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KRAS mutant NSCLC cells require active nuclear export of 
Iκβα (also known as NFKBIA), a negative regulatory protein 
of NF-κB signaling, for maintaining survival signaling (1-3).  
Nuclear export receptor XPO1 correlates with KRAS 
mutation status. Sensitivity to XPO1 inhibitors (KPT-330 
or Selinexor) is associated with apoptosis in KRAS mutant 
cell lines. In contrast, chemical inhibition of mitogen-
activated protein kinase kinase (also known as MEK) has 
little consequence on cell viability (1). XPO1 inhibitors 
induce the nuclear accumulation of Iκβα in a broad panel of 
tested cell lines, indicating that selective sensitivity is related 
to inhibition of NF-κB signaling (4). Jänne et al. (5) carried 
out the phase 3 Selumetinib Evaluation as Combination 
Therapy (SELECT-1) trial which assessed second line 
selumetinib plus docetaxel for patients with KRAS mutant, 
metastatic NSCLC versus placebo plus docetaxel. The 
SELECT-1 trial did not improve progression free survival 
(PFS) or overall survival (OS). Median PFS was 3.9 months 
in the selumetinib plus docetaxel group and 2.8 months 
in the placebo plus docetaxel group. Median OS was  
8.7 months in the selumetinib plus docetaxel group 
versus 7.9 months in the placebo plus docetaxel group. 
The Jänne et al. study highlights many aspects of the 
difficulties in treating KRAS mutant NSCLC patients. 
The meager effect of selumetinib as a MEK inhibitor 
should be revisited based upon the abundant information 
reaped from the study to move forward from bench to bed. 
Undeniably, there are multiple approaches. Firstly, KRAS 

protein induced XPO1-dependent activation of NF-κB  
signaling in NSCLC cells (1) should be explored. This 
activation is not required for wild-type tumor NSCLC lines 
and XPO1 inhibitors warrant testing in the clinical setting. 
Noteworthy is the fact that FSTL5 mutations found in 
KRAS mutant cell lines were resistant to XPO1 inhibitors. 
Somatic mutations in FSTL5 are found in 10% of lung 
adenocarcinomas. FSTL5 depletion produces sensitivity 
to XPO1 inhibitors in KRAS mutant, FSTL5 wild-type 
NSCLC cell lines. Notably, FSTL5 depletion induces 
YAP1 activation, akin to that induced upon depletion 
of the LATS1 and LATS2 tumor suppressor genes (1). 
There is strong evidence between the FSTL5 mutation 
status and YAP1 protein accumulation. Intriguingly, 
we show that an increase in YAP1 in BRAF and KRAS 
mutant NSCLC tumors is a biomarker predicting worse 
response to RAF and MEK inhibition in patients (6). 
Secondly, it has been reported that the IκB kinase (IKK)-
related kinases TANK-binding kinase-1 (TBK1) and IKKε 
promote KRAS driven activity by regulating interleukin 
(IL)-6 and identify CYT387 as a potent JAK/TBK1/IKKε 
inhibitor (7). Thirdly, MEK inhibitors are clinically active 
in BRAFv600E mutant melanomas, but only marginally active in 
KRAS mutant tumors. MEK inhibitors induce RAF-MEK 
complexes in KRAS mutant models and disrupting such 
complexes enhanced inhibition of RAF proto-oncogene 
serine/threonine-protein kinase (CRAF)—dependent 
extracellular signal-regulated kinase (ERK) signaling (8). 
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In fact, ablation of CRAF expression induces regression of 
KRAS-Trp53 mutant lung tumors (9). The combination of 
sorafenib [a multi-kinase inhibitor that targets both, CRAF 
and BRAF, as well as vascular endothelial growth factor 
receptor (VEGFR)] and aspirin in KRAS mutant NSCLC 
cells produces a significant reduction of cell proliferation 
within 72 hours in A549 and H358 cells by simultaneously 
effecting two independent pathways when the tumor cells 
were sensitive to single agents, sorafenib and aspirin (10). 
Although trametinib is superior to other MEK inhibitors 
since it impairs feedback reactivation of ERK, it activates 
multiple signaling pathways, reflecting a relief in feedback 
mechanisms produced by hyperactive KRAS signaling in 
KRAS mutant NSCLC cells (11,12). Trametinib, as other 
MEK inhibitors, activates signal transducer and activator 
of transcription 3 (STAT3), as well as several receptor 
tyrosine kinases (RTKs), including fibroblast growth 
factor receptor 1 (FGFR1) and the FGFR adaptor protein, 
fibroblast growth factor receptor substrate 2 (FRS2) (11,13). 
The sensitivity to the combination of trametinib and 
FGFR inhibition (ponatinib) correlates with the degree 
of FRS2 phosphorylation after trametinib treatment (11).  
Intriguingly, in combination with trametinib, afatinib 
shows activity in KRAS mutant NSCLC lines (11) in 
accordance with other findings that epithelial KRAS mutant 
NSCLC cell lines overexpress ERBB3 and are sensitive to 
the combination of afatinib plus a MEK inhibitor, while 
mesenchymal KRAS mutant NSCLC cell lines following 
MEK inhibition overexpress FGFR1 and FRS2, and, 
henceforth, are sensitive to the combination of a MEK 
inhibitor plus an FGFR inhibitor (NVP-BGJ398) (14).  
The fact that activation of YAP1 stimulates secretion of 
FGF ligands and expression of FGFR in ovarian cancer 
is significant (15). Different lines of evidence show that, 
following MEK inhibition, there could be overexpression of 
other RTKs, like MET and AXL, as well as overactivation of 
Src-YAP1-NOTCH-HES1, in addition to STAT3 (16,17). 
AXL overexpression has been a trait of KRAS mutant 
cell lines with mesenchymal features responding to the 
combination of erlotinib and an AXL inhibitor (18), or the 
combination of the AXL inhibitor, TP0903, plus a PARP 
inhibitor (olaparib) (19). Inhibition of AXL directly reverts 
the epithelial-mesenchymal transition (EMT) phenotype 
and leads to decreased expression of DNA repair genes, 
diminishing homologous recombination proficiency (19).  
The combination of a WEE1 inhibitor with an MTOR 
inhibitor has been reported in mutant KRAS NSCLC 
tumors (20). The combination of MEK inhibitors with Src 

