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Introduction

Esophageal cancer continues to affect more than 450.000 
people worldwide, making it the eighth most common 
malignancy and the sixth leading cause of cancer-related 
mortality (1). Despite recent improvements in staging, 
multimodality treatment, and peri-operative care, it remains 
a devastating disease with a 5-year overall survival rate of 
15–25% (1-3). Best outcomes are achieved in patients with 
early carcinoma of the esophagus for which endoscopic 
mucosal (or submucosal) resection with or without local 
ablative techniques is now more extensively employed, 
associated with 5-year survival rates of 60–80% (4,5). 
Recently, prognosis of locally advanced esophageal cancer 
has been markedly improved from a 5-year overall survival 

rate of 23–34% with surgery alone, to 36–47% with the 
addition of neoadjuvant chemoradiotherapy (nCRT) or 
peri-operative chemotherapy (6-8). Due to the late onset of 
symptoms, the majority of patients present at an advanced 
stage with unresectable or metastatic disease, for which 
concurrent chemoradiotherapy (CRT) and combination 
chemotherapy are considered the best palliative options, 
respectively (9-11).

Current diagnostic work-up consists of endoscopy with 
biopsy for histopathologic confirmation of the diagnosis 
and endoscopic ultrasound (EUS) for determination 
of  the local  tumor extent (T-stage)  and regional 
lymph node involvement (N-stage) (12,13). Integrated 
18F-fluorodeoxyglucose (18F-FDG) positron emission 
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tomography (PET)/computed tomography (CT) is also used 
for N-staging, and particularly important for the detection 
of distant metastasis (M-stage) (14-16). In addition, 
18F-FDG PET/CT is increasingly applied for the detection 
of interval metastasis after (neoadjuvant) treatment as well 
as for follow-up after treatment with curative intent (17-20). 
Unfortunately, these modalities all have their limitations 
regarding three clinically relevant areas that are in need of 
improvement, including staging, prediction of response to 
treatment, and prediction of survival.

It is increasingly recognized that the amount of 
information currently extracted from available images may be 
substantially enhanced by quantitative imaging analysis (21).  
The emerging field of ‘radiomics’ focuses on these 
improvements of image analysis by extracting large amounts 
of quantitative image features from volumes of interest on 
medical images (21). Radiomics approaches can extract 
more information from medical images by post-processing 
techniques including quantification of the heterogeneity 
within a tumor, which is a well-recognized feature of 
malignancy associated with adverse tumor biology (22). 
Substantial spatial heterogeneity in metabolism, vasculature, 
oxygenation, and gene expression is often found in malignant 
tumors, which relates to chemoradiation-resistance and poor 
prognosis (23-26). As such, it has been hypothesized that 
image-based quantification of tumor heterogeneity—through 
its relation with biologic tumor characteristics may provide 
important information for staging, predicting response 
to treatment, and predicting prognosis in cancer patients 
(21,22,27,28). Indeed, growing evidence suggests that image 
analysis of tumor heterogeneity could be useful in several 
cancer types (29-34).

The innovative field of radiomics could provide 
opportunities in the management of patients with esophageal 
cancer for improvements in staging, predicting treatment 
response, and predicting survival. The aim of this review is 
to outline the current evidence and future potential for the 
application of radiomics in patients with esophageal cancer.

Texture feature analysis

Both CT and 18F-FDG PET images are of particular 
interest when considering quantitative analysis in 
esophageal tumors, since these modalities are routinely 
used in clinical practice. CT images are mostly used to 
extract morphologic information of esophageal tumors, but 
recent studies suggest that quantitative image features can 
provide additional information (22,35,36). Most 18F-FDG 

PET studies in esophageal cancer quantify metabolic tumor 
activity solely by using the maximum standardized uptake 
value (SUVmax) (37,38). However, extracted from a single 
voxel, SUVmax does not characterize the total activity 
nor heterogeneity of the 18F-FDG uptake for the entire 
tumor (39,40). Recent studies suggest that spatial image 
information, such as metabolic tumor volume (MTV), total 
lesion glycolysis (TLG), tumor shape, and texture features, 
provide more useful information than SUVmax (41-45).

Texture features

Among the studied CT and 18F-FDG PET quantitative 
image parameters, texture features are most informative 
on tumor heterogeneity, and thought to be most closely 
related to underlying physiologic processes such as 
vascularization, perfusion, cellular proliferation, and 
hypoxia (36,46). Texture is defined as a spatial arrangement 
of voxels allowing extraction of complex image properties 
(41,46). Different approaches can be used to quantify tumor 
texture, including model-based fractal analysis and statistic-
based methods (47). Model-based fractal analysis methods 
describe the complexity of an object by identifying the 
property of self-similarity and roughness of a surface at 
different levels, and have so far only been described twice in 
esophageal tumors (48,49). Statistic-based approaches have 
been most widely used for texture analysis in (esophageal) 
oncology, and are based on the distribution and spatial 
relationship of voxel intensity values within an image (47).

