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The investigation of long non-protein-coding RNAs 
(lncRNAs) has become a key area in biological and 
biomedical research. This is the result of sequencing and 
analysis of the human genome, which showed that only 
around 2% encodes proteins, together with the analysis of 
RNA transcripts (the transcriptome), which showed that 
a further 80% or so of the genome is actively transcribed 
(1,2). Consequently, it is now clear that most of the human 
genome largely encodes non-protein-coding RNAs, most 
of which, at greater than 200 nucleotides, are classified as 
lncRNAs. Although we are only just beginning to analyse 
this vast number of transcripts, it is already evident that 
many lncRNAs play crucial roles in human molecular 
cell biology ranging from providing essential frameworks 
for RNA processing, through the epigenetic control of 
gene expression, to blocking and regulating cell signalling 
pathways [reviewed by Morris and Mattick (3)]. It is not 
surprising therefore that dysfunction in many lncRNAs 
has already been strongly implicated in oncogenesis and 
in the development of resistance to cancer therapy (4). 
Such a profound advance in our understanding of human 
cell physiology and pathology will clearly present many 
opportunities for the development of entirely novel cancer 
therapies.

There are already multiple studies that indicate that 
many lncRNAs can act as tumour suppressors, and many 
others as oncogenes (4). As for protein tumour suppressors 
and oncogenes, this provides new opportunities for specific 
cancer therapies through restoring and enhancing lncRNA 

tumour suppressor activity where that has been lost, and 
through inhibiting lncRNA oncogenic activity where that 
contributes to oncogenesis and/ or resistance to therapy. The 
GAS5 lncRNA, for example, has been shown to regulate 
proliferation and survival in lymphoid cells (5), shows 
tumour suppressor activity in a wide range of cancers (6-9) 
and can restore sensitivity to chemotherapeutic agents (6).  
Although the tumour suppressor activity of GAS5 appears 
to be mediated by several different interactions (6), as for 
many other lncRNAs, this activity in breast and prostate 
cancer cells is predominantly due to interaction of a 
stem-loop RNA sequence within GAS5 exon 12 with 
glucocorticoid/related hormone receptors (10). This part 
of the GAS5 lncRNA acts as a hormone response element 
mimic (HREM) and blocks the endocrine survival signal(s) 
otherwise mediated through these pathways. Thus this 
part of the GAS5 lncRNA acts as a decoy and prevents 
the hormone/hormone receptor complex from binding 
to its usual target genes (10,11). If this tumour suppressor 
activity can be restored with a short nucleotide sequence 
mimicking the GAS5 HREM sequence, this would be a 
much more realistic approach than re-introducing the 
whole of GAS5 by gene therapy, and recent work has 
demonstrated proof of principle of this oligonucleotide 
approach (12). The introduction of a 23-base oligomer with 
the HREM sequence into a range of breast cancer cell lines 
(including triple-negative cell lines) induced apoptosis and 
reduced clonogenicity in a manner that closely replicated 
the effects of GAS5 lncRNA itself, including the sensitivity 
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of these effects to a specific loss-of-function mutation (12). 
These results clearly encourage analysis of the effects of 
oligonucleotides designed to mimic critical sections of other 
tumour-suppressive lncRNAs.

Encouraging initial observations have also been made 
in logically complementary strategies intended to inhibit 
oncogenic lncRNAs. Downregulation of lncRNAs, 
including those localised in the nucleus, can be efficiently 
accomplished using antisense oligonucleotides (ASOs) (13). 
metastasis-associated lung adenocarcinoma transcript 1 
(MALAT1), for example, is a relatively abundant lncRNA 
that is upregulated in several cancers [reviewed by Ren  
et al. (14)]. Downregulation of MALAT1 has been achieved 
in vivo in a mouse model of breast cancer using ASOs, 
resulting in altered gene expression and RNA splicing 
together with a substantial reduction in metastasis (15).

These studies and many others underline the potential 
of oligonucleotide-based therapy to produce highly specific 
modulation of the expression of lncRNAs with clear 
applications in cancer therapy, and, naturally, this prospect 
has driven improvements in the technology required to 
realise this potential in real clinical applications. Although 
other oligonucleotide-based therapies have already 
produced significant successes in pre-clinical studies, 
clinical trials and some fully approved clinical applications 
[e.g., (16)], substantial challenges remain. Most of these 
challenges are familiar from other types of cancer therapy: 
How can maximal penetration of cancer cells be achieved? 
How can tumours be specifically targeted with minimal 
effects on healthy tissues? How can stability be improved 
for oligonucleotides exposed to host degradative enzymes? 
Given the considerable incentive of molecule-specific 
lncRNA cancer therapy, it is likely that these problems will 
be overcome. Significant improvements in oligonucleotide 
stability and cell penetration have been made through 
changes in nucleotide chemistry (17), and by attachment to 
peptides activated by the acidic tumour environment (18),  
for example. Advances in nanoparticle technology and 
immune-targeting of tumour antigens have, in turn, 
improved the specificity of oligonucleotide delivery (19). 

Although oligonucleotide therapy offers exquisite 
specificity in targeting lncRNAs, the development of 
lncRNA-targeting small molecules is also realistic. Fatemi 
and colleagues (20) screened a library of phytochemical 
compounds for molecules interfering with the interaction 
of lncRNA BDNF-AS (BDNF-antisense RNA) with EZH2 
(enhancer of zeste homolog 2—a key enzyme controlling 

epigenetic modification of chromatin) and successfully 
identi f ied el l ipt icine,  which up-regulated BDNF 
transcription. Similar antisense lncRNAs are frequently 
involved in the epigenetic control of gene expression, and 
targeting of this class of lncRNAs offers particular promise 
for the development of highly specific cancer therapies.

Although the lncRNA field is still in its early stages—
after all, over 50% of the genome has yet to be analysed 
in detail for its function—it is clear that this area presents 
almost unprecedented opportunities for novel cancer 
therapies. The appreciation of this potential is rapidly 
growing and should result in much-needed improvements 
for patients before long.
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