underlying the result were still unclear, this may 
be an interesting topic for future research.

GEO data 
set

ER status
+ −

Immune 
gene sets

Cox regression model

No significant immune 
activitiesP<0.05?

Significant 
immune activities

Yes

No

Kaplan-Meier 
estimator

Pearson 
correlation

Unsupervised 
hierarchical clustering

Differentially expression clusters

Functional annotation

Immune activities interaction

Figure 1 Flowchart for identifying prognostic immune biomarkers 
associated with survival outcomes in breast cancer.

Table 1 Univariate Cox regression of the 9 immune cell gene sets 
in GSE4922

Gene sets
Overall survival in ER+ Overall survival in ER−

Hazard ratio P value Hazard ratio P value

Activated CD8 2.12 <0.001 1.92 0.220

Activated CD4 1.73 <0.001 1.52 0.271

Mast cells 0.33 0.003 0.80 0.836

Effector memory 
CD4

2.20 0.004 2.24 0.156

Th2 0.38 0.022 0.68 0.697

Treg 0.52 0.026 0.73 0.607

Eosinophil 0.49 0.030 0.92 0.921

NK56 dim 2.32 0.032 13.01 0.041

DC 0.55 0.044 0.91 0.875

ER, estrogen receptor; Th, T-helper; NK, natural killer; DC, 
dendritic cell.
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Validation for the identified predictive TIL subtypes

We validated the findings in the discovery dataset in two 
validation data sets (Table S2). Eight and five out of the nine 
gene sets showed concordant significance in the validation 
data sets, GSE2034 and GSE2990. This demonstrates the 
potential importance of the immune activities to ER+ breast 
cancer patients’ survival. Kaplan-Meier plot of the three 
most significant gene sets are activated CD4 (Cox P value 
<0.001), activated CD8 (Cox P value <0.001), and mast cell 
(Cox P value =0.003) (Figure 2). All of them had associations 
with patient survival in the ER+ group across the three 
datasets. The Cox P value of the CD4, CD8 and Mast cell 
gene set were P<0.001, P=0.002, and P=0.019 for GSE2034; 
P<0.001, P=0.003, and P=0.025 for GSE2990, respectively. 
Breast cancer patients with higher expression in both 
activated CD4 and activated CD8 gene sets had poor 
survival while upregulated mast cell gene set was associated 
with better prognosis. The result was in consistence with 
the earlier study which suggested the correlation between 
mast cell activities and lower grade tumors in stromal cells 
(31,32).

Multi-variate Cox analysis with other prognostic features

In addition to univariate Cox regression model for immune-
related gene sets, we explored the potential to cooperate the 
immune cell gene sets with other well-known prognostic 
features. One prognostic features used in clinic (LN 
status) and two factors identified in the previous studies 
(cell cycle gene signature and ER+ consensus prognostic 
genes) were considered. The results showed that two 
tumor infiltration leukocytes can be an independent 
predictor comparing with the prognostic features (Table S3).  
Activated CD8 and mast cell signatures showed the 
statistical significance (P=0.03 and P=0.04), comparing with 
the variable of “lymph node status” which was one of the 
factors of current staging system used in clinic.

Construction the TIL interaction network

We assessed connectivity of the 7 out of 9 immune cell gene 
sets identified from ER+ group by Pearson correlation. 
The results are shown in Figure 3. In the ER+ group, 
two groups of gene sets showed strong correlations. One 
group contains effector memory CD4, activated CD4 and 
activated CD8 gene set while the other group includes mast 
cells, Treg, eosinophil and DC gene set. In the ER− group, 

similar correlation can be observed. Although not all these 
gene sets were correlated to patient survival in the ER− 
group, association between these immune signaling still 
appeared in both ER status groups. In addition, the highly 
correlated gene sets all fell into the same group based on 
the hazard ratio. The effecter memory CD4, activated 
CD4, and activated CD8 gene set all belonged to the risk 
group and the mast cells, Treg, eosinophil, DC gene set 
were all in protective group. This supports the implication 
of the cooperative effect of these immune cell gene sets 
as we found in univariate Cox regression model. Previous 
studies also revealed that complicated network between 
the immune-regulatory processes may be related to breast 
cancer progression (17,33).