Within the statistic-based approaches, first-order 
statistics represent texture on a global scale calculated 
from the original voxel intensity values without taking the 
spatial relationship between voxels into account (e.g., mean, 
median, percentiles, quartiles, range, interquartile range, 
standard deviation [SD], coefficient of variation [COV], 
skewness, kurtosis) (49). Second-order statistics represent 
texture on a local scale and measure co-occurrence of voxel 
pairs using grey-level co-occurrence matrices (GLCM; e.g., 
entropy, energy, homogeneity, contrast/inertia, correlation, 
dissimilarity) (28). Higher-order statistics capture properties 
of three or more voxels occurring at specific locations relative 
to each other, and represent regional texture extracted 
from grey-level run length matrices (GLRLM; e.g., high/
low grey-level run emphasis, run percentage), grey-level 
size zone matrices (GLSZM; e.g., high/low intensity zone 
emphasis, zone percentage), or local texture extracted from 
neighborhood gray-tone difference matrices (NGTDM; e.g., 
coarseness, busyness, texture strength, complexity) (28,49,50).
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Reproducibility

An overview of studies reporting on the reproducibility and 
precision of image texture features in esophageal cancer is 
provided in Table 1. Two studies (in 18F-FDG PET) have 

demonstrated that only a limited number of texture features 
are reproducible with respect to physiological variability 
as assessed on double baseline scans (46,50). Tixier et al. 
acquired double baseline 18F-FDG PET scans within 2–7 days  
of each other on the same scanner in 16 esophageal cancer 

Table 1 Studies on robustness or reproducibility of image features analysis in esophageal cancer

Studies n
Histology 
(AC/SCC)

Tumor 
stage

Treatment
Imaging 
modality

Imaging 
timing

Image parameters Outcome

CT

Ganeshan 
2012 (22)

21 14/7 II-IV NR Un-enhanced 
CT

Baseline Entropy, uniformity 
6 smoothing scales

Influence of varying 
smoothing scales on  
entropy and uniformity

PET

Tixier 
2011 (27)

41 10/31 I-IV dCRT 18F-FDG PET Baseline 7 intensity and 31 texture 
features 4 quantization 
levels

Influence of varying 
quantization levels on  
texture features 

Tixier 
2012 (46)

16 NR NR NR 18F-FDG PET Double 
baseline

8 global, 11 regional, and 
6 local texture features 5 
quantization levels

Test-retest reproducibility  
of texture features

Hatt  
2013 (51)

50 14/36 I-IV dCRT 18F-FDG PET Baseline 10 texture features 3 
segmentation methods  
with and without PVC

Influence of varying 
segmentation methods and 
PVC on texture features

Dong 
2015 (40)

50 0/50 I-IV Surgery ± adjuvant 
ChTx/RT or dCRT 

or ChTx 

18F-FDG PET Baseline Visual heterogeneity score, 
coefficient of variation 
of SUV, and entropy 4 
segmentation methods

Influence of tumor 
heterogeneity on delineated 
tumor volume using different 
segmentation methods

Doumou 
2015 (48)

64 64/0 NR NR 18F-FDG PET Baseline 57 texture features 
5 smoothing values 
4 segmentation methods 
5 quantization levels

Influence of varying 
smoothing values, 
segmentation methods,  
and quantization levels on 
texture features

Hatt  
2015 (52)

112 63/49 I-III dCRT (39%) or 
nCRT + surgery 

(61%)

18F-FDG PET Baseline MTV, entropy,  
dissimilarity, HILAE,  
and zone percentage  
2 calculation methods  
(for entropy, dissimilarity)  
7 quantization levels

Influence of varying 
calculation methods and 
quantization levels on 
correlation between MTV  
and texture features

van 
Rossum 
2016 (50)

217 217/0 II-III nCRT + surgery 
(36% ChTx before 

nCRT)

18F-FDG PET Double 
baseline 

(in 7 of 217 
patients)

69 texture and  
12 geometry features  
2 baseline scans at  
different institutions

Test-retest reproducibility  
of texture and geometry 
features (in 7 of 217 patients)

Yip  
2016 (53)

45 44/1 I-IV nCRT + surgery 18F-FDG PET Baseline + 
after nCRT

MTV, entropy, SRHIE,  
and SZHIE 3 quantization 
levels 11 registration 
algorithms for propagated 
post-treatment contours

Influence of varying 
quantization levels and 
propagated post-treatment 
contours on MTV and texture

18F-FDG, 18F-fluorodeoxyglucose; AC, adenocarcinoma; ChTx, chemotherapy; CT, computed tomography; dCRT, definitive 
chemoradiotherapy; HILAE, high-intensity large-area emphasis; MTV, metabolic tumor volume; nCRT, neoadjuvant chemoradiotherapy; 
NR, not reported; RT, radiotherapy; PET, positron emission tomography; PVC, partial volume correction; SCC, squamous cell carcinoma; 
SRHIE, short-run high-intensity emphasis; SUV, standardized uptake value; SZHIE, short-zone high-intensity emphasis.
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patients and reported that the most reproducible features 
were local entropy, local homogeneity, regional intensity 
variability, and regional size-zone variability (46). Similarly, 
in a study from the US including 7 patients who underwent 
double baseline 18F-FDG PET scanning within 11–42 days 
of each other on scanners from different institutions, van 
Rossum et al. found that the reproducibility was good for 
(local) second-order and regional higher-order features, 
but poor for local higher-order features (50). Although 
the two studies have small samples, these results suggest 
that only a certain amount of texture features may be 
used in further research, and other features with poor 
reproducibility should be abandoned as results will likely 
not be generalizable. Similar findings were observed by 
Galavis et al. that found good reproducibility of some 
texture features but poor reproducibility for others when 
acquisition modes and reconstruction parameters were 
varied in 18F-FDG PET scans of 20 solid tumors (54). 
To this regard, additional investigation of reproducibility 
should be encouraged to move this field forward.

