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Immunotherapy and radiotherapy: theoretical 
and practical synergy

The intuitive appeal of perturbing the immune system to 
generate an effective anti-tumor response is so profound 
that the idea emerged contemporaneously with the field 
of cellular immunology itself. In 1884, Elie Metchnikoff 
discovered macrophages (1) and Anton Chekov noted a 
connection between erysipelas and cancer remission (2). 
Less than a decade later, William Coley was injecting 
patients with a cocktail of Streptococcus pyogenes and Serratia 
marcescens (3-5). Over a century of subsequent empirical 

inquiry has uncovered a plethora of interacting signal 
transduction cascades within a multitude of interacting 
cell types. We are faced with not only understanding 
this system, but with purposefully manipulating it for 
the advancement of human health. Despite formidable 
immunological complexity, immunotherapy has yielded 
recent gains in overall survival and disease-free progression 
in a variety of cancers, most notably: melanoma (6-10), 
non-small cell lung cancer (NSCLC) (11-14), and renal cell 
carcinoma (RCC) (15-17). These therapies are designed 
to work by increasing the activation levels of the immune 
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system in response to the antigenic load generated by the 
tumor in question.

At the most reductive level, harnessing the immune 
system to attack a tumor consists of two components 
that are amenable to manipulation: the stimulus and 
the subsequent response. The word and concept of 
“immunotherapy” invites a particular focus on the latter, but 
manipulation of the stimulus (in this case, the antigenic load 
provided by the tumor) may be equally powerful. The most 
obvious way to influence the quality or quantity of antigenic 
load is by inducing preferential killing of tumor cells, either 
systemically with chemotherapy, or locally with radiation 
therapy. Increasing the antigenic load and facilitating 
immune activation with optimal kinetics may achieve a 
synergistic anti-tumor response, producing an effect on the 
immune system more definitive and durable than either 

approach alone. In this review we will provide a brief 
overview of the conceptual and empirical underpinnings 
that make radiotherapy and immunotherapy such promising 
therapeutic partners before turning our attention specifically 
to oligometastatic lung cancer and summarizing current 
experience with the combined approach of radiotherapy and 
immunotherapy in this particular patient population.

Augmented immunological activation

Like the brain, the immune system generates complex 
output in response to input that varies in character from the 
simple to the multiplex. Every fate choice, line of cellular 
communication, and metabolic activation state becomes a 
branch point in an intricate effector response that might be 
modified to produce an improved clinical outcome. Over 
the past several decades, we have attempted to influence 
the cytokine milieu, kick-start the innate and adaptive arms 
of the immune system with vaccines and their adjuvants, 
and prevent T cell exhaustion with immune checkpoint 
inhibitors (as depicted in Figure 1). A full discussion of the 
history, breadth, and efficacy of these approaches is beyond 
the scope of this review, though we will touch on relevant 
highlights here, with particular attention paid to NSCLC. 

Cytokines

Administration of purified cytokines began in the 1980s 
with IL-2 (18). Dramatic clinical responses in a modest 
percentage of patients with melanoma (19) and RCC (20) 
led to FDA approval of IL-2 for the treatment of these 
diseases, though unfortunately, IL-2—monotherapy did not 
provide a significant benefit in patients with NSCLC (21). 
Other gamma-chain cytokines, such as IL-7, IL-15, and 
IL-21 have theoretical promise in stimulating antitumoral 
T-cell activation (22), though they have yet to fulfill their 
bench promise of bedside clinical gains. Cytokines that are 
major players in innate responses have also been shown to 
augment the antitumoral response. IL-12 is a particularly 
attractive immunomodulator due to its ability to activate 
cytocidal innate and adaptive responses, but its efficacy in 
early clinical trials was disappointing and it carried attendant 
toxicities (23). Interest in IL-12 continues with alternative 
administration strategies designed to increase intratumoral 
levels while circumventing systemic exposure (24).  
GM-CSF has shown promise in murine models of 
melanoma, and it has consequently been evaluated as a 
monotherapy and as part of multipronged approaches, with 

Figure 1 Synergy between radiation therapy and immune therapy 
in NSCLC. Radiation therapy (top left) releases and alters antigen 
as targeted tissue dies, influencing immunogenicity in ways we are 
only beginning to understand. Cellular contents activate the innate 
immune system, represented here by a dendritic cell (DC), which 
then leads to an antitumoral response by the adaptive immune 
system. Immunotherapeutic agents such as cytokines and vaccines 
(pictured top right), augment immune activation by acting on 
antigen presenting cells or T cells. Checkpoint inhibitors maintain 
T-cell activation by blocking inhibitory signaling pathways. 
Activated T-cells act to improve both systemic and local control. 
NSCLC, non-small cell lung cancer.
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mixed results (25). 

