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Introduction

Breast cancer is the most frequently diagnosed cancer 
among women both globally and in China. In the year of 
2015, there 268,600 new cases and 69,500 death with breast 
cancer were estimated in China (1). About three-quarters of 
breast cancer are hormone receptor-positive (HR+), which 
express estrogen receptor α (ERα) and/or progesterone 
receptor (PgR). Endocrine-based treatments, including 
selective ER modulators, selective ER down-regulators and 
aromatase inhibitors (AIs) are established standards of care 
in patients with early and advanced HR+/epidermal growth 
factor receptor 2-negative (HER2−) breast cancer, which 
have led to substantial improvements in survival outcomes 
for the disease population. However, over 20% of patients 
with early-stage disease have relapse, and almost all patients 
with late-stage metastatic disease yield to their illness 
(2,3) due to primary and acquired resistance to endocrine 

therapies. 
Although the mechanisms of endocrine resistance 

in patients with HR+ breast cancer still await for fully 
clarified, great efforts have been made in recent years 
in establishing the potential link between endocrine 
resistance and genetic and/or epigenetic alterations (4). 
These include to identify the mechanisms of cross talk 
between ER and growth factor receptor signaling (e.g., 
HER family members) and survival signals PI3K/Akt/
mTOR, constitutive activation of cyclin-dependent 
kinases (CDK) 4 and 6, and epigenetic alterations by 
histone deacetylases (HDACs). The above evidence has 
been further validated by clinical studies in patients with 
advanced HR+ breast cancer by combination treatment 
of targeted drugs with various endocrine therapies. These 
targeted drugs include the PI3 kinase-mTOR inhibitor 
everolimus (5), CDK4 and CDK6 inhibitors (palbociclib, 
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abemaciclib and ribociclib) (6-8), the subtype-selective 
HDAC inhibitor tucidinostat (9) (or chidamide, as the 
focus of this review), and the α-specific PI3K inhibitor 
alpelisib (10). All these drugs have been approved and 
become important treatment options for patients with 
advanced HR+ breast cancer. 

Epigenetic aberrations play important roles in disease 
progression and drug resistance in different types of 
cancer, including breast cancer (11,12). Given the fact that 
HDACs have a great impact on chromatin remodeling and 
epigenetic regulation that potentially play an important 
role in endocrine resistance in advanced HR+ breast cancer, 
HDAC inhibitors as an anti-cancer drug class have become 
a very interesting field of research in recent years. In the 
current review, the evidence from preclinical and clinical 
studies that links HDAC inhibitors with overcoming 
resistance to endocrine therapy in HR+/HER2− advanced 
breast cancer is highlighted. Then the review focuses on 
chidamide, a subtype-selective HDAC inhibitor, for its 
mechanisms of action, preclinical and clinical development, 
with a special emphasis on the ACE study that led to the 
first-in-disease approval of this compound in the epigenetic 
modulating drug class in breast cancer. 

HDACs and HDAC inhibitors 

Epigenetic regulation and HDACs 

In general, epigenetic regulation refers to changes in 
gene expression and function because of alterations in 
chromatin structure without any changes in nucleotide 
sequence. Chromatin is the essential medium through 
which transcription factors, signaling pathways, and other 
stimuli alter gene expression and cellular phenotypes (11). 
A nucleosome, the basic unit of chromatin, comprises 
of an octamer of histone proteins that are wrapped with 
DNA. Post-translational modifications, such as acetylation, 
methylation and ubiquitination on specific residues of 
the N-terminal histone tails, result in epigenetic gene 
regulation. Among these modifications, acetylation and 
deacetylation of histone play a critical role in regulation 
of chromatin structure and function, thus, changes in 
gene expression. The acetylation and deacetylation of 
histones protein are controlled by two distinct enzymes: 
histone acetyltransferases (HATs) and histone deacetylases 
(HDACs). In general, histone acetylation results in 
chromatin relaxation, and gene expression is enhanced; 
histone deacetylation causes chromatin condensation, and 

gene expression is repressed (11).
In humans, at least 18 HDACs have been identified and 

are divided into four classes. Class I (HDAC 1, 2, 3, and 8),  
class II (HDAC 4, 5, 7, and 9 as IIa, and HDAC 6 and 10 
as IIb), class III (SIRT 1–7), and class IV (HDAC 11) (13). 
Although the precise biological functions of individual 
HDACs are not fully identified, HDACs 1–3 (Class I) 
have been shown closely associated with the malignant 
phenotype. High expression of HDAC 1 is found in 
prostate, gastric, lung, esophageal, colon and breast cancers, 
HDAC 2 in colorectal, cervical, gastric and breast cancers, 
and HDAC 3 in colon and breast cancers (14,15). Increased 
HDAC 6 and 10 activity has also been reported to be 
associated with certain carcinomas (16). Predictive of poor 
prognosis regardless of other variables was correlated with 
the overexpression of these HDACs (15).