Influence of smoothing

Besides reproducibility, it is also important that similar 
measurements from the scan data are obtained when 
changing parameters such as smoothing, quantization, and 
segmentation. The ability of texture features to stay similar 
across variation of these parameters is often referred to as 
the ‘precision’ of texture features (48). Particularly in CT 
images, different scales of smoothing (i.e., image filtration) 
using Laplacian of Gaussian spatial band-pass filters are of 
importance to be able to reduce image noise and highlight 
different anatomical spatial scales from fine to medium 
and coarse texture within the tumor (22,35). Commonly 
used filter values for smoothing are 1.0 (highlighting 
fine textures, which may enhance tissue parenchymal 
features), 1.5–2.0 (highlighting medium textures), and 2.5 
(highlighting coarse textures, which may enhance vascular 
features) (35). Ganeshan et al. showed that CT-based texture 
features (entropy and uniformity) were influenced by the 
level of smoothing and significantly associated with tumor 
stage and survival only after smoothing (22).

Influence of quantization

In both CT and 18F-FDG PET image post-processing, 
quantization (i.e., resampling) refers to the important 
process of resampling the Hounsfield (HU) or SUV levels 
in the image to a certain number of bins. Choosing the 

number of bins is a trade-off between gaining texture 
information accuracy with reduced noise effects (using less 
bins) and gaining amount of texture information (using more 
bins). Hence, quantization may influence texture features 
measurements (48,52). In a recent study with 35 lung cancer 
patients, Leijennar et al. indeed found that the manner of 
SUV quantization had a crucial effect on the resulting texture 
features and their interpretation, emphasizing the importance 
of standardized methodology in texture analysis (55).  
The most common quantization method includes the use 
of a fixed number of discrete bins (e.g., 8, 16, 32, 64, 128 
bins) to divide the image SUV range into equally spaced 
intervals resulting in discretized images with varying bin 
sizes depending on the SUV range (55). However, this 
method appeared less appropriate for inter- and intra-patient 
comparison of texture features in a clinical setting than an 
alternative method that resamples the SUVs with a fixed bin 
size in units of SUV (e.g., 0.1, 0.5), maintaining a constant 
intensity resolution across all images (55).

Tixier et al. showed in 12 esophageal tumors that texture 
features describing local tumor heterogeneity were insensitive 
to 5 different quantization values using a fixed number of bins 
(i.e., 8, 16, 32, 64, or 128 bins), while several regional features 
were sensitive to the chosen quantization value (46). The same 
authors described a multi-center series of 555 patients with 
different types of cancer (including 112 esophageal cancer 
patients) in which they found that significant texture details 
are lost when using a quantization of less than 32 bins (52).  
Also, a higher potential for providing complementary 
information of texture features (i.e., a lower correlation) with 
respect to MTV was found using 64 rather than 32 bins (52). 
Yip et al. reported in a series of 45 patients that the value of 
texture features for predicting response to nCRT was highest 
when a quantization level of 128 was chosen (53). Doumou 
et al. found that 51 of 57 studied texture features showed 
poor agreement across varying quantization levels with a 
fixed number of bins (i.e., 8, 16, 32, 64, 128 bins), which 
stresses the need for further evaluation and standardization 
of quantization in future studies (48). So far, no studies in 
esophageal cancer patients reported on the influence of 
varying quantization using a fixed bin size rather than a fixed 
number of bins.

Influence of segmentation

Accurate segmentation (i.e., contouring) of the tumor 
volume is crucial for computing texture features (40,48,51). 
Many segmentation methods have been proposed including 
manual delineation, fixed or adaptive thresholding, and 
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multiple (semi-)automatic algorithms, but no consensus 
seems to emerge (56,57). Most popular segmentation 
methods in esophageal cancer literature include manual 
contouring(35,36,40,53,58), thresholding methods capturing 
aligned voxels with SUV values of ≥2.5 (39,40,58-60)  
or with values ≥30–60% of the maximum intensity or grey-
level (22,40,48,49,51), semi-automatic gradient-based 
contouring (50), and an automatic fuzzy locally adaptive 
Bayesian (FLAB) method (41,46,51,52). 