Vaccination

Cancer vaccination is a strategy with attractive theoretical 
underpinnings, and many ongoing trials are using peptide 
vaccines, cellular vaccines, or viral-based approaches to 
stimulate the adaptive immune system to identify and attack 
tumor cells (26). Of particular relevance to NSCLC was the 
Phase III MAGRIT trial, which evaluated a peptide vaccine 
containing MAGE-A3, an antigen expressed in 35% of lung 
cancers. Unfortunately, vaccination failed to confer any 
benefit to overall survival (27). Cellular vaccines, composed 
of cancer cell lines, are intended to provide a selection of 
antigen that is broad as well as a more authentic stimulus, 
which allows for cross-presentation by dendritic cells, though 
in NSCLC there have yet to be any significant improvements 
in overall survival (28). A viral-based vaccine designed to 
stimulate an immune response against the antigen Mucin 1 
(MUC1), expressed in NSCLC, has shown an improvement 
in progression-free survival, but has not yet demonstrated a 
difference in overall survival, though final results from the 
phase III trial have not yet been published (29).

Checkpoint inhibitors

The most promising immunotherapeutic interventions have 
come in the form of checkpoint inhibitors, so called because 
they remove the biochemical brakes on immunological 
activation. Two such inhibitory pathways have been targeted 
in T cells: the signaling cascade initiated by cytotoxic T 
lymphocyte antigen 4 (CTLA-4), and the signaling cascade 
initiated by the receptor known as programmed death 1 (PD-1)  
and its ligand, PD-L1, both of which function in T cells. 
CTLA-4 was first identified as a homolog to CD28, another 
member of the Ig superfamily known to be essential to the 
two-signal model of T cell activation (30). Mice deficient in 
CTLA-4 had a dramatically proinflammatory phenotype (31)  
and blockade of this pathway enhanced antitumoral immunity 
in murine tumor models (32). Two monoclonal antibodies 
have been developed that serve as CTLA-4 antagonists: 
ipilimumab and tremelimumab. The first success with 
CTLA-4 blockade came in a trial of ipilimumab used as a 
second-line agent in melanoma, which showed an advantage 
in overall survival (7). The beneficial effects of ipilimumab 
extended to other cancers, including NSCLC, where a 
regimen of ipilimumab and paclitaxel increased overall 
survival when compared with paclitaxel alone (11). As of yet, 

tremelimumab has not been approved by the FDA for use 
in treating any cancer as initial trials in melanoma failed to 
demonstrate significant survival benefit (33).

 PD-1 and PD-L1, a receptor and ligand respectively, 
control T cell exhaustion, maintain tissue tolerance, 
and initiate resolution of inflammation (34,35). Mice 
deficient in PD-1 do not spontaneously develop flagrant 
autoimmune disease, though they have a predisposition 
toward developing spontaneous glomerulonephritis on 
the B6 background and dilated cardiomyopathy on the 
BALB/c background (36). Two monoclonal antibodies 
that target PD-1 have been approved by the FDA for 
NSCLC: nivolumab and pembrolizumab. Nivolumab has 
been approved for use in second-line NSCLC based on 
the results of a phase III trial comparing nivolumab to 
docetaxel which showed a benefit in overall survival (12,13). 
Pembrolizumab was also found to confer an overall survival 
benefit in NSCLC patients who failed other therapies 
and whose tumors expressed PD-L1 (37). Atezolimumab 
and durvalumab are two of several antibodies under 
development that target PD-L1 rather than its receptor. 
Atezolimumab was initially approved by the FDA for its 
promise in bladder cancer (38), and a recently completed 
phase II study has demonstrated an increase in overall 
survival in patients with previously treated NSCLC (39).

