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Introduction

Lung cancer is one of the most aggressive human cancers 
worldwide, with a 5-year overall survival of 10–15%, 
showing no significant improvement over the last three 
decades (1,2). In total, 87% of lung cancers are diagnosed 
with non-small cell lung carcinoma (NSCLC), which 
includes adenocarcinoma, squamous cell carcinoma, and 
large cell carcinoma histological types. Lung cancers are 
classified according to molecular subtypes, predicated on 
particular genetic alterations that drive and maintain lung 
tumorigenesis (3). Such driver mutations, and the associated 
constitutively active mutant signaling proteins, are critical 
to tumor cell survival, leading to the development of novel 
targeted therapies (4). Currently, the standard of care for 

unresectable NSCLC tumors is concurrent chemoradiation 
that showed more than half treatment failing locally (5). 
Recent evidence suggests that pre- and post-treatment 
anatomical or functional/molecular imaging information 
could be used to tailor treatment type and intensity, and 
predict treatment outcomes in radiotherapy. For instance, 
changes in tumor volume on computed tomography 
(CT) have been used to predict radiotherapy response in 
NSCLC patients (6,7). Functional/molecular imaging, 
in particular positron emission tomography (PET) 
with 18F-fludeoxyglucose (FDG), has received special 
attention as a potential prognostic factor for predicting 
radiotherapy efficacy (8), and has been shown to be useful 
for the delineation of radiation targets of stage III NSCLC 
(9,10). For instance, the prognostic value of pre- and mid-
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radiotherapy FDG-PET/CT metrics was examined for 
77 patients with stage III NSCLC treated with modestly 
intensified radiation dose (median radiation dose of  
66 Gy) (11). Some pre- and mid-radiotherapy PET metrics 
were found prognostic of the local recurrence and regional/
distant recurrence, but not on the overall survival.

Advances in delivery and imaging technologies put a 
step forward into a new era of image-guided and adaptive 
radiotherapy (IGART), which has witnessed burgeoning 
interest in applying different imaging modalities, both to 
define the target volume and to predict treatment response. 
In modern IGART, there is a strong interest for using 
multimodal imaging in tumor staging and optimizing the 
treatment planning of different cancer types (12). The goal 
is to achieve improved target definition by incorporating 
complementary anatomical information [CT, magnetic 
resonance (MR), ultrasound, etc.] coupled with an improved 
disease characterization and localization using functional and 
molecular imaging (PET, functional MR, etc.). Recently, 
a dose-escalation adaptive treatment target volume to the 
responding tumor defined on mid-treatment FDG-PET 
demonstrated great promise to deliver high-dose radiation 
(up to a total dose of 86 Gy) to the more aggressive areas of 
locally stage I-III NSCLC tumors with a reasonable rate of 
radiotherapy-induced toxicity (13). This clinical trial of 42 
patients achieved its primary goal to improve 2-year local-
regional tumor control rates, with an infield tumor control 
rate of 82% and overall tumor control rate of 62%, and a 
5-year overall survival rate of 30% (13). Moreover, using mid-
radiotherapy FDG-PET/CT on stage III NSCLC patients, 
it was found that without high-dose radiation escalation, the 
2-year cumulative incidence of local recurrence was about 
24% (11), while the RTOG 0617 rate was around 34% (14).

In radiation oncology, information from imaging data 
has been related to treatment endpoints, although extracting 
relevant features to a particular task remains challenging and 
not fully explored. The problem could be addressed according 
to an engineering ‘pattern recognition’ approach, as previously 
proposed (15), which requires understanding of the clinical 
endpoint and the characteristics of the imaging modality. 
This process of extraction of quantitative information from 
anatomical/molecular images with their corresponding 
biological information and clinical endpoints is a new emerging 
field referred to as ‘radiomics’ (16,17). Radiomics could be 
thought of as consisting of two main steps: (I) extraction 
of quantitative imaging static and dynamic features from a 
previously defined tumor region; and (II) the imaging features 
or traits are then incorporated into mathematical models for 

treatment outcome prediction that is aimed at providing added 
value for personalizing of treatment regimens in comparison 
with commonly used clinical predictors.