Tumor heterogeneity is one of the most important 
factors influencing the results of different segmentation  
methods (40). Dong et al. recently demonstrated in 50 
patients with esophageal squamous cell carcinoma that 
in tumors with a large size and high 18F-FDG uptake 
heterogeneity, large differences in delineated tumor volume 
across various manual and thresholding segmentation 
methods existed (40). More specifically, these authors suggest 
that in large or highly heterogeneous tumors one must be 
cautious to use frequently applied and relatively simple 
threshold-based segmentation methods (40). Similarly, Hatt 
et al. demonstrated that thresholding methods and automatic 
FLAB contouring led to substantially different functional 
volumes, significantly affecting some texture features (e.g., 
dissimilarity, size-zone variability), while not affecting others 
(e.g., entropy, homogeneity, zone percentage) (51). Doumou 
et al. found that varying the relative threshold (45%, 50%, 
55%, or 60% of SUVmax) resulted in moderate agreement 
in second-order (regional) features, but in poor agreement 
in higher-order (regional and local) features (48). Besides 
the high sensitivity to tumor heterogeneity, thresholding 
techniques are also sensitive to motion artifacts, noise and 
contrast variations, leading to disappointing results for small 
and non-spherical tumors (56,57). Manual delineation is easy 
to apply, but time-consuming, susceptible to window-level 
settings, suffering from intra- and inter-observer variability, 
and results strongly depend on experience of the reader (56).  
In general, (semi-)automatic segmentation methods are 
able to provide superior accuracy, reproducibility, and 
robustness for tumor volume contouring compared with 
manual and thresholding methods, and should therefore be  
preferred (61,62).

Influence of tumor volume

Several texture features have appeared highly correlated 
with esophageal tumor volume suggesting a certain level 
of dependency (50,52). When high correlations between 
parameters exist, an added contribution over each other is 
unlikely. As such, in the previously mentioned French series 

of 555 patients with different types of cancer (including 
112 esophageal cancer patients), Hatt et al. found that 
the complementary information of tumor volume and 
heterogeneity increased substantially with larger tumors (52).  
In fact, added value of texture features over tumor volume 
alone for outcome prediction was found in tumors ≥10 cm3 
only (52). However, instead of excluding tumors smaller 
than 10cm3 in future texture studies, they recommended 
that the correlation of texture features and tumor volume 
should always be reported to show whether texture and 
volume provide independent or redundant information (52).

Staging

Accurate tumor staging is crucial for determining prognosis 
and treatment decision-making in individual patients. 
EUS is the current modality of choice for primary tumor 
staging, with reported accuracies for distinguishing T-stages 
of 53–94% (median, 83%) and better performance in 
advanced compared to early disease (63,64). Disadvantages 
of EUS include the invasiveness of the technique, a failure 
rate of 14–25% due to stenotic tumors preventing passage 
of the endoscope, and the strong dependence of diagnostic 
performance on the experience of the endoscopist (65-67). 
CT is inferior to EUS in the evaluation of T-stage, but CT 
is useful for predicting surgical resectability by excluding 
tumors that show ingrowth into surrounding structures 
(66,68). Regional lymph node involvement is generally 
evaluated using EUS (sensitivity 80%, specificity 70%), 
CT (sensitivity 50%, specificity 83%), and 18F-FDG PET 
(sensitivity 51%, specificity 84%) (69,70). For the detection 
of distant metastasis, 18F-FDG PET provides additional 
diagnostic information over CT in 5–28% of patients at 
initial presentation (14). Clearly, current clinical staging is 
suboptimal and in need of improvement (71).

Radiomics

Three studies (1 using CT and 2 using 18F-FDG PET) 
reported on the potential value of texture features analysis 
for staging in esophageal cancer (Table 2) (22,59,60). 
Ganeshan et al. related two tumor heterogeneity features 
on unenhanced CT (entropy and uniformity) on 6 different 
smoothing scales (fine to coarse details) to the clinical 
American Joint Committee on Cancer (AJCC) stage based 
on 18F-FDG PET, CT, and EUS (22). They found that 
tumor heterogeneity was significantly greater in patients 
with clinical stage III-IV compared to stage II (22). However, 
the potential additional value of texture features beyond 
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conventional staging could not be studied as conventional 
staging was considered the reference standard an no 
comparison with pathologic tumor stage was performed.

Dong et al. correlated 18F-FDG PET-based SUVmax, 
entropy, and energy before surgery with pathologic 
AJCC-stage, T-stage, and N-stage (59). Most of the 
studied correlations were weak to moderate only, with 
the exception of two strong correlations (AJCC-stage 
and entropy, Spearman’s r=0.63; T-stage and entropy, 
Spearman’s r=0.69) (59). Similar to the British study 
reported by Ganeshan et al. (22), higher clinical stage 
and node-positive tumors were associated with increased 
tumor heterogeneity (i.e., higher entropy) (59). In ROC 
curve analysis, an entropy value above 4.7 yielded a 
sensitivity of 78% and specificity of 73% for predicting 
pathologic AJCC-stage III as opposed to stage I-II (59). 
Unfortunately, a multivariable analysis to determine the 
potential incremental value of the entropy value to predict 
pathologic stage beyond conventional staging modalities 
(e.g., EUS, CT) was not performed (59).

