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Introduction

Lung cancer is the leading cause of cancer deaths worldwide 
and non–small cell lung cancer (NSCLC) accounts for 80% 
of all lung cancer cases (1). The standard first-line therapy 
for patients with advanced NSCLC was a platinum-based 
doublet combination chemotherapy but modest progress 
has been made with the use of chemotherapy, and additional 
treatment strategies are needed. So cancer drug development 
has shifted from cytotoxic, nonspecific chemotherapies 
to molecularly targeted, rationally designed drugs with 
greater efficacy and lower toxicities. For this challenge, the 
best knowledge of cancer biology is required. Nowadays, 
we are able to identify different genetic changes that allow 
us to consider NSCLC as a major disease which can be 
molecularly reclassified into several subsets of diseases (2). 
RAS gene family members encode small GTPases that 
activate various signaling pathways involved in proliferation, 

differentiation and cell survival (Figure 1). RAS proteins 
function as molecular switches that cycle between a GDP-
bound inactive state and GTP-bound active state. Ras proto-
oncogenes are the most frequent mutated genes in NSCLC, 
with mutations detected in about 25% of all tumors, mainly 
adenocarcinoma subtype (3). 

v-Ki-ras2  Kirs ten rat  sarcoma v ira l  oncogene 
(K-RAS) accounts for 90% of RAS mutations in lung 
adenocarcinomas. Most oncogenic forms of RAS impair 
their intrinsic GTPase activity, preventing GTP hydrolysis. 

RAS proteins acquire the potential to transform the cells 
when an amino acid at position 12, 13, or 61 is replaced as 
a result of a point mutation in the gene but 97% of K-RAS 
mutations in NSCLC involve codons 12 or 13 at P-Loop 
also known as Walker A motif. This domain interacts with 
the phosphate group of GTP helped by GAP protein. 
In this regard, mutations at codon 12 avoid K-Ras to be 
stimulated by GAP protein. As GAP acts as a catalyst to 
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speed up GTPase activity, mutations at that position slow 
GTP transition to GDP increasing GTP levels. Mutations 
at codon 61 affect the energy gradient needed to transform 
substrate (GTP) into product (GDP) because wild-type 
residue at that position stabilizes the transition state for 
GTP hydrolysis. So, it is critical to know specific site and 
biochemical effects when a K-Ras mutation is diagnosed 
because pharmacological modulation is completely 
different. 

Al though  KRAS muta t ions  have  been  w ide ly 
hypothesized to be related to direct tobacco exposure, they 
do occur in approximately 15% of lung adenocarcinomas 
from never-smokers (4). Thus, KRAS tumor status cannot 
be easily predicted on the basis of smoking history alone. 
KRAS transversion mutations (G/TorG/C) are more 
common in former or current smokers and transition 
mutations (G/A) are more common in patients who never 
smoked cigarettes. 

KRAS mutations have been associated with a poor 
prognosis such as a lower expectancy for survival (5), 
reduced benefit from adjuvant chemotherapy, they predict 
resistance towards EGFR tyrosine kinase inhibitors (6), and 
obtain less clinical benefits from chemotherapy compared 
with the general NSCLC population (7).

Treatment of KRAS mutated NSCLC: an 
unresolved issue

Direct inhibition of KRAS has proven clinically challenging. 
Although KRAS mutations were identified in lung cancer 
nearly 30 years ago (8), no successful targeted therapy has 
been developed and remains an elusive target for cancer 
therapy (9). So far, there is no yet effective treatment for 
patients with these types of tumors although we consider 
that K-RAS is not a unique target but a myriad of targets 
that combine absence of affinity for a catalyst (GAP) or 