Seven identified immune cell gene sets were analyzed 
by two-way unsupervised hierarchical clustering for the 
purpose of testing the predictive power of these gene sets. 
The clustering result is shown in Figure 4. There were 
apparently two clusters in the dendrogram. On the left is 
the cluster of patients with poor survival, which tends to 
have higher expression in the three gene sets of risk group 
and lower expression in the four gene sets of protective 
group. On the other hand, on the right is the cluster of 
patients with better survival, and their expression in the 
seven gene sets is the opposite of the one on the left (higher 
expression in the protective group and lower expression in 
the risk group). Such result revealed the potential of these 
seven gene sets as predictive signature.

Functional relevance in the integrative subgroups

We conducted GSEA software to invest igate the 
underlying mechanisms that affect the survival of the 
two clusters of patients. After computing the enrichment 
scores, we set the filtering threshold as FDR <0.001 and 
absolute enrichment score >0.6. A total of 27 gene sets 
were identified in cluster A (Table S4) and 51 gene sets 
were identified in cluster B (Table S5). Among these gene 
sets, several gene sets have been reported to be associated 
with breast cancer. We further interpreted two gene 
sets, “SHEN SMARCA2 TARGETS UP” and “SMID 
BREAST CANCER NORMAL LIKE UP” (Figure 5). In 
cluster A, “SHEN SMARCA2 TARGETS UP” is a set of 
genes whose expressions are positively correlated with the 
SMARCA2 gene. It has been reported that the SMARCA2 
gene is associated with the transcription of certain genes 
related to poor survival of breast cancer patients (34,35). 
As for cluster B, an identified gene set, “SMID BREAST 
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Figure 2 Kaplan-Meier survival curves of activated CD4, CD8 and mast cell activities of three GEO data sets. The three immune 
signatures were analyzed with overall survival, and the survival relevance of the three immune signatures were confirmed in validation data 
sets. Activated CD4 and activated CD8 were poor prognostic factors, while mast cells were favorable. All P values were estimated in Cox 
regression model.
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Figure 3 Correlation of immune signatures and networks. Upper panel, Pearson correlation coefficient of each pair of immunological gene 
sets in both ER groups. Colormap denoted the relationship of each pair of immune signatures. We set the filter based on the significance 
(P<0.05) and thresholds on positive correlation coefficient as higher than 0.65, negative correlation coefficient lower than −0.6 in ER 
positive; positive correlation coefficient higher than 0.53 or negative correlation coefficient lower than −0.52 was set in the ER negative 
group. Lower panel, networks constructed in the correlation coefficient to investigate the connection between immune activities. High 
correlation (R>0.7) was identified between the activated CD4, CD8 and the effector memory CD4. Another cluster of highly correlated gene 
sets was composed of mast cell, Treg, DC and eosinophil (R>0.65). Noteworthy, we also focused on the negative regulation between immune 
activities and found significant negative correlation coefficients between mast cell and effector memory CD4, activated CD8 (R<−0.6). ER, 
estrogen receptor; Treg, regulatory T cell; DC, dendritic cell; AB, activated B cell; IB, immature B cell; Esn, eosinophil; Mono, monocytes; 
TC, T cells; MB, memory B cell; Mcr, macrophages; CyC, cytotoxic cells. 
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Figure 5 Selected enrichment plots of two clusters of immune activities. Two clusters of expression profiles were analyzed by the analytical 
software GSEA to rank all 12,754 genes in GSE4922 according to the Student’s t-test for the differences between two clusters. With a 
calculation of the enrichment score (ES), enrichment plot illustrates specific gene set associated with the difference between two cohorts. 
Significance of each enrichment score was calculated by 1,000 permutation tests. (A) Enrichment plot of the SMID_BREAST_CANCER_
NORMAL_LIKE_UP gene set identified in cluster B. Protective immune signature was associated with normal-like breast cancer subtype-
upregulating genes reported by Smid et al.; (B) enrichment plot of the SHEN_SMARCA2_TARGETS_UP function found in cluster A.
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to have differential expression in normal-like molecular 

subtypes of breast cancer (36).