HDAC inhibitors 

By targeting HDACs, HDAC inhibitors inhibit the 
removal of acetyl groups on histones by HDACs, which 
remains an active status of gene transcription and 
produces a comprehensive set of downstream effects, 
including induction of cellular differentiation and cell 
death, regulation of immune responses, and inhibition of 
angiogenesis (11). By chemical structure, HDAC inhibitors 
can be classified into four major classes: hydroxamates [e.g., 
vorinostat and belinostat], benzamides (e.g., entinostat and 
chidamide/tucidinostat), cyclic peptides (e.g., romidepsin) 
and aliphatic acids (e.g., valproic acid). Alternatively, HDAC 
inhibitors are also classified by their target specificity. 
For example, vorinostat and belinostat are pan-HDAC 
inhibitors, and entinostat and chidamide inhibit mainly class 
I HDACs (17). HDAC inhibitors that have been approved 
by the regulatory agency are listed in Table 1. 

It should be realized that different classes of HDAC 
inhibitors with varying structure and target specificity 
could elicit distinct mechanisms of action. For instance, 
accumulating evidence suggests that the class I selective 
HDAC inhibitor entinostat, but not HDAC pan-inhibitors, 
is associated with a mechanism to target regulatory T 
cells (18) that would be potentially beneficial for the 
combination settings of a subtype-selective HDAC inhibitor 
with immunotherapy. Another important concern is the 
overall pharmaceutic characteristics for a drug itself. For 
example, to have an acceptable efficacy vs. safety profile, a 
drug would be required with proper pharmacokinetic and 
pharmacodynamic properties. Thus, selective inhibition 
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Table 1 Currently approved HDAC inhibitors (as of February 2020)

Drug Administration Indication Agent approval

Vorinostat Oral CTCL (single agent) FDA

Romidepsin Intravenous CTCL and PTCL (single agent) FDA

Belinostat Intravenous PTCL (single agent) FDA

Panobinostat Oral MM (in combination with bortezomib and dexamethasone) FDA
EMA

Chidamide Oral PTCL (single agent) 
HR+ breast cancer (in combination with an aromatase inhibitor)

CFDA

HDAC, histone deacetylase; FDA, US Food and Drug Administration; EMA, European Medicines Agency; CFDA, China Food and Drug 
Administration. 

in certain HDAC subtypes most related to cancer 
development with accepted pharmaceutic parameters would 
be advantages and crucial for an HDAC inhibitor to have an 
overall better efficacy and safety profile in clinical settings, 
particularly for solid tumors (19). 

HDAC inhibitors and endocrine-resistant HR+ breast 
cancer

ER positive breast cancers at initial diagnosis can lose 
ERα expression, followed by the resistance to endocrine 
therapy (20). ERα repression is often related to epigenetic 
aberrations, or epigenetic silencing. In vitro studies have 
demonstrated that over-expression of HDAC 1 induces 
silencing of ERα gene and suppresses production of 
ERα protein in breast cancer cell lines (21), and HDAC 
inhibitors can restore the sensitivity of endocrine-resistant 
cell lines to endocrine treatment. For example, ER-
negative breast cancer cells and AI-resistant breast cancer 
cells can be re-sensitized to AI treatment by the HDAC 
inhibitor entinostat (21) and panobinostat (22), respectively. 
Furthermore, HDAC inhibitors can also have effects on 
non-histone proteins, such as downregulation of HER2 
and AKT (23), nuclear factor -kappa-B p105 subunit 
(NF-ĸB1) (22), and hypoxia-inducible factor 1-alpha  
(HIF1α) (24) in AI-resistant breast cancer cells, suggesting 
that posttranslational and transcriptional modulation of 
non-histone proteins may be also an important mechanism 
through which HDAC inhibitors are able to overcome 
endocrine resistance. 