Figure 1 The major RAS effector pathways. CDC42, cell division cycle 42; DAG, diacylglycerol; FOX, forkhead transcription factor; GAP, 
GTPase-activating protein; GEF, guanine nucleotide exchange factor; IKK, IκB kinase; IP3, inositol-1,4,5-trisphosphate; mTORC, mTOR 
complex; NF-κB, nuclear factor-κB; PDK1, phosphoinositide-dependent kinase 1; PKC, protein kinase C; PLA, phospholipase A; PLCɛ, 
phospholipase Cɛ; PLD, phospholipase D; RALGDS, RAL guanine nucleotide dissociation stimulator; RHEB, RAS homologue enriched in 
brain; RIN1, RAS and RAB interactor 1; TIAM1, cell lymphoma invasion and metastasis 1
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decreasing affinity for GTP (P-Loop impairing) as well as 
other biochemical complexities.

Until now, all efforts to inhibit mutant KRAS in NSCLC 
have failed and few compounds have been assessed by clinical 
trial. One of the reasons to explain this point is because 
RAS enzyme kinetics is hard to inhibit due to affinity to 
substrates, catalyst proteins and sequential conformational 
changes after first signal that occurs inside this multi-target 
protein. In fact, the lack of specificity of KAS inhibitors 
could be related to this biochemical complexity that could be 
targeted at different levels: membrane attachment, P-Loop 
and thermodynamic requirements.

Various potent and selective inhibitors of RAS function 
were developed in the 1990s, with the aim to prevent 
association of RAS with the inner face of cell membrane (10).  
First, farnesyl transferase inhibitors avoid a critical post- 
translational modification in pre-RAS protein blocking 
isoprenylation. As farnesyl residues are needed to attach 
K-RAS to membrane it was hypothesized that this sort 
of inhibitors could inhibit RAS proteins (11). In fact, 
these inhibitors blocked RAS-dependent oncogenic 
activity “in vitro” and in preclinical animal models, but 
unfortunately failed in the clinical practice and showed little 
clinical efficacy because of a sequential post-translational 
modification at pre-Ras that compensates first steps of 
K-RAS maturation (12). 

Although effective KRAS inhibitors are not currently 
available, genetic approaches have identified novel drug 
targets that are essential for RAS cellular localization 
and function, raising hope that new inhibitors of specific 
biochemical functionality of K-RAS will soon be developed. 

Rationale for a new treatment strategy for K-RAS 
mutated NSCLC

A different approach has been based on testing drugs or 
combinations of agents that work downstream of activated 
K-RAS. If you take into account that different KRAS-
mutant tumors can activate several signalling pathways, 
a new treatment strategy for KRAS-mutant NSCLC 
should be based on the combination of targeted agents 
that inhibit downstream effectors of K-RAS dependent-
tumors according to the “RAS-ome” (Figures 2,3). In this 
way, a specific knowledge of individual tumor molecular 
abnormalities that result in oncogene-specific “synthetic 
lethal” interactions will allow the rationale to combine 
promising targeted therapies for KRAS-mutated NSCLC.

Targeting HER pathway

Epiregulin (EREG) is ligand of the EGF receptor/EGFR 
and ERBB4 and is a putative transcriptional target of 

Figure 2 The relationship between HER family, KRAS and cyclin-dependent kinases (Cdk)
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mutated KRAS dependent signaling that contributes to an 
aggressive phenotype and could be a promising therapeutic 
target in oncogenic KRAS-driven NSCLC (13) (Figure 2).

Targeting MEK pathway

Initial efforts focused on proteins downstream K-Ras at 
the RAS/RAF/mitogen-activated protein kinase (MEK)/
extracellular signal-regulated kinase (ERK) signaling 
pathway. The MAPK pathway converges at the MEK1/
MEK2 kinases, for which the only known substrates are the 
ERK1/ERK2 kinases (Figures 2,3). In fact, MEK inhibition 
would block ERK signalling irrespective of the upstream 
stimulus. 

