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Introduction

Lung cancer is the leading cause of cancer death worldwide 
and non-small cell lung cancer (NSCLC) accounts for 
approximately 80–85% of cases (1). The majority of the 
patients are diagnosed when the disease is locally advanced 
or metastatic and the overall 5-year survival rate is less 
than 20% (2). In the last years, driver alterations have been 
discovered in several oncogenes (3) such as KRAS, EGFR, 
ALK, MET, BRAF, PIK3CA, ROS1, HER2, RET, PTEN, 

NRG1, NTRK1, DDR2 or FGFR1. These alterations render 
the tumor sensitive to targeted agents that, in most cases, 
have significantly better clinical outcomes compared to 
standard chemotherapy (4-6). 
Among the above mentioned driver alterations, ALK, ROS-
1 or RET fusion transcripts occur in 1–5% of stage IIIB-
IV lung adenocarcinomas and constitute therapeutic targets 
for tyrosine kinase inhibitors such as crizotinib or alectinib. 
The splicing variant of MET exon 14 is present in 2–4% of 
advanced NSCLC (3,7) and recent studies in small series of 
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patients have demonstrated the efficacy of MET tyrosine 
kinase inhibitors in this population (8). 

Tissue biopsy is the traditional source of material for 
tumor genotyping. However, tissue specimens are not 
always available or tumor material may be insufficient for 
molecular testing, especially when cancer is diagnosed 
at advanced stages on small biopsy specimens. On other 
occasions, due to tumor location or small size, tissue 
sampling can be challenging and potentially risky, 
particularly in extensively treated patients (9). But, even 
when available, tissue biopsies have other limitations. A 
single biopsy at presentation does not necessarily reflect 
the molecular characteristics of the tumor at the time of 
disease progression, highlighting the need of additional, 
more dynamic and less invasive sources for continuous 
genotyping of cancer patients (10).

Circulating tumor cells (CTCs), exosomes and nucleic 
acid fragments such as cell-free and platelet-bound RNAs, 
and circulating cell-free DNA (cfDNA) (11) have emerged 
as useful biosources that are complementary or even 
alternative to tissue biopsy when a tissue biopsy is not 
available. The non-invasive liquid biopsies allow frequent 
sampling and treatment monitoring (12). 

EML4-ALK fusions

The EML4-ALK fusion (13) is the result of a chromosome 
rearrangement between the N-terminal portion of the EML4 
gene and the tyrosine kinase domain of the ALK gene. ALK 
rearrangements are more prevalent in younger NSCLC 
patients, females, never or former light smokers (14). EML4-
ALK positive patients derive clinical benefit from ALK 
tyrosine kinase inhibitors such as crizotinib (6), ceritinib (15) 
or alectinib (16). However, despite initial good responses, all 
patients eventually relapse due to the emergence of different 
mechanisms of resistance (17).

 

EML4-ALK fusion transcripts in CTCs

CTCs are viable cells released into the circulatory system (18), 
but they constitute a minor fraction of the cell population 
in the peripheral blood of cancer patients, both in terms of 
absolute (<10 cells/mL) and relative numbers compared to 
other blood cells (one CTC per 106–107 leukocytes) (19). 
CTC counting has been reported to have a prognostic value in 
metastatic breast (20), colorectal (21) and castration resistant 
prostate cancer (22). They may also have a role in other solid 
tumors (20), including NSCLC (23) and SCLC (24).

Several techniques have been developed for the isolation 
and characterization of CTCs that differ in enrichment, 
staining and detection methods (25) as well as sensitivity, 
specificity and reproducibility (26). CTCs enrichment 
can be based on physical or immunomagnetic approaches. 
Magnetic beads and ferrofluid-based systems are examples 
of magnetic affinity cell sorting while filters and density 
gradients are examples of physical approaches (27). Both of 
them have been commercialized. The CellSearch System 
(CSS; Veridex, Warren, USA) is a semi-automated CTCs 
detection method, approved by the FDA, where CTCs are 
enriched enrichment using magnetic microbeads covered by 
antibodies against the epithelial marker EpCAM (epithelial 
cell adhesion molecule). The Isolation by Size of Epithelial 
Tumor Cells (ISET) is a kit where CTCs are isolated by 
a combination of enrichment and filtration. Regarding 
the identification of CTCs, it can be performed either by 
direct cytometry techniques like immunocytochemistry, 
immunofluorescence and flow cytometry or by indirect, 
nucleic acid-based methods (26,27). 