Two phase II studies of HDAC inhibitors in patients with 
advanced HR+ breast cancer failed to previous endocrine 
therapy have been reported. One was a single-arm trial to 
evaluate co-treatment of vorinostat (pan HDAC inhibitor) 

and tamoxifen in patients who had disease progression with 
prior endocrine therapy and chemotherapy. The results 
showed that in total 43 patients enrolled, 40% of them 
had tumor regression or stabilization of the disease by the 
combination treatment (25). 

Another phase II trial, ENCORE 301, was a randomized, 
placebo-controlled study to evaluate the addition of 
entinostat (Class I selective HDAC inhibitor) to exemestane 
in patients with HR+ advanced breast cancer resistant 
to prior treatment with non-steroidal AI. In this trial, 
134 patients were randomly assigned to exemestane plus 
entinostat group or exemestane plus placebo group. 
Combination treatment was reported to improve the 
progression-free survival (PFS) from 2.3 to 4.3 months 
and the overall survival (OS) from 19.8 to 28.1 months 
compared with exemestane treatment alone (26). The 
promising results of this study led to FDA-breakthrough 
approval of a pivotal phase III trial, E2112, to evaluate 
exemestane in combination with entinostat in patients with 
metastatic breast cancer having disease progression after a 
non-steroidal AI (27). This phase III trial, designed as co-
primary efficacy endpoints of PFS and OS, enrolled 600 
patients to randomly allocate by a 1:1 ratio into exemestane 
(25 mg, daily) and entinostat (5 mg, day 1, 8, 15, 22) group 
or exemestane and placebo group. However, the trial failed 
to meet its co-primary endpoint of PFS improvement, and 
the study is still going on for its final OS results (28). 

Chidamide for the treatment of advanced HR+ 
breast cancer

Discovery and preclinical development 

Chidamide, or by its International Nonproprietary Name 
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Figure 1 Chidamide anti-tumor mechanisms of action.

(INN), tucidinostat, is a benzamide class of HDAC 
inhibitor with subtype specificity for HDAC 1, 2, 3 and 10 
(29,30). Chidamide has been demonstrated in vitro and in 
vivo to induce apoptosis and growth arrest in cancer cells, 
reverse epithelial-mesenchymal transitions (EMT) and drug 
resistance of cancer cells, and enhance NK-cell and antigen-
specific CD8+ T-lymphocyte-mediated antitumor activity 
(29-34). Apart from these general mechanisms of action, 
chidamide has also shown to inhibit growth factor signaling 
pathways, for example, to decrease phosphorylation of 
MEK, ERK and AKT, as well as ERα, induced by epidermal 
growth factor in ER+ breast cancer cells (35). Preclinical 
studies in animal models have verified chidamide with oral 
bioavailability and broad-spectrum anti-tumor activity, 
including breast cancers, either in single agent or in 
combination with other treatment regimens (29,35-37). 
The main proposed mechanisms of action of chidamide for 

its anti-tumor effects are illustrated in Figure 1. 
Among preclinical studies, safety assessments of 

chidamide were carried out in dogs and rats with a daily 
dosing regimen up to 28 days. An every-three-day dosing 
regimen was also evaluated in rats. Animals were poor 
tolerated to the daily dosing, accompanied with a significant 
accumulation of plasma drug substance by repeat dosing. 
However, when chidamide was dosed in an every-three-
day regimen, rats tolerated 10 times more dose exposure 
compared with the daily regimen. Meanwhile, no significant 
difference of efficacy was observed when tumor-bearing 
mice were dosed every day, every-other-day, or every-three-
day, given the total dose-exposure was similar in a total  
28-day period of time (38). Thus, the window for efficacy 
and tolerance was dramatically improved by interval dosing 
regimens, which, together with other preclinical results, 
provided the rationale for the design of phase I study. 
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First-in-human phase I and PTCL pivotal phase II studies 