MEK1 and MEK2 are dual specificity kinases, RAF- 
phosphorylated, that phosphorylate the tyrosine and 
threonine residues on ERK1 and 2, leading to proliferation 
and migration activation. Mutations in RAS or RAF lead to 
a sustained oncogenic signal and predict response to MEK 

inhibition in laboratory models.
Selumetinib (AZD6244, ARRY-142886; AstraZeneca, 

Alderley Park, Cheshire, UK) is an orally available, potent, 
selective, non-ATP competitive inhibitor of MEK1/MEK2 
kinases (IC50 14 nM for MEK1). Preclinical data from 
KRAS-mutant NSCLC tumor xenografts showed that 
selumetinib significantly suppressed tumor growth (14), 
especially in tumors harboring RAS mutations (15). Initial 
clinical studies of selumetinib showed target inhibition 
and tumor responses (16). A phase I trial demonstrating 
tolerability and preliminary efficacy of selumetinib at 100 mg  
twice daily (17), identified an acneiform rash as the main 
dose-limiting toxicity (DLT). However, treatment with 
selumetinib alone, showed little clinical efficacy in a phase II 
clinical trial in unselected pre-treated patients with NSCLC 
when selumetinib was compared with pemetrexed (18).

Results of additional preclinical in-vivo studies have 
shown that the combination of selumetinib and docetaxel 
leads to greater tumor-growth inhibition or regression, and 

Figure 3 Major interactions in the KRAS pathway
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apoptosis (19,20). This combination showed a manageable 
tolerability profile in advanced solid tumors (21) in phase 
I. With this rationale, a randomised, double-blind, phase 
II clinical trial combining docetaxel (75 mg/m2 on day 1 
of a 21-day cycle) with or without oral selumetinib (75 mg 
twice daily in a 21-day cycle) in KRAS-mutant NSCLC 
patients after first-line progression (22). Mature data 
evidenced a promising trend in overall survival for patients 
treated at experimental arm (median OS 9.4 vs. 5.2 mo; HR 
0.80; 80% CI, 0.56-1.14; one-sided P=0.21). Additionally, 
median progression-free survival was statistically significant 
(5.3 vs. 2.1 mo, HR 0.58; 80% CI, 0.42-0.79; one-sided 
P=0.014), and an impressive response rate around 37% in 
the combination group compared with 0% in the docetaxel 
alone group (P<0.0001). In post-hoc analyses, there were 
also improvements in lung cancer symptoms and all these 
benefits might be attributable to the cytoreductive effects of 
the treatment. However, a higher rate of febrile neutropenia 
(18% vs. 0%), diarrhea, vomiting, stomatitis, and dry skin 
with selumetinib plus docetaxel were communicated. 

Obviously, this is a phase II study and requires further 
validation in a large phase III clinical trial. Furthermore, the 
study has potential limitations such as the small sample size 
and the absence of independent confirmation of progression-
free survival and tumor response. Moreover, the control 
group of the study who received docetaxel alone clearly had 
poor evolution, lower than expected in previous clinical trials 
in unselected patients receiving docetaxel at second line 
setting (23). Furthermore, a new question emerges because 
poor efficacy of docetaxel in K-RAS mutant NSCLC patients 
should be investigated. Conversely, the potential synergy of 
docetaxel and selumetinib remains unclear and additional 
studies are needed. In-vivo mechanistic drug sequencing 
studies have shown that administration of selumetinib after 
docetaxel, rather than before, induced more apoptosis. This 
finding could have important clinical implications for any 
dosing schedule of this combination. This contrasts with the 
majority of previous studies in NSCLC, in which addition 
of a targeted agent to chemotherapy has not resulted in 
improved efficacy. 

Another important issue is the therapeutic effect of 
specific KRAS mutations, to define a subpopulation of 
KRAS-mutant NSCLC in which the combination of 
selumetinib and docetaxel leads to improved efficacy. 
Previous studies showed that KRAS mutation subtype seems 
to be an important predictor of treatment outcome (24).