Ma et al. included 36 patients who underwent both 
18F-FDG and 18F-fluorothymidine (18F-FLT) PET, and 
compared the performance of 2 intensity, 2 geometry, and 5 
texture features of both modalities for staging with pathologic 
AJCC-stage, T-stage, and N-stage as reference (60). They 
found that 18F-FDG PET features showed more significant 
associations with pathologic AJCC-stage and TN-stage than 
18F-FLT PET features (60). Interestingly, SUVmax, tumor 
length, and eccentricity appeared more important than the 
studied texture features (e.g., entropy, correlation, contrast) 
for staging (60). Unfortunately, ROC curve analysis and 

multivariable analysis adjusting for conventional staging 
modalities were lacking, impairing proper interpretation of 
potential added value in clinical practice (60). 

Prediction of treatment response

Esophageal tumors tend to respond differently to neoadjuvant 
chemo(radio)therapy or definitive CRT. Adenocarcinomas 
demonstrate a pathologic complete response (pCR; 
i.e., complete disappearance of viable tumor cells) to 
chemotherapy or CRT in 8–9% or 23–28% of patients, 
respectively (6,72,73), whereas squamous cell carcinomas 
have a pCR rate of 49% after CRT (6). A pCR is associated 
with favorable disease-free and overall survival rates, and 
it has been speculated that accurate identification of pCR 
prior to surgery could yield an organ-preserving approach 
avoiding unnecessary surgical morbidity (74-76). On the 
other hand, it is likely that non-responders to CRT (18–25%) 
or to chemotherapy (44–58%) are harmed by the toxicity of 
these therapies without prognostic benefit (6,8,77,78). Early 
identification of non-responders before or during treatment 
would be beneficial for this group as ineffective therapy could 
be modified or discontinued (advancing surgery without 
detrimental delay in the curative setting) (79).

Several diagnostic strategies have been proposed to 
predict response to treatment in esophageal cancer. The 
Response Evaluation Criteria in Solid Tumors (RECIST) 
method is often used for pre- and post-treatment CT 
scanning in the evaluation of response, but yields a poor 
sensitivity (33–55%) and moderate specificity (50–71%) 
for pathologic response (80). In fact, RECIST did not 

Table 2 Studies on the value of image features analysis for staging in esophageal cancer

Study n
Histology 
(AC/SCC)

Tumor 
stage

Treatment
Imaging 
modality

Imaging 
timing

Image parameters Outcome

CT

Ganeshan 
2012 (22)

21 14/7 II-IV NR Un-enhanced 
CT

Baseline Entropy, uniformity 
6 smoothing scales

Clinical AJCC stage  
(PET-, CT-, and EUS-based)

PET

Dong  
2013 (59)

40 0/40 I-III Surgery 
alone 

18F-FDG PET Baseline SUVmax, entropy, energy Pathologic AJCC stage, 
T-stage, and N-stage

Ma  
2015 (60)

36 0/36 I-III Surgery 
alone

18F-FDG PET 
and 18F-FLT 

PET

Baseline SUVmax, SUVmean, entropy, angular 
second moment, contrast, 
correlation, inverse differential 
moment, tumor length, eccentricity

Pathologic AJCC stage, 
T-stage, and N-stage

18F-FDG, 18F-fluorodeoxyglucose; 18F-FLT, 18F-fluorothymidine; AC, adenocarcinoma; AJCC, American Joint Committee on Cancer; 
CT, computed tomography; EUS, endoscopic ultrasound; NR, not reported; PET, positron emission tomography; SCC, squamous cell 
carcinoma; SUV, standardized uptake value.
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demonstrate any correlation with treatment response nor 
prognosis in a recent study in patients with esophageal 
cancer (81). Post-treatment endoscopic biopsy has a high 
specificity (91%), but poor sensitivity (35%) for detecting 
residual cancer, whereas EUS after treatment yields a 
high sensitivity (96%), but very low specificity (11%) (82).  
Sequential 18F-FDG PET-based SUV measurements 
are able to predict treatment response with a moderate 
sensitivity (67%) and specificity (68%) (37). In addition, 
some clinical parameters have been repeatedly found to 
yield minor—but independent—predictive ability for 
treatment response (i.e., gender, clinical T-stage, and 
histologic differentiation grade) (50,76,83). Unfortunately, 
so far even combinations of modalities and clinical 
parameters do not yield sufficient predictive ability for 
pathologic response to guide treatment decision-making in 
routine clinical practice, and a tool with improved accuracy 
is highly desired (37,50,84). 

Radiomics

An overview of studies reporting on the value of radiomics 
for the prediction of treatment response in esophageal 
cancer is presented in Table 3. Studies that performed 
imaging before and after treatment reported that tumor 
heterogeneity generally decreased following treatment 
(36,50). It has been hypothesized that tumors could be 
rendered more homogeneous following treatment due to 
a reduction in cellular density and interstitial pressure, and 
normalization of the vasculature with improved intra-tumor 
perfusion and oxygenation (36).