A phase I study was conducted to assess safety and 
tolerability, PK parameters and preliminary efficacy of 
chidamide in patients with advanced solid tumors or 
lymphomas (39). A total of 31 patients were enrolled and 
treated with oral doses of chidamide at 5, 10, 17.5, 25, 
32.5, or 50 mg twice weekly (BIW cohort), or 32.5 or  
50 mg three-times weekly (TIW cohort) for four 
consecutive weeks, followed by a two-week drug-free 
period. No dose-limiting toxicity (DLT) was observed in 
the BIW cohort up to 50 mg. DLTs were grade 3 diarrhea 
and vomiting in two patients in the TIW cohort at 50 mg. 
Generally, number and severity of adverse events (AE) 
increased with drug exposure. The most common AEs were 
fatigue (35%), thrombocytopenia (26%), anorexia (26%), 
leucopenia or neutropenia (23%), reduced hemoglobin 
(19%), nausea (16%), and diarrhea (16%). The overall 
safety and tolerability results suggested 50 mg BIW as the 
most tolerated dose (MTD), and BIW dosing regimen was 
recommended for further clinical studies. Chidamide PK 
analysis revealed its t1/2 of 16.8–18.3 h, Tmax of 1–2 h in 
most cases, and a dose-related increase in Cmax and AUC. 
Significant induction of histone H3 acetylation in peripheral 
white blood cells was observed after a single dose of 
chidamide. Out of 25 patients who had measurable lesions 
for preliminary efficacy assessments, 5 patients had partial 
response, and 4 of them were with diseases of relapsed or 
refractory T-cell non-Hodgkin’s lymphomas (39). 

Based on the overall results from this phase I study and 
an exploratory phase II trial in patients with peripheral 
T-cell lymphoma (PTCL) who had relapsed or refractory 
disease (38), a pivotal phase II trial in PTCL was designed 
and conducted with the consent of the China FDA as an 
orphan drug designation. The trial was a single-arm, open-
label, multicenter study of chidamide in patients with 
relapsed or refractory PTCL of any subtype. Patients were 
treated with chidamide 30 mg BIW, without drug-free 
holiday, until progression of the disease or unacceptable 
toxicity. The primary endpoint was overall response rate 
(ORR) as assessed by the independent review committee 
(IRC). A total of 83 patients were enrolled in the study 
and 79 patients had eligible PTCL histology for efficacy 
assessments. The IRC assessing results showed that 22 from 
79 patients (28%) had objective response to chidamide, 
including 11 patients (14%) had CR/CRu. Median PFS 
and OS were 2.1 and 21.4 months, respectively. The most 
common AEs ≥ grade 3 were thrombocytopenia (22%), 

leucopenia (13%), and neutropenia (11%), respectively (40). 
Results led to China FDA approval of chidamide in relapsed 
or refractory PTCL in December 2014. 

Why ACE 

Rationale
Upon the time when chidamide was approved for PTCL 
indication, although HDAC inhibitors were demonstrated 
with the efficacy in some hematologic malignances with 
well acceptable safety profiles, success in any solid tumor 
had not been achieved either as a single agent or combined 
with other treatments, which brought the doubts about 
the therapeutic potentials for this class of drugs in solid 
tumors (19,41). However, several lines of evidence, 
particularly in breast cancer, still supported the rationale 
for the development of HDAC inhibitors in solid tumor 
indications. 

First, from a point view of mechanisms of action, as 
demonstrated with chidamide, HDAC inhibitors have broad 
anti-tumor mechanisms for epigenetic aberrations presented 
in both tumor cell and its surrounding environment (tumor 
microenvironment) (42,43). These mechanisms of action 
are particularly supportive for the rationale of combination 
treatment of HDAC inhibitors with other therapies (44). 

Second, HDAC inhibitors have shown promising efficacy 
in patients with advanced HR+ breast cancer resistant to 
endocrine therapies (17). Among these demonstrations, 
entinostat illustrated the proof-of-concept evidence in 
a randomized placebo-controlled phase 2 trial, in which 
the investigators showed that entinostat combined 
with exemestane had potential PFS and OS benefits in 
comparison with exemestane alone in patients with HR-
positive advanced breast cancer resistant to prior treatment 
with non-steroidal AI (26). 