Wide genomic approaches have evidenced that it is usual 
for many mutations to co-exist. In this regard, K-RAS 

mutations in NSCLC patients could be co-expressed with 
additional sequence alterations. Thus, a recent study done 
in mice showed that overlapping mutations at p53 or LKB1 
affect efficacy of selumetinib plus docetaxel (25) as well 
as docetaxel alone in tumors that harbors a mutated Kras 
sequence. For example, combination of selumetinib plus 
docetaxel provides substantial benefit in K-Rasmt/p53mt lung 
cancer models. Conversely, mice harboring Krasmt/LKB1mt 
tumors show primary resistance to this schedule. LKB1 (liver 
kinase B1) also known as serine threonine kinase 11 (STK11) 
the defective sequence of which is a cause of Peutz-Jeghers 
syndrome. Its role is critical in p53-dependent apoptosis, 
mainly involved at mitochondrion steps. When LKN1 
is unable to exert its activity, p53-dependent death is 
impaired. LKB1 is somatically inactivated in about 30% 
of NSCLC (26), and the combination of LKB1 loss and 
KRAS mutation results in a more aggressive phenotype 
than tumors only harboring KRAS mutations (27). In fact, 
the decreased activation of ERK phosphorylation in KRAS/
LKB1 tumors suggests that the proliferation of these tumors 
may be driven through other signaling pathways. KRAS/
LKB1-mutant tumors have heightened activation of both 
AKT and SRC. This type of tumors with KRAS mutated 
and LKB1 inactivated show sensitivity to rapamycin or the 
MEK inhibitor CI-1040.

Several selumetinib trials are currently enrolling patients, 
including a phase II study (NCT01229150) in previously 
treated NSCLC stratified by KRAS status. Mutated KRAS 
and wild-type KRAS patients are randomized to receive 
selumetinib and erlotinib or selumetinib alone (28). In 
addition, the drug is being evaluated with thoracic radiation 
in one trial (NCT01146756) and in two multi-arm trials 
(NCT01306045 and NCT01248247) that assign treatment 
by molecular tumor characteristics.

Other MEK inhibitors have been already tested. 
Trametinib (GSK 1120212 or JTP-74057) is a reversible, 
allosteric MEK1/MEK2 inhibitor with an IC50 of 0.7 nM  
for MEK1, and a high specificity as demonstrated by 
limited activity against a panel of 180 other kinases. A 
multi-arm phase I/Ib trial (NCT01192165) is assessing 
many treatment combinations, specifically with a goal of 
identifying appropriate regimens for lung and pancreatic 
cancer treatment. An open-label, randomized phase II 
trial (NCT01362296) in second-line NSCLC that harbors 
muta¬tion in KRAS, NRAS, BRAF, or MEK1 is currently 
recruiting patients.

Dual targeting of MEK with inhibition of other kinases 
in the same pathway, such as EGFR, or with inhibition 
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of a parallel pathway are also promising directions for 
ongoing trials.

Targeting PI3K pathway

PI3K is a site of convergence and stem for multiple 
pathways resulting in complex regulation of signaling and 
the potential for significant off-target effects, including 
activation of alternative networks to promote oncogenesis 
(Figure 3). 

NSCLC harbors several molecular alterations involving 
the PI3K pathway, including PIK3CA amplification 
and mutation, decrease or loss of phosphate, and tensin 
homologue (PTEN), AKT mutations, LKB1 loss and 
KRAS mutation. For all of these features, PI3K pathway is 
one of the promising approaches to target RAS downstream 
signaling proteins. Conversely, K-RAS mutations have been 
predicted to mediate resistance to PI3K inhibitors (29). 
For this reason, a potential strategy of treatment of KRAS 
mutant tumors will be focused on dual inhibition of PI3K 
and MEK/ERK signaling. 