NSCLC has been on the forefront of radiomics studies, 
including CT-based radiomic signature consisting of 
three features shown to predict distant metastasis in lung 
adenocarcinoma (18). Histological subtype (adenocarcinoma 
or squamous cell carcinoma) were predicted with features 
extracted from pretreatment CT images using the Relief 
feature selection method and a Naïve Bayes’ classifier with 
an AUC of 0.72 for tumor histology (19). A combination of 
image radiomics and clinical factors improved prediction 
of disease-free survival (20). The combination of PET/
CT was shown to predict local control (21). Changes in 
radiomics features (delta-radiomics) was shown to predict 
NSCLC outcomes (22). A general review of radiomics 
in radiotherapy is provided by Avanzo et al. (23). In the 
following, we provide a description of the mechanics 
involved for conducting radiomics analysis in lung cancer 
using single and/or multi-modality imaging data.

Methods

Image segmentation

Medical image segmentation is a process to separate 
structures of interest in an image from its background or 
other neighboring structures. It is a necessary prerequisite 
step for many medical imaging applications including 
radiomics. There are several commercial and academic 
software tools that support different segmentation 
algorithms. In general, commercial software packages have 
better implementations with a user-friendly interface for 
manual and semi-automatic segmentation methods, but 
often lag behind the latest developments in the field. In 
contrast, academic software packages, such as ITK (24), 
BioImage Suite (25), MIPAV (26), and ImageJ (27), 3D 
slicer (28) may tend to be oriented towards single-modality 
applications and less friendly in handling multimodality 
images as sometimes may be required. These algorithms 
go under different categories. For instance, Pham and 
coworkers divided segmentation algorithms into eight 
different categories: thresholding, region growing, 
classifiers, clustering, Markov random field models, 
artificial neural networks, deformable models and atlas-
guided approaches (29). Among the most robust image 
segmentation are based on deformable models (snakes or 
level sets), which are geometric representations of curves 
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or surfaces that are defined explicitly or implicitly in the 
imaging domain. These models move under the influence 
of internal forces (contour curvature) and external forces 
(image boundary constraints) (30,31). An example showing 
joint segmentation of PET/CT in lung cancer is shown in 
Figure 1 using a multi-valued level set algorithm (32).

Image features extraction

The features extracted from images could be divided into 
static (snapshot of enhancement at one point in time) and 
dynamic (time variant) features according to the acquisition 
protocol at the time of scanning, and into pre- or intra-
treatment features according to the scanning time point (33).  
The static features are based on intensity,  object 
morphology, and texture as presented in our previous 

work on pattern recognition analysis in PET images (15) 
or our similarity learning in content-based retrieval from 
mammogram databases (34,35). The dynamic features are 
extracted from time-varying acquisitions such as dynamic 
PET, SPECT or MR. These features are based on kinetic 
analysis using tissue compartment models and parameters 
related to transport and binding rates (36).

Static image features

Several static image features can be applied to radiomics 
studies.

Standard uptake value (SUV) descriptors of PET
The radiotracer intensity values are extracted PET images 
and are converted into SUVs with statistical descriptors such 
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Figure 1 Joint estimation of lung PET/CT target/disease volume. (A) A fused PET/CT displayed in CERR with manual contouring shown 
of the subject’s right gross tumor volume. The contouring was performed separately for CT (in orange), PET (in green), and fused PET/CT 
(in red) images; (B) the MVLS algorithm was initialized with a circle (in white) of 9.8 mm diameter, evolved contour is steps of 10 iterations 
(in black), and the final estimated contour (in thick red). The algorithm converged in 120 iterations in few seconds. The PET/CT ratio 
weighting was selected as 1:1.65; (C) MVLS results is shown along with manual contour results on the fused PET/CT. Note the agreement 
of the fused PET/CT manual contour and MVLS (dice =0.87); (D) MVLS contour superimposed on CT (top) and PET (bottom) separately. 
PET, positron emission tomography; CT, computed tomography; CERR, computational environment for radiotherapy research; MVLS, 
multivalued level set.



638

© Translational lung cancer research. All rights reserved. Transl Lung Cancer Res 2017;6(6):635-647tlcr.amegroups.com

Constanzo et al. Radiomics in precision medicine for lung cancer

as maximum, minimum, mean, standard deviation (SD), and 
coefficient of variation (CV). SUV is a standard method in 
PET image quantitative analysis (37), and similarly for CT 
analogous metrics could be derived from the Hounsfield 
units (HU) or summarizing intensity statistics in case of MRI.