Using the ISET technology for CTCs isolation, Ilie  
et al. (11) were able to detect ALK-gene rearrangements 
on CTCs by immunochemistry (IHC) and fluorescence 
in situ hybridization (FISH). When comparing the results 
with paired biopsies in 87 lung adenocarcinoma patients, 
they found a total of five patients with ALK-gene fusions 
by FISH and strong ALK protein expression by IHC on 
both CTCs and in the corresponding tumor sample. This 
seminal study demonstrated that CTCs can be a reliable 
source for the detection of ALK-gene rearrangement in 
lung cancer patients (11). Pailler et al. analyzed by filter-
adapted FISH the CTCs of 18 ALK-positive patients 
isolated with the ISET technology, finding four or more 
ALK-rearranged CTCs per milliliter of blood in all cases 
(28). In contrast, only one or zero ALK-rearranged CTCs 
where detected in 14 ALK negative NSCLC patients. In the 
same study, variations in the levels of ALK-rearranged CTC 
were detected when monitoring over time five patients 
treated with crizotinib (28).

Enrichment and characterization techniques other than 
ISET have also been successfully used for CTC isolation in 
order to detect EML4-ALK fusions by FISH (29,30). In a 
recent study, an antibody-independent system was employed 
for the isolation of CTCs from 31 patients (14 ALK positive, 
12 ALK-negative lung cancer and five healthy controls) with 
paired tissue biopsy (31). Using CTCs of blood samples 
from healthy donors, a ‘false positive’ cutoff for ALK 
FISH of ≤2 cells per 1.88 mL of blood was established and 
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validated. Using this cut-off, a ≥90% concordance was found 
between the detection of ALK rearrangements in CTCs 
versus tissue biopsy. The same study reported differences in 
the ALK pattern between CTCs collected at baseline and at 
the time of disease progression in one patient treated with 
crizotinib (31). Finally, using the NanoVelcro chip system 
for CTCs isolation, ≥3 ALK-rearranged CTCs per mL of 
blood could be detected in ALK-positive patients, versus ≤2 
in ALK-negative cases (32).

EML4-ALK fusion transcripts in platelets 

Isolation of other blood components like plasma, serum or 
platelets is simpler than CTCs and can also provide material 
for biomarker analysis (33). Recent studies have shown that 
platelets can sequester tumor related RNA by a microvesicle 
dependent mechanism, resulting in the generation of 
tumor-educated platelets (TEPs) (34,35). Our group has 
demonstrated 65% sensitivity and 100% specificity for the 
detection of EML4-ALK rearrangements in RNA isolated 
from platelets in patients at presentation (36). During the 
course of the disease, the presence of EML4-ALK fusion 
transcripts in platelets correlated with clinical outcome 
to crizotinib treatment response. Monitoring of EML4-
ALK rearrangements in the platelets of one index patient 
revealed re-appearance of fusion transcripts associated 
with crizotinib resistance two months prior to radiographic 
disease progression. Our data showed that platelets are a 
valuable source for the non-invasive detection of EML4-
ALK fusion transcripts in lung cancer patients, useful 
for predicting and monitoring outcome to ALK targeted 
therapies (36).

EML4-ALK fusion transcripts in plasma 

cfDNA purified from plasma is commonly used for 
mutational analysis in advanced NSCLC and other 
malignancies (37). However, RNA circulating in plasma has 
not been so widely used for gene fusion detection due to 
a variety of reasons. Unlike cfDNA, cfRNA degrades very 
quickly and plasma samples need to be processed rapidly 
after blood extraction. The usual procedure is adding an 
RNA preservative such as Trizol and immediately freezing 
the sample at −80 ℃. However, this procedure is not easily 
accessible to many clinical sites.

Our  research  group has  5-year  exper ience  in 
detection of EML4-ALK fusion transcripts by reverse 
transcription-polymerase chain reaction (RT-PCR) in 
plasma, and we have demonstrated 22% sensitivity and 
100% specificity for the detection of this alteration (36).  
We are currently working to improve the method for 
plasma cfRNA extraction and EML4-ALK fusion transcript 
analysis. Submitting the plasma samples to automated 
extraction within 24 h after blood collection, plasma cfRNA 
can be obtained in the shortest possible time avoiding 
degradation and without the need of an RNA preservative. 
Using these new protocol, we have analyzed more than 
200 plasma samples and we have significantly improved the 
sensitivity of RT-PCR for the detection of EML4-ALK 
fusion transcripts (unpublished data) (Figure 1). 