And third, specifically to chidamide, this compound has 
some potential advantages in the HDAC drug class:

(I) Chidamide is a subtype-selective HDAC inhibitor 
with the inhibitory effect on class I HDAC 1, 2 and 
3, and class IIb HDAC 10 (29,30), the subtypes 
associated with the malignant phenotype most. 
Since there at least 18 HDACs have been identified 
in humans, and some of them are very conservative 
for basic biological functions, selective inhibition 
in certain HDAC subtypes that are most related 
to cancer development is presumably crucial for a 
HDAC inhibitor to have an overall better efficacy 
and safety profile. 
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(II) Within the class of HDAC inhibitors, chidamide 
is not only an orally given drug but also appears 
to possess more ideal human PK properties. To 
demonstrate, both chidamide and entinostat are class 
I selective inhibitors with similar subtype selectivity 
and inhibitory intensity. However, under the clinical 
dosing regimens employed for each drug, chidamide 
showed a much higher exposure, and a shorter and 
less varied half-life than entinostat (Table 2) (45,46). 
These drug-structure possessed PK properties, 
among many other considerations, determine the 
dosing regimens of the two drugs currently in their 
clinical settings, i.e., chidamide 30 mg/twice weekly, 
and entinostat 5 mg/once weekly. These differences 
are presumably important for an anti-cancer agent 
to have efficacy required exposure and to improve 
side effect profile. 

(III) Single agent efficacy of chidamide in PTCL with 
an acceptable safety profile has been demonstrated 
in PTCL patients. With regard to safety, chidamide 
is associated mainly with manageable hematologic 

side effects and lack of, for example, cardiotoxicity 
and deep vein thrombosis observed with other 
HDAC inhibitors (47). 

Exploratory trial
A single-arm, open-label, exploratory clinical trial (45) 
was conducted to evaluate the safety and tolerability, 
PK parameters and preliminary efficacy of chidamide in 
combination with exemestane in postmenopausal women 
with advanced HR+ breast cancer who had disease relapsed 
or progressed from at least one previous endocrine 
therapy. Patients were treated with chidamide 30 mg BIW 
and exemestane 25 mg daily until disease progression or 
unacceptable toxicity. 

A total of 20 patients were enrolled and received at 
least one dose of combination treatment. Patients had a 
median age of 56 years. Seven (35%) patients had visceral 
involvement, 14 (70%) patients had measurable disease and 
all remain patients had at least one mainly lytic bone lesion. 
Fifteen (75%) patients had received ≥3 previous therapies, 
and 11 (55%) patients had received at least one salvage 

Table 2 Preliminary comparisons of chidamide with entinostat 

Parameter Chidamide Entinostat

HDAC subtype specificity (IC50, nM) HDAC 1 [71]; HDAC 2 [113];  
HDAC 3 [45]; HDAC 10 [63]

HDAC 1 [368]; HDAC 3 [501]

Xenograft mouse model

DLT 50 mg/kg 25 mg/kg

Efficacy dose range 12.5−50 mg/kg 12.3−49 mg/kg

Human dosing regimen 30 mg, twice a week 5 mg, once a week

PK parameter*

Tmax [median (range), h] 2.0 (1.0−12.0) 6 [2−36]

Cmax (ng/mL) 140.3±93.1 4.8±1.1

AUC0−t (ng·h/mL) 1,785.2±944.7 392±151

t1/2 (h) 18.3±4.7 50±13

Efficacy from + exemestane vs. exemestane only 

PFS (month) 7.6 4.3 vs 2.3

ORR (%) 20 6.3 vs 4.6

≥ Grade 3 AE Hematologic toxicity, GI symptoms Fatigue, hematologic toxicity, GI symptoms

*, parameter values for chidamide are from 30 mg fix dosing (45),  whereas these for entinostat (46) are from 4 mg/m2 dose (roughly 
represented for 7.2 mg for fix dosing with a body weight of 70 kg). Tmax, time to reach maximum concentration; Cmax, maximum plasma 
drug concentration; AUC, area under curve; t1/2, half-life; PFS, progression-free survival; ORR, objective response rate; AE, adverse event; 
DLT, maximum tolerated dose. 
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endocrine therapy and/or salvage chemotherapy before the 
study entry. The median number of treatment cycle was 
20.8 weeks. The most common treatment-emerged AEs ≥ 
grade 3 were neutropenia (35%), thrombocytopenia (30%), 
and leucopenia (20%). Three SAEs that could be related 
to chidamide treatment were a grade 3 thrombocytopenia 
leading to hospitalization, a grade 2 myelosuppression 
with poor overall conditions leading to hospitalization, 
and a grade 3 gastrointestinal dysfunction leading to 
hospitalization, respectively. The treatment continued for 
two patients with relieved myelosuppression after temporary 
treatment discontinuation or dose reduction of chidamide. 
For PK parameter evaluation, in brief, plasma exposures for 
exemestane before and after combination with chidamide 
were basically the same, as 32.5 vs. 31.4 ng/mL for Cmax, 
and 71.8 vs. 79.3 ng·h/mL for AUC0−t, respectively. For 
chidamide, inter- and intra-patient variations were observed 
in its PK parameters. A higher AUC value of chidamide after 
combination with exemestane (1,785 vs. 2,231 ng·h/mL)  
was noted, while most other PK parameters were similar 
before and after the combination treatment (45). Four of 16 
evaluable patients were with partial response, and 10 with 
stable disease. The median PFS was 7.6 months (45). 