Intensity volume histogram (IVH)
The IVH is defined in analogous fashion to the dose volume 
histogram (DVH): each point on the IVH defines the 
absolute or relative volume of that structure that exceeds a 
variable intensity threshold as a percentage of the maximum 
intensity. The IVH is thus intended to play the same role 
of as the DVH in reducing complicated 3D data into a 
single easier histogram to interpret. This method would 
allow for extracting several metrics from functional images 
for outcome analysis such as Ix (minimum intensity to x% 
highest intensity volume), Vx (percentage volume having at 
least x% intensity value), and descriptive statistics (mean, 
minimum, maximum, standard deviation, etc.).

Texture features
There are several types of texture features that have already 
been used in different studies, such as texture features using 
gray-level co-occurrence matrices (GLCM), neighborhood 
gray-tone difference matrices (NGTDM), gray-level 
run length matrices (GLRLM), and gray-level size zone 
matrices (GLSZM), or Laws energy measures (38,39). Here, 
we briefly describe the GLCM features, which is among the 
most commonly used textures as an example. The matrix 
representing the number of times that defined intensity 
levels (indexed by i and j) occur between neighboring 
voxels in the entire 3D image. Mathematically, this can be 
viewed as an extension of the second-order joint conditional 
probability density function of a given texture image. For an 
image with M intensity bins, the co-occurrence matrix size 
is M×M. The M levels are obtained by applying an image 
quantization method to limit the size of the matrix. Typical 
values for M are selected in powers of 2 (8, 16, 32, 64, etc.). 

It should be emphasized that these metrics are independent 
of tumor position, orientation, size, and brightness, and 
take into account the local intensity-spatial distribution 
(40,41). This is a crucial advantage over direct (first-order) 
histogram metrics (e.g., mean and standard deviation), 
which only measures intensity variability independent of the 
spatial distribution in the tumor microenvironment.

Dynamic image features

In order to quantify a contrast agent or a tracer dynamic 
behavior in a neighborhood (which can be one or more 
voxels) basis, compartment modeling approaches are 
typically used in dynamic imaging acquisitions (36). 
As an example, we briefly review the characteristics of 
compartment models used for FDG-PET and similar 
principles are applied in cases of dynamic CT or MRI.

Kinetic model for FDG (36). A 3-compartment model is 
used to depict the trapping of FDG-6-Phosphate (FDG6P) 
in tumor. In Figure 2, Cb(t) denotes the input function; C1(t) 
the concentration of un-phosphorylated FDG; and C2(t) 
the concentration of FDG-6-Phosphate. The bi-directional 
transport across the membrane via GLUTs is represented 
by the rate-constants K1 and k2, the phosphorylation of 
FDG is denoted by k3 while the action of G6-phophatase 
is represented with rate constant k4. We will start the 
analysis assuming k4=0, but we will explore non-zero k4. 
Using estimates of compartmental modeling, measures 
of FDG uptake rate (K) will be evaluated by the relation  
KFDG = K1*k3 /(k2+k3) We expect that statistical properties of 
the neighborhood K values to be predictive of local control.

Multi-metric modeling of response

In the context of data-driven outcomes modeling, the 
observed treatment outcome is considered to be caused 
by multiple dosimetric, clinical, and biological input  
variables (42). Outcomes in radiation oncology are generally 
characterized by two metrics: tumor control probability 
(TCP) and the surrounding normal tissue complication 
probability (NTCP) (43,44). Before outcomes modeling, 
features selection will be used to find the best subset of 
features for the models. There are principally three types 
of techniques existing for the feature selection task: filter 
method, wrapper method and embedded method (45). 
Filter-based method is an information-based method that 
is computationally efficient, including mutual information, 
correlation-based and relief method. The wrapper method 

Cb(t) C1(t) C2(t)
K1

K3

K4

K2

Figure 2 General compartmental model depicting the FDG in 
tumor.
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uses the prediction performance of a classifier to assess the 
importance of the features, while the embedded method 
implements the selection of features in the process of the 
training. With the optimized chosen feature, a data-driven 
model can be build such as classical logistic regression 
approaches or more advanced machine learning techniques.

For  more  deta i l s  about  outcome model ing  in 
radiotherapy, the reader can refer to our previous work (46) 
and to the dose-response explorer system (DREES) that is a 
dedicated software tool for this purpose (47). Below, we will 
show examples using standard logistic regression and more 
advanced machine learning.

Outcome modeling by logistic regression

Logis t i c  model ing  i s  a  common tool  for  mul t i -
metric modeling. In our previous work (42,48), a logit 
transformation was used:

( )
( )

( ) , 1,...,
1

i

i

g x

i g x

ef x i n
e

= =
+

[1]

where n is the number of cases (patients), xi is a vector of the 
input variable values (i.e., image features) used to predict f (xi) 
for outcome yi (i.e., TCP or NTCP) of the ith.