KIF5B-RET, ROS-1 and NTRK gene fusions

Additional fusions involving ROS1, RET and NTRK 
oncogenes have been identified in 1–2% of advanced 

Figure 1 Workflow of the fusion gene analyses in plasma and platelets-derived RNA using automatic extraction followed by RT-PCR. RT-
PCR, reverse transcription-polymerase chain reaction.
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NSCLC patients in the case of RET and ROS1 (3) and 3.3% 
for NTRK1 (38,39). Despite these low frequencies, these 
alterations offer the possibility for targeted therapies with 
better clinical outcomes than chemotherapy. 

Similarly to EML4-ALK, ROS1 rearrangements can be 
detected on the CTCs of NSCLC patients using filter-
adapted-fluorescent in situ hybridation (FA-FISH). In a recent 
study, ROS1 rearrangements were studied in the CTCs of 
patients with paired tumor tissue (31). The median number 
of ROS1-rearranged CTCs at baseline was 34.5 per 3 mL 
blood (range, 24–55) in ROS1 positive patients versus 7.5 per 
3 mL blood (range, 7–11) in ROS1-negative patients. New 
generation platforms, such as Cancer Personalized Profiling by 
deep Sequencing (CAPP-Seq) (40) or NEOliquid® (41), have 
also been used to detect gene fusions in the circulating free 
DNA purified from advanced NSCLC patients. NEOliquid® 
is a next-generation sequencing assay, based on hybrid-
capture, that covers clinically relevant genomic alterations, 
such as point mutations, small insertions and deletions, 
selected gene fusions and copy number alterations within a 
panel of more than 30 genes. Using NEOliquid®, Heukamp  
et al. identified KIF5B-RET gene fusions in two patients 
previously tested negative for the rest of mutations (41). 

Alternative splicing variants

Alternative splicing in cancer is emerging as a growing and 
promising field in basic and translational oncology and is an 
object of active investigation (42,43). Although alternative 
splicing in several genes have been associated with lung 
cancer (44), MET 14 is so far the only splicing variant with 
clinical relevance. 

MET splicing variant in exon 14

c-MET  a l terat ions,  including overexpression and 
amplification, have been described in a number of solid 
tumors such as papillary renal, gastric and lung cancer, 
and hepatocellular carcinoma (45-47). Somatic mutations 
affecting splice sites of exon 14 of the MET gene (METex14) 
were first reported in primary lung cancer specimens and in 
a lung cancer cell line (48,49). These METex14 alterations 
were shown to promote RNA-splicing-based skipping of 
MET exon 14, which results in activation of MET kinase 
activity through a unique mechanism (50). 

MET ex14 alterations in NSCLC are not necessarily 
associated with MET amplification occur in approximately 
3% of lung adenocarcinoma cases (51) and have also been 
observed in neuroblastoma (52) and gastric (53) cancer cell 
lines. Mutational events of MET leading to exon 14 skipping 
are frequent and potentially targetable events. In vitro 
preclinical studies indicated that MET-targeted agents can 
counteract oncogenesis resulting from MET exon 14 loss and 
the efficacy of these agents in NSCLC patients with MET 14 
positive tumors has recently been demonstrated (50,54). 

There are no reports so far about detection of exon 14 
MET splice variant in liquid biopsies, but great progress 
is expected in the near future due to the relevance of this 
alteration for the treatment of lung cancer patients. In our 
laboratory, we have started to analyze the exon 14 MET 
splice variant by RT-PCR in RNA isolated from plasma 
and platelets with the same methodology used for EML4-
ALK rearrangements. Recently, we have detected the 
alteration in the platelet-derived RNA of a NSCLC patient 
who harbored the MET exon 14 splicing variant in tumor 
tissue (Figure 2). The patient attained a partial response to 
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Figure 2  Agarose gel (left) and sequence (right) of the RT-PCR products products of a patient positive for exon 14 MET splicing variant in 
platelet-derived RNA. RT-PCR, reverse transcription-polymerase chain reaction.
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crizotinib (unpublished data).

Conclusions

Gene fusions and splicing variants have been recognized as 
tumor drivers for more than three decades, providing new 
targets for personalized therapy. The accurate detection 
of these alterations in blood will be a significant step for 
treatment selection at the time of the diagnosis, monitoring 
treatment outcome and predicting disease progression in 
NSCLC patients. 
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