MK-2206 is an oral pan-Akt inhibitor that binds Akt in 
its inactive configuration. MK-2206 has shown preclinical 
activity in a panel of NSCLC lines, with the greatest activity 
in a PIK3CA-mutated model (30). Combination therapy 
with selumetinib demonstrated synergy (31) and is being 
evaluated clinically (NCT01021748) (32).

Targeting nuclear factor kappa-light-chain enhancer of 
activated B cells (NF-κB) pathway

KRAS mutated tumors can activate nuclear factor kappa-
light-chain enhancer of activated B cells (NF-κB) pathway 
and produce anti-apoptotic signals, essential for NSCLC 
survival through cREL and Bcl-xL (33) (Figures 1,3). 
So, NF-κB signaling and the non-canonical IκB kinase, 
TBK1, may represent an alternative strategy for targeting 
KRASmt-driven tumors. These observations suggest a 
pharmacological alternative for potential treatment of 
cancers harboring RAS mutations (34). 

Neurofibromatosis type 1 pathway

Neurofibromatosis type 1 (NF1) gene regulates cell 
motility and invasion, and displays high homology with 
RAS GTPase activating protein (Figure 3). Loss of NF1 
produces hyper-activation of RAS signaling in 40% of 
NSCLC (35). NF1-deficient malignancies and KRas/p53-

mutant lung cancer exhibit an aggressive phenotype in 
murine models. However, agents that enhance proteotoxic 
stress, including the HSP90 inhibitor IPI-504 showed 
relevant responses when combined with rapamycin (36). 
Other HSP90 inhibitors are under evaluation (37). Since 
the mTOR inhibitor rapamycin has shown potential activity 
against NF1-associated tumors, it could be a new option of 
treatment (38).

Wilms tumor gene pathway

The Wilms Tumor gene (WT1) is a tumor suppressor 
gene that recognizes and binds to the DNA sequence 
5'-CGCCCCCGC-3'.  Curiously, function may be 
isoform-specific as isoforms lacking the KTS motif may 
act as transcription factors and isoforms containing the 
KTS motif may bind mRNA and play a role in mRNA 
metabolism or splicing. This biological complexity offers 
many possibilities for drug development, including those 
that affect KRASmt driven biology. Recently, a study in both 
mouse and human cells has shown that the loss of WT1 
could activate a senescence program in KRASmt cells (39).  
If this observation is confirmed, a new approach of 
treatment will be opened.

GATA2 pathway

The development of RNA interference technology has 
enabled the possibility of testing biological roles of putative 
genes in wide-genome scale. In this regard, several screenings 
assays have been carried out in cell libraries aimed to identify 
genes the inhibition of which is selectively deleterious to 
K-RASmt cells (40). Candidate genes were then tested in 
larger panel of KRAS mutant and wild-type cancer cells. 
Finally, K-RASmt cancer cell lines were found to be dependent 
on some genes such as the transcription factor GATA2 (41).

GATA-binding Factor 2 or erythroid transcription factor 
(GATA2) can be involved in regulation of the proteasome 
activity, IL-1 and Rho-signaling pathways. Recently, it has 
been observed that loss of GATA2 reduced the viability of 
NSCLC cells harboring RAS mutations, whereas wild-type 
cells were unaffected (42). Although GATA2 itself is likely 
undruggable, combined suppression of GATA2-regulated 
pathways with clinically approved inhibitors caused marked 
tumor clearance. Pharmacological inhibition of GATA2-
mediated pathways with bortezomib and fasudil results in 
dramatic tumor inhibition (43). These observations present 
a new treatment option to KRAS mutant NSCLC.



148 de Castro Carpeño and Belda-Iniesta. KRAS mutant NSCLC

© Translational lung cancer research. All rights reserved. Transl Lung Cancer Res 2013;2(2):142-151www.tlcr.org

Seven in absentia homolog 2 pathway

The human homolog of Drosophila seven-in-absentia--
SIAH-1 and SIAH-2 are ubiquitin E3 ligases and driving 
ubiquitin-mediated degradation of conserved downstream 
components of the RAS pathway that are required for 
mammalian RAS signal transduction (Figure 3). In this 
regard, SIAH-2 regulates the tumor growth by degradation 
of SPRY2 and subsequent activation of the RAS-ERK 
pathway. Since SIAH-2 can be involved in different 
NSCLC, SIAH-2 may be a viable target for novel anti-RAS 
and anticancer agents aimed at inhibiting EGFR and/or 
RAS-mediated tumorigenesis (44). 