Yip et al. studied the value of contrast-enhanced CT 
image features analysis before and after neoadjuvant 
chemotherapy in 31 patients for the prediction of good 
versus poor pathologic response [tumor regression grade 
(TRG) 1-3 vs. 4-5] (36). Statistical significance was not 
reached for any of the univariable associations between 
image features and pathologic response with the exception 
of pre- and post-treatment SD, which however disappeared 
after correction for multiple testing (36). They also 
studied the value of >100 baseline 18F-FDG PET texture 
features versus a three-slices convolutional neural network 
(3S-CNN; which is trained directly from scans rather than 
‘manually’ calculated) for the prediction of good versus 
poor pathologic response (n=217) (49). They found that 
3S-CNN outperformed texture features analysis resulting 
in a sensitivity of 81% and specificity of 82% (49), but this 
finding has not yet been validated in other studies.

In two studies, a French group determined the associations 

of tumor texture features on baseline 18F-FDG PET scans 
with clinical response to definitive CRT (41,51). In their 
first study (n=41), the authors reported superior univariable 
discriminatory ability (area-under-the-curves [AUCs] 0.82–
0.89) of several texture features (i.e., homogeneity, entropy, 
intensity variability, and size-zone variability) over SUVmax 
and SUVmean (AUCs 0.59–0.70) for the prediction of 
clinical complete response or non-response (41). Similarly, 
in their second study with a partly overlapping study 
population (n=50), good univariable discriminatory ability 
(AUCs 0.80–0.90) was achieved with several image features 
(i.e., MTV, entropy, homogeneity, dissimilarity, intensity 
variability, and zone percentage) for the prediction of clinical  
non-response (51). Important limitations of these studies 
(41,51) include the suboptimal reference standard defined 
by the CT-based RECIST method—which is known to 
correlate poorly to true (pathologic) response and survival 
(80,81)—and the lack of multivariable prediction modeling 
(adjusted for clinical parameters and other predictive 
modalities) impairing proper interpretation of potential 
incremental value in clinical practice.

Based on baseline and post-treatment 18F-FDG PET 
scans, investigators from the US aimed to predict pathologic 
response (TRG 1-2 vs. 3-5) to nCRT in the same 20 patients 
with esophageal cancer in three separate articles (39,58,85). 
By extracting 34 intensity, texture, and geometry features at 
both time points, they found that changes of features over 
treatment (∆features) appeared more predictive of response 
than pre- or post-treatment assessment alone (58). Baseline 
skewness, ∆SUVmean, post-treatment inertia (contrast), 
correlation, and cluster prominence were found to be 
significant predictors of pathologic response in univariable 
analysis (AUCs 0.76–0.85) (58). In the second study, cross-
bin histogram distance features were studied (capturing both 
18F-FDG uptake distribution and longitudinal information), 
resulting in slightly higher prediction accuracies than texture 
features (85). This finding requires validation as to date no 
other studies have reported on cross-bin histogram distance 
features in esophageal cancer imaging. In the third study, 
multivariable support vector machine (SVM) and logistic 
regression models were constructed including 33 18F-FDG 
PET image features as well as 16 clinical parameters (39).  
SVM models achieved higher accuracy than logistic 
regression models, particularly in models combining many 
variables (maximum AUC 1.00 vs. 0.90) (39), but it is 
important to acknowledge that substantial model overfitting 
has likely occurred given the small sample size and large 
amount of predictors included in the modeling, resulting in 
overoptimistic results. 
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Table 3 Studies on the value of image features analysis for the prediction of treatment response in esophageal cancer

Study n
Histology 
(AC/SCC/
other)

Tumor 
stage

Treatment
Imaging 
modality

Imaging 
timing

Image parameters Outcome

CT

Yip  
2015 (36)

31 22/9/0 I-IV nChTx + 
Surgery

Contrast-
enhanced 
CT

Baseline + 
after nChTx

Entropy, uniformity,  
mean grey-level intensity, 
kurtosis, skewness, and SD 4 
smoothing scales

Pathologic response  
(TRG* 1-3 vs. 4-5)

PET

Tixier  
2011 (27)

41 10/31/0 I-IV dCRT 18F-FDG 
PET

Baseline 7 intensity and 31 texture 
features 4 quantization levels

Clinical response  
(based on CT; RECIST:  
CR vs. PR vs. non-R)

Hatt  
2013 (51) 

50 14/36/0 I-IV dCRT 18F-FDG 
PET

Baseline 10 texture features 
3 segmentation methods 
With and without PVC

Clinical response  
(based on CT; RECIST:  
CR + PR vs. non-R)

Tan  
2013-1 (58)

20 17/3/0 II-III nCRT + 
Surgery

18F-FDG 
PET

Baseline + 
after nCRT

34 intensity, texture, and 
geometry features

Pathologic response  
(TRG* 1-2 vs. 3-5)

Tan  
2013-2 (85)

20 NR NR nCRT + 
Surgery

18F-FDG 
PET

Baseline + 
after nCRT

SUVmax, SUVpeak, TLG, 8 texture 
features, and 19 histogram 
distances

Pathologic response  
(TRG* 1-2 vs. 3-5)

Zhang  
2014 (39)