Discussion

In this study, we utilized the gene set approach to identify 
the activities of TILs subtypes in ER+ breast cancer. 
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Nine of them were associated with patients’ survival. 
Nevertheless, only one of the nine immune cell gene sets 
showed correlation to prognosis in ER− breast cancer. The 
results indicated the characteristics of different breast cancer 
molecular subtypes could influence the interaction of immune 
system during tumor development and thus affect patient’s 
survival. Through the analysis of Pearson correlation, the 
nine gene sets were separated into two groups. One contains 
the immune cells associated with adaptive immunity (activated 
CD4, Activated CD8, and Em CD4), and the other belongs 
to the innate immunity (Treg, DC, eosinophil, and mast 
cell). We speculated this may arise with tumor progression. A 
previous study (17) proposed that adaptive leukocytes played 
contrast roles in acute and chronic inflammation. Two types 
of inflammation were directly regulated by the cytotoxic, 
Th1 cells and the myeloid suppressors (Th2, CD4+ T cell 
and Treg). With accumulation of innate leukocytes regulated 
by chronic activation of B cells, tumor promotion was 
activated and transforming tumor rejection properties of 
innate immune cells. This immune surveillance dominated 
tumor development in many cancer types. In view of that, 
malignant tumor could induce the acute inflammation and 
adaptive immunity by proliferation and invasion. For innate 
immunity, favorable prognosis showed in the group of TILs 
concluded owing to trigger acute inflammation response 
while immune system encounter neo-antigens. Two groups 
of TILs depicted reverse survival by triggering different 
inflammation response, and these inter and intra-cluster 
connections can be the evidence of immunity contexture in 
tumor development.

Immune cells cooperate in immune response with a 
complicated mechanism; how to parse these immune 
subtypes networks in a specific cancer type cohort still 
remains a challenging task. We used Cox regression 
model and Kaplan-Meier estimator to investigate the 
prognosis trend with several TIL subtypes. Some of 
them are associated with adverse prognosis, such as 
regulatory T cells (37,38). However, several literatures 
suggested that Treg appear to play a dual role depending 
on tumor microenvironment (39), which can regulate 
the inflammation and trigger different signal pathways 
to oncogenesis, acting as antitumor suppressor or tumor 
suppressor. In this study, Treg accumulation led to favorable 
prognosis. With variety of immunosuppressive antigens, 
immune system signal transduction and cytokines secretion 
were interfered, causing immune dysfunction (40),  
that may be a reason of Treg diversity. The activated CD4 
and CD8 immune signatures, analogous to regulatory T cell, 

were not expected in survival analysis. We inferred that this 
was caused by the divergence in CD4 and CD8 expression on 
the T cells in different clinical variation. Data source of gene 
collection was multi-faceted, which contained various clinical 
conditions. Breast cancer cohorts may have specificity of 
these two gene sets but with different prognosis expectancy.

In the survival analysis, we demonstrated some of 
the TILs subtypes were associated with overall survival, 
inclusive of activated CD8 and mast cells. TILs resulting 
in favorable and poor prognosis were different from the 
literature of immune subtype gene sets source. In Angelova’s 
research (18), few survival associated immune subtypes 
showed inverse trend to our study. For instance, regulatory 
T cell was a poor prognostic factor among TILs subtypes 
and also an independent survival predictor, but that was 
not found in our study, reflecting the molecular subtype 
diversities in cancer development and patient heterogeneity. 
Here, we focus subsequently analysis on ER+ cohort. 
Based on the concordant results achieved in two validation 
data sets, we confirmed the TILs and patient’s outcome 
modulated by ER status.

We pooled nine survival correlated immune cell gene sets 
to evaluate the independence of prognostic predictors. Cell 
cycle and LN status were known to predict patient survival. 
In our multivariate analysis LN status remained a dominant 
factor among all predictors in other survival associated TIL 
subtypes, overtaking the cell cycle genes. Thus, we can 
take activated CD8, mast cell and LN status as a group of 
powerful prognostic predictors in ER+ patients.

Functional annotations suggested that differentially 
activated immune signatures play important roles on other 
molecular signatures upon breast cancer oncogenesis. In 
large retrospective studies, mast cell was differentially 
correlated to prognostic in various cancer types (18,41,42). 
It was reported with the capability of defense against allergic 
pathogens. We analyzed biological functions associated with 
two clusters of protective immune signatures expression. 
Because in protective immune signatures, mast cell was a 
significant prognostic factor in multivariate Cox regression, 
we further investigated the mast cell functioning as principle 
on breast tumor. In two clusters of functional annotation, 
there appeared inverse regulation of a gene set modulate 
SMARCA2 in prostate cancer (43). Upregulation of 
SMARCA2 genes was seen in low expression of protective 
immune signatures, and downregulation of SMARCA2 
genes in high expression of protective immune activities. 
SMARCA2 encodes the SWI/SNF chromatin remodeling 
complex which is an effector of DNA repair transcription. 
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It has been demonstrated a functional association between 
BRCA1 and the SWI/SNF-related complex; with their 
combination and participation in transcriptional regulatory 
mechanism, mutation occurring in any or both of them can 
be a potential factor causing breast cancers (44). Among 
lower enrichment score annotated functions (ES =−0.58), 
low expression of protective group showed connectivity 
with the genes down regulated in the brain relapse of breast 
cancer (36). Based on the findings of this study, future works 
may build up more accurate predicting criteria and clear 
modulation network, contributing a genetic framework to 
promote immunotherapy.
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Table S1 Summary of microarray datasets used in this study