( )
1

, 1,..., , 1,...,
d

i j ij
j

g x x i n j dβ β
−

= + = =∑ [2]

where d is the number of model variables and the ß's are 
the set of model coefficients determined by maximizing the 
probability that the data gave rise to the observations. The 
number of parameters can be determined from the feature 
selection approach or by incorporating all features and 
applying shrinkage methods such as LASSO (49).

Outcome modeling by machine learning

Machine learning represents a wide class of artificial 
intelligence techniques [e.g., neural networks, decision 
trees, support vector machines (SVM)], which are able 
to emulate living beings’ intelligence by learning the 
surrounding environment from the given input data. 
Basically SVM [see for e.g. (50)] and neural networks are 
both based on supervised learning that is typically used 
in image-based outcome modeling, aiming at estimating 
an unknown (input, output) mapping from known (input, 
output) samples. These methods are increasingly being 
utilized in radiation oncology because of their ability to 
detect nonlinear patterns in the data (51). In particular, 
neural networks were extensively investigated to model 
post-radiation treatment outcomes for cases of lung injury 
(52,53). Learning is defined in this context as estimating 
dependencies from data (54).

From data with input and labels yi, D = {(xi, yi) ∈ Rn × 
C | i =1,2,3,...N} of N total samples, a function f:Rn → C 
can be found, such that f(xi) ≅ yi for each sample i. Two 
types of algorithm can be encountered: classification, when 
the target set C is discretized or regression when C =R. 
For instance, taking a binary classification (e.g. low/high  
risk of tumor failure) represented by C ={1,-1}, SVM 
would seek for a developing hyperplane in some higher 
dimension such that the data points are separated with 
the maximal margin according to their labels (Figure 3A).  
Mathematically, SVM is then described by an optimization 
problem:

Maxw,b,rr
with,

‖w‖ =1 and (〈w, xi〉 +b)·yi ≥ r,i =1,2,…,N

SVMA
Input layer

Input #1

Input #2

Input #3

Input #4

Hidden layer Output layer

Output

Neural networkB

Figure 3 Difference between SVM (A) and neural network (B) modelling. SVM, support vector machine.
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where r ∈ R,w ∈ Rn and yi = {1, -1} are variables to 
be optimized. Essentially, the objective function r is the 
maximal margin to be found, and the constraints impose 
the lower bound of each datapoint (xi, yi) to the decision 
boundary to be greater than r at least. Thus, the optimal 
weights (w, b) uniquely determine a SVM binary classifier:

( ) ( ),SVMf x g w x b= + [3]

where, the indicator function  is defined by

( )
1, 0
1, 0

z
g z

z
− < 

=  ≥ 

On the other hand, neural network constructs a nonlinear 
function using self-iterations in sets of matrix (weights) 

( ) ( ){ }1,2,3,...l l
jkW W l= =  and vectors (bias) ( ) ( ){ }1,2,3,...l l

mb b l= =  
such that,

( ) ( ) ( )( ) ( )( )1 1 22
NNf x W W x b bσ σ= ⋅⋅⋅ ⋅ ⋅ + + ⋅⋅⋅ [4]

where,  is a designated nonlinear function called 
activation, which plays an important part in neural network. 
From (d), the sets of weights and bias uniquely determine 
a neural network function fNN, and the nonlinearity is 
understood to stem solely from the activation functions . 
Also, here “W(1),W(2),…” denote the matrix form of weights 
and similar for the bias vectors “b(1),b(2),…”. The index  
l= 1,2,3,… indicating the depth in weights and bias are 
called layers (Figure 3B). A shallow network (small number 
of layers) can represent a very complex function as long as 
the number of neurons is sufficiently large, and the deeper 
in layer, the more complex functions neural network can 
represent. Under the supervision, i.e., imposing fNN(xi) ≅ yi, 
it then gives the best weights and bias ( ) ( ){ }* *, 1, 2,3,...l lW b l =  
to be utilized.