20 17/3/0 II-III nCRT + 
Surgery

18F-FDG 
PET

Baseline + 
after nCRT

9 intensity, 8 texture, and 15 
geometry features, TLG,  
and 16 clinical features

Pathologic response  
(TRG* 1-2 vs. 3-5)

Ypsilantis 
2015 (49)

107 86/20/1 II-IV nChTx + 
Surgery

18F-FDG 
PET

Baseline More than 100 texture features 
vs. convolutional neural network 
(3S-CNN) trained directly from 
scans

Pathologic response  
(TRG* 1-3 vs. 4-5)

van 
Rossum 
2016 (50)

217 217/0/0 II-III nCRT + 
Surgery  
(36% ChTx 
before nCRT)

18F-FDG 
PET

Baseline + 
after nCRT

69 texture and 12 geometry 
features 2 baseline scans at 
different institutions

Pathologic response  
(TRG† 1 vs. 2-4)

Yip  
2016 (53)

45 44/1/0 I-IV nCRT + 
Surgery

18F-FDG 
PET

Baseline + 
after nCRT

MTV, entropy, SRHIE, SZHIE  
3 quantization levels 11 
registration algorithms for 
propagated post-treatment 
contours

Pathologic response 
(downstaged vs. upstaged  
or equal pathologic  
TN-stage compared to 
baseline clinical TN-stage)

*, According to Mandard et al. (86); †, according to Chirieac et al. (75); 18F-FDG, 18F-fluorodeoxyglucose; 3S-CNN, three-slices 
convolutional neural network; AC, adenocarcinoma; ChTx, chemotherapy; CR, complete response; CT, computed tomography; dCRT, 
definitive chemoradiotherapy; MTV, metabolic tumor volume; nChTx, neoadjuvant chemotherapy; nCRT, neoadjuvant chemoradiotherapy; 
non-R, non-response; NR, not reported; RECIST, Response Evaluation Criteria in Solid Tumors; PET, positron emission tomography; PR, 
partial response; SCC, squamous cell carcinoma; SD, standard deviation; SRHIE, short-run high-intensity emphasis; SUV, standardized 
uptake value; SZHIE, short-zone high-intensity emphasis; TLG, total lesion glycolysis; TRG, tumor regression grade.

van Rossum et al. studied the value of clinical parameters 
along with subjective and quantitative parameters from 
baseline and post-treatment 18F-FDG PET scans in 217 
patients with esophageal adenocarcinoma for the prediction 
of pCR as opposed to residual cancer after nCRT (50). 
Similar to other studies, lower baseline heterogeneity and a 

greater change towards more homogeneous 18F-FDG uptake 
after treatment were associated with better response (50).  
In multivariable analysis and after internal validation using 
bootstrapping techniques, both 18F-FDG PET-based 
subjective assessment of response and texture features 
analysis provided incremental value beyond clinical 
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predictors, but this discriminatory improvement did not 
translate into a clinically relevant benefit as determined by 
decision-curve analysis (50).

Yip et al. addressed the time-consuming issue of 
contouring longitudinal scans and investigated the 
usefulness of 11 different registration algorithms for post-
treatment contour propagation in relation to their ability 
to predict pathologic response (53). They showed that 
propagated contours could be constructed fast (<30 seconds)  
and that 3 texture features (e.g., entropy) resulting 
from most algorithms significantly predicted pathologic 
responders (AUCs 0.72–0.78), with the exception of fast-
demons and fast-free-form deformable algorithms, and 
rigidly propagated contours, which should therefore not 
be used (53). An uncommon reference standard was used 
consisting of pathologic TN-downstaging (responders) 
versus TN-upstaging or no change in stage (non-responders) 
as compared to the baseline clinical TN-stage (53). This 
endpoint was likely suboptimal since it has not been 
validated as surrogate marker for long-term outcomes and 
clinical TN-staging is inaccurate in many cases.

Prediction of survival

Accurate stratification of patients according to their 
expected prognosis is crucial at the time of diagnosis as 
well as throughout treatment and follow-up. The most 
important prognostic factor before treatment is the clinical 
TNM-stage, and -to a lesser extent- the initial SUVmax 
value (4,87). Endoscopic biopsy, subjective 18F-FDG PET-
based response, and SUVmax after chemo (radio)therapy 
are other parameters with some prognostic value (38,87,88). 
After surgery, pathologic TNM-staging, lymph node 
ratio, extracapsular lymph node involvement, radicality 
of resection, and pathologic response to neoadjuvant 
therapy have prognostic impact (75,76,89-92). Despite the 
availability of these prognostic factors, we are still failing 
our patients in terms of accurate individualized prediction 
of survival probability resulting in inaccurate patient 
selection for different treatment approaches, as for example 
can be seen from the high number of patients with very 
early progression (24–41% within 1 year) after treatment 
with curative intent (93). 