Data set accession num. GSE4922 GSE2990 GSE2034

Usage Discovery Validation Validation

Ratio of samples ER 
status (ER+/ER−)

211/34 149/34 209/77

Microarray platform Affymetrix human genome U133A array

Reference (19) (21) (20)

Patients with missing survival index and the ER status are 
excluded from the study.

Table S2 Validation analysis in GSE2034 and GSE2990 data sets

Gene set
GSE2034 GSE2990

HR P value HR P value

Activated CD8 2.14 0.002 2.07 0.003

Activated CD4 2.02 <0.001 2.36 <0.001

Mast cells 0.40 0.019 0.33 0.025

Effector memory CD4 2.52 0.003 1.89 0.072

Th2 0.27 0.001 0.30 0.026

Treg 0.37 0.002 0.58 0.131

Eosinophil 0.39 0.007 0.94 0.906

NK56 dim 0.48 0.043 2.90 0.024

DC 0.71 0.233 0.67 0.255

Th, T-helper; Treg, regulatory T cell; NK, natural killer; DC, 
dendritic cell.

Supplementary

Table S3 Multivariate Cox hazard analysis of immune infiltration 
and clinical variables

Gene sets Hazard ratio P value

Activated CD8 1.90 (1.06–4.29) 0.028

LN status 1.88 (1.17–3.02) 0.007

Cell cycle 0.82 (0.33–2.01) 0.660

CPGs 1.49 (0.65–3.45) 0.339

Mast cells 0.41 (0.17–0.92) 0.040

LN status 1.98 (1.24–3.16) 0.004

Cell cycle 0.92 (0.40–2.11) 0.848

CPGs 1.67 (0.76–3.68) 0.196

CPGs, the ER+ consensus prognostic genes. 

Table S4 The 27 enriched gene sets in cluster A

Gene set Size ES

YANG_BREAST_CANCER_ESR1_BULK_UP 25 −0.71

YANG_BREAST_CANCER_ESR1_UP 36 −0.70

YANG_BREAST_CANCER_ESR1_LASER_UP 31 −0.69

VANTVEER_BREAST_CANCER_ESR1_UP 133 −0.69

MOOTHA_VOXPHOS 84 −0.68

ABRAMSON_INTERACT_WITH_AIRE 42 −0.68

SHEN_SMARCA2_TARGETS_UP 405 −0.68

ZHAN_MULTIPLE_MYELOMA_SUBGROUPS 30 −0.67

SCHAEFFER_PROSTATE_DEVELOPMENT_AND_
CANCER_BOX4_DN

27 −0.67

SMID_BREAST_CANCER_RELAPSE_IN_BRAIN_
DN

80 −0.65

YAO_TEMPORAL_RESPONSE_TO_
PROGESTERONE_CLUSTER_10

56 −0.65

WONG_PROTEASOME_GENE_MODULE 46 −0.64

GOLGI_VESICLE_TRANSPORT 43 −0.64

WONG_MITOCHONDRIA_GENE_MODULE 190 −0.63

CREIGHTON_AKT1_SIGNALING_VIA_MTOR_UP 34 −0.63

SCHLOSSER_MYC_TARGETS_REPRESSED_BY_
SERUM

156 −0.62

MOREAUX_MULTIPLE_MYELOMA_BY_TACI_DN 137 −0.62

TRANSLATIONAL_INITIATION 33 −0.62

DOANE_BREAST_CANCER_ESR1_UP 106 −0.61

LIEN_BREAST_CARCINOMA_METAPLASTIC_VS_
DUCTAL_DN

77 −0.61

KAMMINGA_EZH2_TARGETS 39 −0.61

PROTEIN_RNA_COMPLEX_ASSEMBLY 55 −0.61

DING_LUNG_CANCER_EXPRESSION_BY_
COPY_NUMBER

85 −0.61

CELLULAR_PROTEIN_CATABOLIC_PROCESS 51 −0.60

BIDUS_METASTASIS_UP 189 −0.60

GKCGCNNNNNNNTGAYG_UNKNOWN 43 −0.60

RHODES_CANCER_META_SIGNATURE 64 −0.60

All FDR q-values <0.001. ES, enrichment score.