RNA-binding motif 5 pathway

RBM5 (RNA-binding motif protein 5, also named H37/
LUCA-15) gene is a component of the spliceosome. A 
complex (also known as the prespliceosome) that regulates 
the alternative splicing of a number of mRNAs. It has 
demonstrated tumor suppressor activity (45). RBM5 can 
inhibit the growth of lung cancer cells and induce apoptosis 
both in vitro and in vivo (46). RBM5 is downregulated 
by the constitutively activated RAS mutant protein, RAS 
(G12V), in rat embryonic fibroblast cells, which indicates 
a correlation between the RAS pathways and RBM5  
activity (47). Further evaluation of interrelationships 
between RBM5 expression and KRAS gene must be carried 
out to open a novel therapeutic approach.

IL-8 pathway

Interleukin-8 (IL-8; CXCL8) is a cytokine of the CXC 
chemokine family that is involved in neutrophil recruitment 
and activation. In addition, IL-8 is an angiogenic growth 
factor that is overexpressed in different cancers, including 
NSCLC (48). Lung adenocarcinoma and muco-epidermoid 
carcinoma cells produce substantial amounts of IL-8, 
and express both CXCR1 and CXCR2 IL-8 receptors. 
Activating mutations of KRAS upregulate IL-8 expression 
in NSCLC and IL-8 can play a role in cell growth and 
migration in oncogenic KRAS-driven NSCLC (49).

Twist-related protein 1 pathway

Twist1 acts as a transcriptional regulation as a heterodimer 
with E proteins. Interestingly, Twist1 regulates gene 
expression differentially, depending on dimer composition: 

homodimers induce expression of FGFR2 and POSTN 
while  heterodimers  repress  FGFR2 and POSTN 
expression and induce THBS1 expression. Additionally, 
it has been suggested to play an important role during 
tumor progression. For example, transgenic mouse models 
have shown that Twist1 cooperates with KRAS (G12D) 
to markedly accelerate lung tumorigenesis by abrogating 
cellular senescence programs and promoting the progression 
from benign adenomas to adenocarcinomas. Moreover, the 
suppression of Twist1 to physiological levels is enough to 
cause KRAS mutant lung tumors to undergo senescence 
losing their neoplastic features (50). The suppression of 
TWIST1 in human tumors may be an effective example of 
pro-senescence therapy.

Conclusions 

Traditionally, treatment decisions for patients with lung 
cancer have historically been based on tumor histology and 
TNM stage. One promising treatment strategy involves 
the further subdivision of NSCLC into clinically relevant 
molecular subsets, according to a classification schema 
based on specific so-called driver mutations.

Although mutational activation of the KRAS pathway 
is the most frequent genetic event in NSCLC, it remains 
an elusive target for cancer therapy. In fact, it has been 
considered an “undruggable” genetic alteration. 

A key goal in cancer research is the discovery of new drug 
targets that will selectively impair the viability of tumoral 
cells such as KRAS mutant NSCLC. Therefore, a specific 
knowledge of individual tumor molecular abnormalities that 
result in oncogene-specific “synthetic lethal” interactions 
will allow the rationale to combine promising targeted 
therapies for KRAS-mutated NSCLC. Recently, a MEK 
inhibitor, selumetinib, has shown interesting efficacy 
when combined with docetaxel in patients with KRAS-
mutant tumors. Several pathways may provide attractive 
approaches to develop new treatments in KRAS-mutated 
NSCLC.  
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