Among all the machine learning techniques, the deep 
neural network has recently showed impressive performance in 
a variety of biomedical problems, such as patient classification, 
treatment planning, and biological process understanding. 
These methods do not require explicit extraction of features 
as discussed above. For instance, Kuruvilla et al. presented 
lung cancer classification using static features extracted from 
segmented lung with feedforward and feedforward backward 
propagation network (55). They used thirteen training 
functions (back propagation neural networks) for classification, 
as previously proposed by Paulin et al. (56). This method 
allowed to find tumor classification with an accuracy of 93.3%, 
a specificity of 100% and a sensitivity of 91.4% (55). In 
addition, Kumar et al. proposed to use deep features extracted 

in CT images from an autoencoder, which is based on neural 
networks to “encode” the data to a latent space, along with a 
binary decision tree (e.g., malignant vs. benign) as a classifier 
for lung cancer classification (57). On the output layer, a 
“decoding” transformation is used for data reconstruction to 
obtain learned features that are extracted and implemented to 
the trained classifier.

Examples of radiomics application in lung cancer

Modeling of patients’ survival from CT imaging

Aerts et al. (58) built a radiomic signature consisting of a 
combination of four features, ‘Statistics Energy’ describing 
the overall density of the tumor, ‘Shape Compactness’ 
quantifying how compact the tumor shape is, ‘Gray Level 
Nonuniformity’ a measure for heterogeneity and wavelet ‘Gray 
Level Nonuniformity HLH’, also describing intra-tumor 
heterogeneity after decomposing the image in mid-frequencies. 
The signature was obtained by selecting the most stable features 
using the RIDER dataset, and then trained on a set of 422 lung 
cancer patients for the prediction of survival. The signature, 
assessed on an independent lung dataset, was predictive for 
survival with a c-index (CI) of 0.65, and was successfully tested 
on cohorts of different cancer types (lung, head and neck cancer) 
thus demonstrating the translational capability of radiomics 
across different cancers. In the same study, gene expression of 
89 patients from a lung cancer cohort was measured for 21,766 
genes, and revealed significant associations between the radiomic 
features and gene-expression patterns.

Modeling of patient survival using PET imaging

Ohri el al. (59) have recently published a radiomics model 
from a multi-center data of 201 patients. Using the LASSO 
procedure, they identified 1 textural feature calculated from 
GLCM, SumMean, as an independent predictor of overall 
survival that complement volume [metabolic tumor volume 
(MTV)] in decision tree. The optimal cutpoint for the MTV 
was found to 93.3 cm3, and the optimal SumMean cutpoint for 
tumors above 93.3 cm3 in the decision tree was 0.018 (Figure 4).

Modeling of tumor response using PET/CT

There is an inherent advantage of combining imaging 
information from multiple modalities such as PET/CT or 
PET/MRI. In a retrospective study of 30 NSCLC patients (33), 
thirty features were extracted from both PET and CT images 
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with and without motion-correction as shown in Figure 5. The 
features included tumor volume; SUV/HU measurements, such 
as mean, minimum, maximum, and the standard deviation; IVH 
metrics; and texture based features such as energy, contrast, 
local homogeneity, and entropy. The data corrected for motion 
artifacts based on a population-averaged probability spread 
function (PSF) using de-convolution methods derived from four 
4D-CT data sets (60). An example of such features in this case 
is shown in Figure 5. Then, these features can be implemented 
in the DREES software (Figure 6) to predict local failure (21),  
which consisted of a model of 2-parameters from features 
from both PET and CT based on IVHs provided the best 
performance.

Radiogenomics example

In addition to relating imaging information to clinical 
endpoints, it could be also related to biological and genotypic 
molecular signatures. The identification of patients with 

presence of mutations of epidermal growth factor receptor 
(EGFR) in NSCLC is of great interest as they may respond 
to EGFR-targeted drugs and molecular methods used to 
detect EGFR mutations are expensive. Radiomic feature 
Laws-Energy on the pretreatment CT scan was significantly 
predictive for EGFR-mutation status. A radiomic model for 
identification of EGFR mutant status from tumor segmented 
semi-automatically on CT using seed-based region growing 
method was developed through multiple logistic regression 
and pairwise selection with moderate predictive power 
(AUC, 0.647; 95% confidence interval: 0.576–0.701). The 
model improved the AUC to 0.709 by including also clinical 
variables (61). An example is shown in Figure 7. Gene fusion 
have been become of clinical interest as fusion-positive 
patients may benefit by targeted drugs.