Biomarkers

Checkpoint inhibitors have been notable for the durability 
and magnitude of the clinical responses they effect in 
certain subpopulations of patients. There is consequently a 
great deal of interest in identifying biomarkers that, used as 
screening tools, would signify a higher pre-test probability 
of response in a given patient. The B7 family of cell surface 
proteins consists of related ligands for CTLA-4 that are 
expressed by many different cancers, including NSCLC (40). 
Perhaps because of the wide variety of B7 family members 
that are expressed on host antigen presenting cells at 
baseline, no surface marker has yet been identified capable 
of predicting response to ipilimumab (41). 

Significantly more progress has been made in predicting 
responses to PD-1 blockade. PD-1 transduces an inhibitory 
signal after binding its ligand; therefore, patients with 
tumors expressing PD-L1 would potentially be good 
candidates for therapy with nivolumab, pembrolizumab, 
atezolimumab and durvalumab. PD-L2, which leads to 
inhibitory signaling through PD-1 (42), is also expressed 
by tumor cells. Tumoral overexpression of PD-L2 may 
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render these cancers particularly sensitive to nivolumab 
and pembrolizumab, while anti-PD-L1 antibodies might 
fail to provide significant clinical benefit. PD-L1 and PD-
L2 status have been determined as part of several trials, and 
some data is beginning to emerge on the utility of these two 
molecules as predictive markers. A trial evaluating the use 
of PD-1 blockade in NSCLC demonstrated that patients with 
PD-L1 expressing tumors responded to treatment while 
those without PD-L1 expressing tumors did not (43). 

The picture has been complicated by subsequent studies, 
which have revealed a subset of PD-1 negative tumors 
that respond to PD-1 blockade (44). Alternative predictive 
strategies are therefore needed. Venturing beyond surface 
markers, genetic analysis of the mutational burden in 
tumors from patients with NSCLC has demonstrated 
that a high mutational load predicts a positive response to 
PD-1 blockade (45). Immunohistological characteristics 
of pre-treatment tumors in patients with melanoma have 
demonstrated that a preponderance of CD8+, PD-1+ T 
cells near or within the tumor correlates with robust T cell 
infiltration and response to anti-PD-1 therapy (46).

Augmented antigenic immunogenicity

When it comes to tumor cells, the manner of death may be 
as important as death itself when immunological activation 
is on the line. Recent insights into cellular death pathways 
have transformed the idea of a binary live/dead fate into 
interacting signal cascades influenced by cell intrinsic 
and extrinsic factors. The baseline burden of dying cells 
is estimated to be on the order of billions of events per 
day (47,48), and any defect in clearance of this material—
whether from deficiencies in complement (49), mutations 
in Fcγ receptors (50), disruption of phagocytosis (51,52), 
inability to break down DNA (53)—leads to autoimmunity. 
Insights into aberrant immune activation and the 
pathogenesis of autoimmune disease are directly responsible 
for the development of checkpoint inhibitors. The potential 
synergy between antigen load and immunological activation 
is illustrated in Figure 1. Proinflammatory cell death 
triggers the innate immune system to stimulate an adaptive 
antitumoral response while checkpoint inhibitors sustain 
that activation by preventing T cell exhaustion. 

Forms of cell death and their relative immunogenicity

Here we will describe three forms of cell death in the order 
of putative increasing immunogenicity: apoptosis, necrosis/

necroptosis, and pyroptosis. Apoptosis is an intrinsically or 
extrinsically mediated proteolytic cascade that transforms 
a dying cell into consumable packets that fall away like so 
many leaves. Dendritic cells take up the debris and present 
it to T cells. In the absence of costimulatory innate signals, 
this process promotes and maintains peripheral tolerance 
(54,55). The canonical contrast to apoptosis is necrosis, a 
disaster of cytoplasmic swelling, plasma membrane rupture, 
and organelle degradation that was originally thought 
to proceed in the absence of intracellular signaling (56). 
While there is little ambiguity in the fatal mechanical 
disruption, if necrotic death takes place over the course of 
hours, there seems to be some room for cellular preparation 
for the inevitable in the form of a signaling cascade 
dependent on RIP kinases that is known as necroptosis (57).  
Pyroptosis is a form of proinflammatory cell death in 
which pores in the plasma membrane, created by the 
activity of caspase-1, achieve membrane lysis in seconds 
and allow undegraded DNA and bioactive cytoplasmic 
enzymes to spill into the extracellular space (58). This 
form of cell death has been described in macrophages and 
other professional phagocytic cells. Our understanding of 
cellular death pathways is far from complete, and it is worth 
noting that a binary conceptualization—immunogenic or 
not—is unlikely to reflect in vivo reality. Immunogenic 
potential of tumor antigen is perhaps better described as a 
spectrum determined by the load, kinetics, and manner of 
cellular death. As we move away from morphology-based 
descriptions and toward biochemical characterization of 
cellular demise, the hope is that our ability to predict the 
relative immunogenicity of tumor antigen liberated by 
chemotherapy and radiation therapy will improve. 