inhibitors could be of great interest, since a transmembrane 
protein, CUB domain-containing proteins (CDCP1), 
is required for the functional link between RAS and Src 
signaling. Most KRAS mutant NSCLC tumors overexpress 
CDCP1 (21). CDCP1 can also interact with and activate 
all Src-family kinase (SFK) members, such as, YES and 
LYN (17,22). At least 21% of c NSCLCs show significant 
integrin β3 (ITGB3) mRNA expression and targeting 
galectin-3 could be a novel strategy for such KRAS mutant 
tumors addicted to integrin αvβ3/galectin-3 (GCS-100) (23).

Loss of function of MutT homolog 1 (MTH1), a 
nucleotide pool sanitizing enzyme, impairs growth of KRAS 
mutant tumor cells. Overexpression of MTH1 mRNA levels 
has been shown to be a prognostic factor, documented in lung 
cancer and renal cell carcinoma, and MTH1 inhibitors are 
in development. It was found that (S)-crizotinib efficiently 
inhibited colony formation of KRAS mutated cells, like an 
MTH1 inhibitor (SCH51344). (S)-crizotinib is less potent 
than the (R)-enantiomer against the established anaplastic 
lymphoma kinase (ALK), MET and ROS1 (24).

Justilien and Fields describe the relevance of protein 
kinase Cι (PKCι) in KRAS mutant NSCLC, activating 
a RAC1-PAK-MEK1,2-ERK1,2 signaling pathway and 
show that epithelial cell transforming sequence 2 (Ect2), a 
guanine nucleotide exchange factor for Rho family GTPases 
is amplified and overexpressed with PKCι in NSCLC 
tumors (25). Justilien has also proven relevant that Ect2 is 
required for KRAS-Trp53 lung tumorigenesis (26), as well 
as the fact that PKCι activates NOTCH3 signaling (27).  
The studies of Justilien and Fields demonstrate that 
auranofin (a PKCι inhibitor) could be cardinal for  
treatment (28) and combinations of auranofin with PAK 
inhibitors deserve further testing (16) (Figure 1).

Finally, KEAP1 mutations are frequent in NSCLC, with 
KRAS mutant NSCLC accounting for 20%. The KEAP1 
gene encodes Kelch-like ECH-associated protein 1, a negative 
regulator of nuclear factor erythroid 2-like 2 (NFE2L2;  
NRF2) (29). KRAS mutant cell lines carrying KEAP1 
mutations are sensitive to glutaminase inhibition since such 
cell lines are dependent upon glutaminolysis. Furthermore, 
NRF2 is a master transcriptional regulator that confers chemo-
resistance. The clinical outcomes of the SELECT-1 study 
highlight the limited effect of current therapeutic approaches 
either with chemotherapy or MEK inhibitors in KRAS mutant 
NSCLC. The Jänne et al. study openly shows the dismal 
outcome of NSCLC patients with KRAS mutations and 
therapeutic solutions should be urgently developed for more 
molecularly individualized clinical trial models, as is common 
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in breast cancer, such as the My Pathway trial (30). Figure 
1 illustrates several layers of research, including potential 
biomarkers involving pathways and intercommunication 
between different components, from RTKs on the cell surface, 
to the cytoplasm and nuclear components of the tumor 
cells. Importantly, selective inhibition of MET can lead to 
overexpression of FRS2 and the combination with FGFR 
inhibitors is warranted, particularly in mesenchymal tumors 
displaying elevated expression of AXL. Other opportunities 
are also depicted in Figure 1 and the accumulated evidence 
described herein can help pave the way for better therapies in 
KRAS mutant NSCLC patients. 
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