Taken together, the results of this exploratory trial 
showed that chidamide and exemestane combination 
regimen was generally well tolerated with promising 
preliminary efficacy in advanced HR+ breast cancer 
patients relapsed or progressed on previous endocrine 
therapy, which encouraged further clinical studies of the 
combination treatment in this patient population. 

Pivotal phase III trial 
The pivotal study (ACE study) was a randomized, double 
blind, placebo controlled phase III trial of the AI exemestane 
plus chidamide/placebo in postmenopausal women with 
HR+ and HER2− locally advanced or metastatic breast 
cancer who had experienced disease relapse or progression 
after at least one endocrine therapy (9). Figure 2 outlines the 
study schema and Table 3 highlights key features of the trial. 

The ACE study, led by Prof. Zefei Jiang from the 5th 
Medical Center of PLA General Hospital, was conducted in 
22 study centers in China. Between July 2015 and June 2017, 
365 patients were enrolled and randomly assigned as a 2:1 
ratio into chidamide plus exemestane group (244 patients) 
and placebo plus exemestane group (121 patients). Due to 
a potential higher loss to follow-up rate was noted during 
the trial, 365 patients were finally enrolled, instead of the 
planned sample size of 328. The ACE study met its primary 
endpoint. Investigator-assessed median PFS was 7.4 months 
(95% CI: 5.5 to 9.2) with chidamide plus exemestane, 
and 3.8 months (95% CI: 3.7 to 5.5) with placebo plus 
exemestane [HR 0.75 (95% CI: 0.58–0.98); P=0.033]. In 
central imaging assessments by blinded independent review, 
median PFS was 9.2 months (95% CI: 7.2 to 10.9) in the 
chidamide group and 3.8 months (3.6 to 7.4) in the placebo 
group [HR 0.71 (95% CI: 0.53–0.96); P=0.024]. Overall 
response rate and clinical benefit rate were significantly 
higher in the chidamide group compared with that in the 
placebo group by both investigator and independent review 
assessment. Overall survival results were not mature at the 
date of data cutoff. Although the trial design was not powered 

Figure 2 ACE study schema.
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Table 3 The ACE trial at a glance

Element Design

Study title A Phase III Trial of Chidamide in Combination with Exemestane in Patients with Hormone Receptor-Positive Advanced 
Breast Cancer (ACE)

Rationale Mechanisms of action

An accepted safety profile; single agent indication for PTCL approved

Exploratory study with the ACE trial population

Patient 
population

Postmenopausal women (18–75 years)

Histologically or cytologically confirmed HR+, HER2- locally advanced/metastatic breast cancer

Disease relapsed or progressed after at least one endocrine therapy (either in the advanced or metastatic or adjuvant 
setting)

At least one measurable lesion according to RECIST, V 1.1

ECOG performance status 0 or 1

Neutrophil ≥15,00/μL, platelet ≥100,000/μL, haemoglobin ≥9.0/dL

Previous line of chemotherapy for advanced disease ≤1

Uncontrolled brain metastases, or significant cardiovascular disease excluded

Primary 
endpoint

Investigator-assessed progression-free survival (PFS)

Secondary 
endpoint

Overall survival (OS) 

Objective response rate (ORR) 

Clinical benefit rate (CBR) 

Duration of response (DOR) 

Safety

Procedure 30 mg chidamide or matching placebo was given orally twice a week, and 25 mg exemestane daily, till disease progression 
or death, or intolerable toxicity