Table S5 The 51 enriched gene sets in cluster B

Gene set Size ES

WINTER_HYPOXIA_DN 43 0.80

BOYAULT_LIVER_CANCER_SUBCLASS_G5_DN 26 0.78

ONO_AML1_TARGETS_DN 35 0.77

WORSCHECH_TUMOR_EVASION_AND_TOLEROGENICITY_UP 27 0.76

WILENSKY_RESPONSE_TO_DARAPLADIB 27 0.76

FARMER_BREAST_CANCER_CLUSTER_1 42 0.75

SMID_BREAST_CANCER_NORMAL_LIKE_UP 464 0.75

BOSCO_TH1_CYTOTOXIC_MODULE 87 0.74

HAHTOLA_SEZARY_SYNDROM_DN 41 0.73

VILIMAS_NOTCH1_TARGETS_UP 47 0.73

WORSCHECH_TUMOR_REJECTION_UP 48 0.72

KUROZUMI_RESPONSE_TO_ONCOCYTIC_VIRUS 42 0.72

TARTE_PLASMA_CELL_VS_B_LYMPHOCYTE_DN 37 0.70

BERTUCCI_INVASIVE_CARCINOMA_DUCTAL_VS_LOBULAR_DN 41 0.70

GAURNIER_PSMD4_TARGETS 67 0.70

WALLACE_PROSTATE_CANCER_RACE_UP 284 0.69

TIAN_TNF_SIGNALING_VIA_NFKB 28 0.69

T_CELL_ACTIVATION 39 0.68

NAKAYAMA_SOFT_TISSUE_TUMORS_PCA1_UP 74 0.67

ONO_FOXP3_TARGETS_DN 37 0.67

DUNNE_TARGETS_OF_AML1_MTG8_FUSION_UP 46 0.66

MORI_LARGE_PRE_BII_LYMPHOCYTE_DN 54 0.65

SHEN_SMARCA2_TARGETS_DN 344 0.64

FLECHNER_BIOPSY_KIDNEY_TRANSPLANT_REJECTED_VS_OK_UP 86 0.64

SANA_RESPONSE_TO_IFNG_UP 59 0.64

POOLA_INVASIVE_BREAST_CANCER_UP 284 0.64

WIELAND_UP_BY_HBV_INFECTION 99 0.63

MCLACHLAN_DENTAL_CARIES_UP 244 0.63

KRAS.BREAST_UP.V1_UP 134 0.63

LIM_MAMMARY_LUMINAL_MATURE_DN 83 0.62

LEE_EARLY_T_LYMPHOCYTE_DN 49 0.62

HADDAD_T_LYMPHOCYTE_AND_NK_PROGENITOR_DN 63 0.62

JAATINEN_HEMATOPOIETIC_STEM_CELL_DN 197 0.62

KIM_GLIS2_TARGETS_UP 81 0.62

Table S5 (continued)



Table S5 (continued)

Gene set Size ES

WONG_ENDMETRIUM_CANCER_DN 63 0.62

KLEIN_PRIMARY_EFFUSION_LYMPHOMA_DN 58 0.62

CELL_ACTIVATION 66 0.62

BASSO_CD40_SIGNALING_UP 99 0.62

REGULATION_OF_IMMUNE_SYSTEM_PROCESS 56 0.61

LEE_DIFFERENTIATING_T_LYMPHOCYTE 154 0.61

G_PROTEIN_SIGNALING_COUPLED_TO_CAMP_NUCLEOTIDE_SECOND_
MESSENGER

63 0.61

LINDSTEDT_DENDRITIC_CELL_MATURATION_A 64 0.61

KRAS.LUNG.BREAST_UP.V1_UP 136 0.61

LOCOMOTORY_BEHAVIOR 88 0.61

SCHUETZ_BREAST_CANCER_DUCTAL_INVASIVE_UP 343 0.60

LEUKOCYTE_ACTIVATION 61 0.60

LYMPHOCYTE_ACTIVATION 55 0.60

LIEN_BREAST_CARCINOMA_METAPLASTIC_VS_DUCTAL_UP 74 0.60

LINDGREN_BLADDER_CANCER_CLUSTER_2B 332 0.60

MCLACHLAN_DENTAL_CARIES_DN 238 0.60

IMMUNE_RESPONSE 215 0.60

All FDR q-values <0.001. ES, enrichment score.