Immunological impacts of chemotherapy

Chemotherapy preferentially affects rapidly dividing cells by 
inducing death or cell cycle arrest. While this is an effective 
strategy for killing tumor cells, it hampers the ability of the 
adaptive immune system to mount an effective response 
against tumor antigen. In the broadest terms, impaired 
proliferation in the presence of chemotherapy leads to 
subpar clonal selection, in turn blunting the specificity 
of the antitumoral response. Furthermore, the cytocidal 
action of chemotherapeutic agents has been primarily 
characterized as apoptotic by in vitro studies, which (given 
the caveats mentioned above) is primarily a tolerogenic 
form of cell death (59). The picture rapidly complicates 
when individual agents or classes of agents are considered, 
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with different drugs interacting to influence the immune 
system in unexpected ways. As a case in point, imatinib, 
famous for its specificity, has been shown to activate NK 
cells to produce IFN-γ in a manner that is independent 
of mutation status in KIT or PDGFRA when studied in a 
population of patients with GIST tumors. In these patients, 
IFN-γ levels correlated with prognosis, suggesting that 
imatinib-mediated activation of NK cells may be playing a 
clinically meaningful role (60,61). 

Radiation therapy as an immunomodulator

As our understanding of cellular death pathways deepens, 
we will gain additional tools to assess the role these forms 
of cell death may play in the tissue response to radiation in 
vivo. The ability of ionizing radiation to induce apoptosis 
via the creation of double strand breaks has been studied 
the most, and is reviewed elsewhere (62). We are only 
beginning to explore the roles that necroptosis, and 
pyroptosis may play. Necroptosis has been demonstrated to 
occur in an anaplastic thyroid cell line exposed to radiation 
in vitro (63), but the extent to which this occurs in vivo is as 
yet unknown. Pyroptosis occurs in macrophages in response 
to multiple signals, including adenosine triphosphate 
(ATP) (64), which has been demonstrated to be released 
from cells exposed to ionizing radiation (65). Though it 
continues to be difficult to study cellular death pathways 
within the context of a living host, one might predict that if 
radiation-induced cell death in vivo is capable of providing 
a stimulatory signal to the immune system one might see 
anti-tumor effects that occur outside the radiation field. 
Such an “abscopal”, or “away from the target”, effect was 
first described in 1953 (66). In recent years there have 
been a small number of patients who, after receiving an 
immunotherapeutic agent followed by radiation therapy, 
have had responses outside the radiation field (67-69). The 
“abscopal effect” is a putative combination of augmented 
immunological activation with augmented availability 
of antigen, which gives it a satisfying theoretical appeal. 
There is little wonder it has so captured the excitement and 
attention of the oncology community, with the hope that 
predictable, reproducible, and durable responses in at least 
a subset of patients might be achieved. 

Immunological correlates of fractionation strategies

In a murine model of melanoma it has been demonstrated 
that both single fraction and multi-fraction regimens 

increase the number of tumor-infiltrating lymphocytes 
that synthesized IFN-γ and lysed tumor cells (70). A 
subsequent series of experiments in a murine model of 
breast cancer assessed the ability of fractionated versus 
single-dose radiotherapy to activate CD8 T cells and elicit 
an anti-tumor response outside the radiation field found 
that a fractionated strategy was superior to a single dose. 
The fractionation regimen consisted of either 8 Gy × 3 
fractions or 6 Gy × 5 fractions, both of which would be 
comparable to a hypofractionated, or stereotactic body 
radiation therapy (SBRT) regimen (71). A second study 
that compared an ablative to a conventionally fractionated 
regimen in a murine model of melanoma demonstrated that 
a hypofractionated regimen was superior to a conventional 
regimen in its ability to activate CD8 T cells and trigger 
the reduction or destruction of distant metastases (72). 
These findings were supported by a study assessing tumor 
control in a murine melanoma model as a function of 
dose and fractionation. The most effective strategy was 
a hypofractionated regimen. The less robust response in 
the conventionally fractionated regimen was associated 
with an increase in regulatory T cells (73). It is tempting 
to hypothesize that cell death induced by conventional 
fractionation may be more tolerogenic than death via 
hypofractionation, but ambiguity remains. A murine 
model examining tumor-associated macrophages exposed 
to radiation therapy found that high dose radiation caused 
impaired T-cell recruitment while low dose radiation led 
to effective T cell recruitment and tumoral killing (74). A 
follow-up study demonstrated that low-dose irradiation 
converted tumor-associated macrophages back to the M1 
phenotype, which are better able to coordinate antitumoral 
T cell responses (75). 