Discussion

The use of imaging in outcome modeling of radiotherapy 
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Figure 4 Modeling of patient survival using PET imaging. (A) PET images from two sample patients whose tumors had similar 
metabolic tumor volume and SUVmax and similar appearances, but had disparate SumMean values. Both tumors were scored as markedly 
heterogeneous based on visual examination. Survival time for the patient in the upper panel was 15.5 months, compared to 47.8 months for 
the patient in the lower panel; (B) conditional inference tree for the combination of metabolic tumor volume and SumMean as predictors 
of overall survival (top), and corresponding Kaplan-Meier curves for overall survival for the three groups resulting from the tree-defined 
cutpoints (bottom). PET, positron emission tomography; SUV, standard uptake value.
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response has witnessed rapid increase in recent years 
adding more value to already existing use of imaging in 
cancer treatment in general and radiotherapy in particular. 
However, there are several issues that are currently limiting 
its rapid progression. It is well recognized that image 
acquisition protocols may impact the reproducibility of 
extracted features from image modalities, which may 
consequently impact the robustness and stability of these 

features for treatment prediction. This includes static 
features such as SUV/HU/MRI descriptors and texture 
features. Interestingly, texture-based features were shown 
to have a reproducibility similar to or better than that of 
simple SUV descriptors (62). This demands protocols 
for standardized acquisition. In addition, factors that may 
impact the stability of these features also include signal-to-
noise ratio (SNR), partial volume effect, motion artifacts, 

Figure 5 Pre-treatment PET/CT image of a NSCLC patient who failed locally. (A) PET/CT overlaid image in our research treatment 
planning system, CERR. IVHs of (B) CT and (C) PET, respectively. (D) and (E) are the texture maps of the corresponding region of interest 
for CT (intensity bins equal 100 HU) and PET (intensity bins equal 1 unit of SUV), respectively. Note the variability between CT and PET 
features: the PET IVH and co-occurrence matrices show much greater heterogeneity for this patient. Importantly, patients vary widely 
in the amount of PET and CT gross disease image heterogeneity between patients. PET, positron emission tomography; CT, computed 
tomography; NSCLC, non-small cell lung carcinoma; CERR, computational environment for radiotherapy research; IVH, intensity volume 
histogram; HU, Hounsfield unit; SUV, standard uptake value.
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parameter settings, resampling size, and image quantization 
(15,63). Indeed, a 3D (static) PET may fail to provide 
accurate position, volume, and absorbed activity distribution 
for a mobile tumor. Conventional (3D) PET/CT was 
compared to respiratory-gated (4D) PET/CT PET to assess 
the impact of respiratory motion in the variability of features 
extracted in phantoms (64) and in lung cancer patient (65). 
An inconsistency of long axis length between 3D images and 
4D images at inhale/exhale, indicated that tumor shape and 
rotation varied between phases (65). Nevertheless, advances 
in hardware and software technologies will further facilitate 
wider application of advanced image processing techniques 
to medical imaging to achieve better clinical results. For 
instance, pre-processing methods such as denoising and 
deconvolution methods already help in mitigating such 
artifacts (66,67), however, more advanced image restoration 
methods based on nonlocality and sparsity may be more 

fruitful (68). Outcome modeling using logistic regression 
has become a de facto standard, however, more advanced 
modeling techniques such machine learning may provide 
further predictive power particularly when dealing with 
more complex and nonlinear relationships among features 
and between clinical outcomes. We believe that the synergy 
between image analysis and machine learning (51) could 
provide powerful tools to strengthen and further the 
utilization of image-based outcome modeling in clinical 
practice towards improved clinical decision making and 
personalized medicine in the future.

Conclusions

In this review, we have presented an overview of possible 
applications of radiomics in lung cancer, ranging from basic 
image segmentation, outcome modeling, to deciphering 

Figure 6 Image-based modeling of local failure from PET/CT features. (A) Model order selection using leave-one-out cross-validation; (B) 
most frequent model selection using bootstrap analysis where the y-axis represents the model selection frequency on resampled bootstrapped 
samples; (C) plot of local failure probability as a function of patients binned into equal-size groups showing the model prediction of 
treatment failure risk and the original data [reproduced with permission from Vaidya et al., 2012 (21)]. PET, positron emission tomography; 
CT, computed tomography.
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genetic signatures. As the role of imaging continue to 
increase in lung cancer management, radiomics will 
follow suit. However, it is recognized that this field is 
still in its infancy with challenges such as image protocol 
standardization to breathing motion artifacts that may 
limit its reproducibility and possible use in clinical trials 
currently. Nevertheless, concerted effort by the research 
and the clinical community is aiming to mitigate these 
challenges and benefit from the potentials of radiomics in 

personalized precision medicine.
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Figure 7 Example images of a patient with EGFR mutation and without WT at baseline and follow-up scan. EGFR, epidermal growth 
factor receptor; WT, wild-type.
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