Statistics Estimated that 255 events (disease progression or death) would be required in the two treatment groups to have 80% 
power to detect a 30% reduction in the hazard of PFS failure from 4.1 to 5.9 months

Calculated that a sample size of 328 patients was needed under the circumstance of 24 months of recruitment, 12 months 
of follow-up, 10% loss to follow-up, and a 2:1 randomization ratio in favor of the chidamide group

for subgroup analysis, exploratory analysis suggested that 
patients with visceral disease were potentially more beneficial 
from the chidamide treatment (9). The most common 
grade 3 or 4 adverse events for combination treatment were 
hematological toxicities, including neutropenia [124 (51%) 
patients in the chidamide group vs. 3 (2%) patients in the 
placebo group], thrombocytopenia [67 (27%) vs. 3 (2%)], 
and leucopenia [46 (19%) vs. 3 (2%)]. Most hematological 
AEs were asymptomatic and manageable by supportive care. 
SAEs of any cause were observed in 51 (21%) patients in the 
chidamide group and 7 (6%) patients in the placebo group. 
No SAE occurred in more than 2% of the patients in either 

group. 
Overall, the results of the ACE study have demonstrated 

that chidamide and exemestane regimen significantly 
improves progression-free survival and increases overall 
response and clinical benefit compared with exemestane 
alone in patients with advanced HR+/HER2− breast cancer 
that progressed after previous endocrine therapy. The 
combination of chidamide and exemestane is associated 
with a manageable safety profile. '

Added value of the ACE study
The ACE study is the first pivotal phase III randomized 
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trial of an HDAC inhibitor (chidamide) in combination 
with an endocrine therapy (exemestane) demonstrating 
progression-free survival benefit in patients with advanced 
HR+ breast cancer progressed or relapsed after previous 
endocrine therapy. The ACE results provide important 
insight into modulating epigenetic mechanism to overcome 
endocrine resistance, and HDAC inhibitors, as represented 
by chidamide, may emerge as a new treatment option in the 
rapidly developing landscape of targeted therapies for this 
common disease (48). In the meantime, the results from the 
ACE study have illustrated that chidamide, and probably 
also certain other HDAC inhibitors, is not only effective as 
a single agent in hematologic malignances, such as PTCL, 
but also an efficacious treatment in a combination way for 
a solid tumor. The latter would be particularly encouraging 
for many undergoing clinical trials using HDAC inhibitors 
or other epigenetic modulators in combination with various 
drugs with different anti-cancer mechanisms for treatment 
of solid tumors (44). 

Results of ACE study led to the approval by China FDA 
of chidamide combined with an AI in postmenopausal 
women with HR-positive and HER2-negative locally 
advanced or metastatic breast  cancer relapsed or 
progressed after previous endocrine therapy (49). CSCO 
(Chinese Society of Clinical Oncology) breast cancer 
guidelines 2020 recommends combination therapy of 
chidamide and exemestane as the treatment options for 
patients with HR+/HER2− advanced breast cancer who 
are endocrine-therapy naïve, failure to tamoxifen, or 
failure to non-steroidal AI (50).

Conclusions and future directions

During the past decade, combination of targeted therapies 
with established endocrine regimens has increased 
substantially in the treatment of endocrine resistant HR+/
HER2- metastatic breast cancer, as demonstrated by the 
approval of mTOR, CDK4/6 and α-specific PI3K inhibitors 
in combination with endocrine therapy for this patient 
population. In addition to genetic alterations, aberrant 
epigenetic modification by HDACs is another important 
mechanism to change gene expression patterns, leading 
to cellular proliferation and drug-resistance in cancer. 
The results of the ACE study represent an important 
step forward in the development of HDAC inhibitors as 
epigenetic therapy in patients with endocrine-resistant 
breast cancer (48), and the chidamide combination regimen 
could be incorporated into clinical practice for this common 

disease. Meanwhile, some issues still need to be addressed 
in the future, such as: (I) the identification of reliable and 
practicable biomarkers in order to select patients who 
could benefit most from chidamide treatment; (II) the best 
treatment plans, or sequencing, when to use chidamide 
regimen vs. other available treatment options; and (III) 
whether chidamide in combination with established 
therapies would be beneficial for patients with HER2+ or 
triple-negative breast cancers. 
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