Immunotherapy and radiation in oligometastatic 
and oligoprogressive NSCLC

Initial clinical experiences in the metastatic setting

Given that checkpoint inhibitors have yielded promising 
results in NSCLC, there has been a great deal of interest in 
combining radiation therapy and immunotherapy in these 
patients. A case report documenting an abscopal effect 
in a patient with metastatic NSCLC who was receiving 
ipilimumab demonstrated a post-treatment immunological 
response in the form of infiltrating CD8 T cells within 
an affected supraclavicular node when compared to an 
adjacent pre-treatment node removed from the same 
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site. To date there have been no prospective studies 
combining checkpoint inhibition with radiation therapy 
for lung cancer. A proof-of-principle trial assessing local 
radiotherapy in conjunction with the cytokine GM-CSF 
enrolled 41 patients with metastatic solid tumors, which 
included 18 patients with NSCLC. An abscopal response 
was defined as: “a decrease in the longest diameter of at 
least 30% in any measurable non-irradiation lesion from 
baseline”. In patients with multiple tumors outside the 
radiation field, the best response was reported. According 
to these criteria, abscopal responses occurred in four 
patients with NSCLC (68). Further studies are being 
conducted using a combined approach of radiotherapy 
and immunotherapy in the metastatic setting, and in 
coming years we should have an improved idea of the 
magnitude of benefit a combined approach may provide. 
Ongoing trials that combine immunotherapy with RT in 
metastatic NSCLC; these are listed in Table 1. The results 
of a phase Ib trial combining NHS-IL2 with radiotherapy 
in NSCLC patients who had received first-line palliative 

chemotherapy have recently been published. Thirteen 
patients were treated with varying doses of NHS-IL2. 
Though the trial was not designed to test efficacy, two 
patients achieved long-term survival, defined as >4 years 
from first chemotherapy (76). 

Immunotherapy in the oligometastatic and oligoprogressive 
settings

While the abscopal effect has inspired intense interest, 
there are other ways in which immunotherapy and radiation 
might advantageously be combined. Oligometastatic disease 
has no consensus definition but is understood to represent 
a low disease burden, with limited spread. Immunotherapy, 
if used in this setting, may enhance the efficacy of local 
control by stimulating the immune system to respond more 
robustly within the radiation field, perhaps significantly 
prolonging survival and improving quality of life by giving 
a boost to the “three Es” of immunoediting—elimination, 
equilibrium, and escape. In the oligometastatic setting, 

Table 1 Ongoing trials combining immunotherapy with radiation in NSCLC

NCT# Phase Description

Metastatic disease

NCT02318771 I Use of anti-PD-1 + RT in patients with metastatic or recurrent solid tumor

NCT02303990 I RADVAX: use of pembrolizumab + hypofractionated RT in metastatic melanoma or NSCLC 

NCT02400814 I Use of MPDL3280A (anti-PD-1) with stereotactic ablative radiotherapy in patients with stage IV NSCLC

NCT02444741 I/II Use of dose escalated ipilimumab and SBRT in patients with metastatic solid tumors

NCT02221739 II Use of ipilimumab and RT in patients with metastatic NSCLC

NCT02831933 II ENSIGN: use of SBRT and gene therapy prior to nivolumab in patients with metastatic NSCLC

NCT02658097 II Use of pembrolizumab following SBRT in patients with previously treated stage IV NSCLC

NCT02492568 II Use of pembrolizumab following SBRT in patients with previously treated stage IV NSCLC