Radiomics

Studies on the value of radiomics for the prediction of 
survival in esophageal cancer are outlined in Table 4. 
Three studies from the UK have described predictive 

value for survival using texture features based on baseline 
unenhanced CT (22) or pre- and post-treatment contrast-
enhanced CT (35,36). Ganeshan et al. included 21 patients 
with esophageal cancer for which the important prognostic 
factor of treatment was not reported- and studied tumor 
entropy and uniformity for 6 smoothing scales (22). It 
was demonstrated that the CT-based coarse uniformity 
feature was superiorly predictive for overall survival, 
even resulting in redundancy of clinical TNM-stage and 
SUVmax in a stepwise forward Cox regression analysis, 
suggesting substantial overlap in information (22). In the 
two other studies, tumor entropy, uniformity, mean grey-
level intensity, kurtosis, skewness, and SD for 4 quantization 
levels on baseline and post-treatment contrast-enhanced 
CT was related to overall survival (35,36). After adjusting 
for tumor stage and age, post-treatment entropy and 
uniformity features on a medium to coarse scale remained 
significant prognostic factors in 36 patients who underwent 
definitive CRT (35). Yip et al. reported that a relative 
change in skewness on a fine smoothing scale was associated 
with survival in 31 patients who underwent neoadjuvant 
chemotherapy followed by surgery (36).

In a French study that included baseline 18F-FDG PET 
scans of 555 cancer patients (of whom 112 had esophageal 
cancer and underwent definitive CRT or nCRT followed 
by surgery), Hatt et al. assessed the value of MTV, entropy, 
dissimilarity, high-intensity large-area emphasis, and zone 
percentage for the prediction of overall survival (52). Although 
MTV and heterogeneity (along with tumor stage) were 
independent prognostic factors in non-small cell lung cancer, 
these parameters had less complementary value in esophageal 
cancer which was attributed to smaller overall volumes (52). 
The local dissimilarity parameter appeared most predictive 
for overall survival in the patients with esophageal cancer (52).

Conclusions

Since the first publication on image texture feature 
analysis in esophageal cancer in the year 2011 (41), the 
body of evidence on radiomics in this setting has been 
growing steadily suggesting potential incremental value 
for staging, prediction of response to chemo(radio)therapy, 
and predicting survival. As such, radiomics approaches 
may contribute to the ongoing movement towards more 
individualized treatment strategies for these patients. An 
advantage of this emerging field is that it can fit in within 
existing practice without imposing additional burden 
to patients, as it involves post-processing techniques on 
standard CT or 18F-FDG PET images which are performed 
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as part of routine clinical practice. However, current 
evidence is still exploratory in nature and further validation 
in larger studies is required before implementation in 
clinical practice could be considered. 

Acknowledgement and further evaluation of limitations 
with respect to reproducibility of image features and 
the substantial influence of varying smoothing scales, 
quantization levels, and contouring methods is of crucial 
importance to move this field forward. To this regard, 
parameters such as local entropy derived from GLCMs 
(and to a lesser extent uniformity, dissimilarity, or zone 
percentage) for tumor heterogeneity characterization should 
be preferred, as these appear most reproducible and robust, 
and have repeatedly shown high predictive ability for 
staging, prediction of response, and prediction of survival. 
Standardization of imaging and radiomics approaches, 
multivariable prediction modeling focusing on incremental 
value of radiomics beyond conventional diagnostics and 
predictors, and validation of findings are key to successful 
future introduction of radiomics in the clinical management 
of esophageal cancer.
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Table 4 Studies on the value of image features analysis for the prediction of survival in esophageal cancer

Study n
Histology  

(AC/SCC/other)
Tumor 
stage

Treatment
Imaging 
modality

Imaging 
timing

Image parameters Outcome

CT

Ganeshan 
2012 (22)

21 14/7 II-IV NR Unenhanced CT Baseline Entropy, uniformity 
6 smoothing scales

Overall 
survival

Yip  
2014 (35)

36 9/26/1 I-IV dCRT (56% 
ChTx before 

dCRT)

Contrast-
enhanced CT

Baseline + 
after dCRT

Entropy, uniformity, mean grey-level 
intensity, kurtosis, skewness, and SD 
4 smoothing scales

Overall 
survival

Yip  
2015 (36)

31 22/9/0 I-IV nChTx + 
Surgery

Contrast-
enhanced CT

Baseline + 
after nChTx

Entropy, uniformity, mean grey-level 
intensity, kurtosis, skewness, and SD 
4 smoothing scales

Overall 
survival

PET

Hatt  
2015 (52)

112 63/49 I-III dCRT (39%) 
or nCRT + 

Surgery (61%)

18F-FDG PET Baseline MTV, entropy, dissimilarity, HILAE, and 
zone percentage 2 calculation methods 
(for entropy, dissimilarity) 7 quantization 
levels

Overall 
survival

18F-FDG, 18F-fluorodeoxyglucose; 3S-CNN, three-slices convolutional neural network; AC, adenocarcinoma; ChTx, chemotherapy; CT, 
computed tomography; dCRT, definitive chemoradiotherapy; HILAE, high-intensity large-area emphasis; MTV, metabolic tumor volume; 
nChTx, neoadjuvant chemotherapy; nCRT, neoadjuvant chemoradiotherapy; NR, not reported; PET, positron emission tomography; SCC, 
squamous cell carcinoma; SD, standard deviation.
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