NCT02407171 II Use of anti-PD1 MK-3475 (pembrolizumab) and stereotactic body radiotherapy in patients with metastatic 
melanoma or NSCLC

Oligometastatic/oligoprogressive disease

NCT02621398 I Use of pembrolizumab with chemoradiation in stage II/III NSCLC

NCT00828009 II Use of bevacizumab and BLP25 vaccine in patients with stage III SNCLC who have received chemoradiation

NCT02434081 II NiCOLAS: use of nivolumab consolidation after standard first line chemoradiation in locally advanced NSCLC

NCT02125461 III PACIFIC: use of anti-PD1 MEDI4736 (AstraZeneca) following chemoradiation in patients with unresectable 
stage III NSCLC 

NCT02768558 III RTOG 3505: use of chemoradiation with adjuvant nivolumab in patients with locally advanced NSCLC

NSCLC, non-small cell lung cancer; PD-1, programmed death 1; SBRT, stereotactic body radiation therapy.
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the first line use of radiation and immunotherapy may 
increase the magnitude of the initial round of tumoral 
elimination and prolong and enhance the amount of time 
the immune system is able to keep growth in check during 
the equilibrium phase. The combination of radiation and 
immunotherapy may also have a role in the oligoprogressive 
state where most sites of disease are responding to therapy 
but one or two continue to progress. It may be that the 
combined approach of immunotherapy and radiation 
directed at the progressing site is capable of preventing or 
slowing disease escape. 

Ongoing trials and future efforts

Subgroup analyses of large trials have indicated a potential 
synergy between immunotherapy and select groups of 
patients who had received radiation therapy. In particular, 
the START trial, which examined the MUC1 liposomal 
vaccine, showed no significant difference between vaccine 
versus placebo, but a subgroup of patients who received 
concurrent radiation therapy did show a statistically 
significant benefit (77). Perhaps most promising are the 
trials combining checkpoint inhibitors with radiation 
therapy. The Phase III double-blinded PACIFIC trial 
is evaluating maintenance therapy with an anti-PD-1 
agent MEDI4736 versus placebo in patients with stage 
III NSCLC (NCT02125461). We have provided a list 
of other ongoing trials in Table 1. Further inquiries into 
the safety and efficacy of combined immunotherapy and 
radiation therapy in NSCLC are needed, but based on the 
immunological principles and data reviewed above, there 
may be certain trajectories that are more fruitful than 
others. As future trials unfold, the following approaches may 
be of particularly high yield: (I) prospective investigation 
into combination therapy should include a gross evaluation 
of basic immunologic competence, including a quantitative 
assessment of circulating cellular compartments in the 
peripheral blood with a particular focus on the CD4 and 
CD8 T cell compartments, as the ability to mount an 
effective immune response may be at least correlative if not 
causative in the efficacy of any immunomodulatory agent; 
(II) investigation into the biomarkers PD-L1 and PD-L2 
should continue, with tumoral expression of these ligands 
determined for patients receiving anti-PD-1 therapy; (III) 
given the lack of clarity regarding the immunological 
benefits of conventional versus hypofractionation, these two 
strategies should be prospectively compared in the presence 

of immunomodulatory agents.

Concluding remarks

The potential synergy of immunotherapy and radiation 
therapy has begun to blur the boundaries between 
systemic and local control. As synthesized in Figure 1, 
radiation releases and alters antigen as targeted tissue dies, 
influencing immunogenicity in ways we are only beginning 
to characterize, comprehend, and predict. The innate and 
adaptive immune systems work together to mount responses 
against tumor cells, aided by immunotherapeutic agents 
that provide stimulatory signals or circumvent checkpoints 
that prevent sustained T cell activation. Activated T cells 
act systemically, but also may play a potentially important 
role in augmenting radiation-induced local control in the 
oligometastatic or oligoprogressive setting. The confluence 
of basic science advances in immunology, radiobiology, and 
oncology have made this a particularly promising time for 
translational research. Anton Chekhov, one of the earliest 
physicians to point out the connection between infection 
and spontaneous cancer remission, said also: “If you say in 
the first chapter that there is a rifle hanging on the wall, in 
the second or third chapter it absolutely must go off.” This 
dictum is known as “Chekov’s Gun,” and is meant to be a 
tool of narrative fiction. But if immunotherapy is that rifle, 
we have been looking at it for a long time. 
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