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Introduction

Locally advanced non-small cell lung cancer (LA-NSCLC) 
is a particularly challenging disease to treat with radiation, 
given the extent of disease, the sensitivity of lung tissue 
to radiation, and the close proximity to organs at risk 
(OARs), such as the esophagus and heart. Furthermore, 

the necessity to treat centrally located mediastinal disease 
while not exceeding spinal cord tolerance requires photon 
beam arrangements that deposit entrance and exit dose 
through healthy lung and esophagus. Previous dosimetric 
comparisons between proton beam therapy (PBT) and 
X-ray (photon) therapy for LA-NSCLC have demonstrated 
reduced dose to these OARs with protons (1,2). With this 
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reduced dose, there is a potential to lower overall rates of 
toxicities and morbidities of treatment.

The toxicity of therapy for LA-NSCLC can often be quite 
severe, requiring hospitalizations and aggressive interventions, 
which have high associated costs of management. One of the 
main criticisms regarding PBT compared to photons is the 
higher upfront costs of delivery. However, a reduced toxicity 
rate could avoid the costs of toxicity treatments, thereby 
opening up the possibility that PBT may actually lower overall 
costs. A recent PTCOG consensus statement advocates for an 
evaluation of each case in order to select patients for proton 
therapy (3). The question is, under what circumstances can 
clear distinctions be made between the two modalities with 
respect to cost?

Cost and cost benefit analysis are applications of decision 
theory, and are most often used to guide clinical decision 
making on a population based level, by seeking to minimize 
cost, maximize benefit, or by utilizing a willingness-to-pay 
threshold in order to balance these oft-competing aspects 
of care. These models are most commonly developed only 
after a technology has emerged as a clinical option for 
patients, and are applied to rank various treatment options. 
It is also common for a subset analysis to be performed, as 
different treatment options typically have differing costs 
and effectiveness for different groups of patients. These 
subsets are often based on disease staging, but stratification 
by other decision variables is possible.

The purpose of the current work is to develop a model 
to explore the effects of using different classifications of 
patients on the ultimate costs of treatment for different 
treatment choices (PBT, 3D conformal X-ray therapy 
and intensity modulated X-ray therapy). We studied four 
different methods of classifying patients: (I) rate-adjusted; 
(II) toxicity-adjusted; (III) dosimetry risk group; and (IV) 
radiosensitivity. This comprehensive approach provides a 
detailed understanding of the different factors that affect 
the costs for each of the treatment choices. These analyses 
serve different purposes including long-term financial 
planning, isolating the causes of high costs, and choosing 
the appropriate therapy for any given patient.

The structure of the model is flexible enough that we 
have expanded our analysis beyond the traditional cost-
benefit analyses to explore the effects of a test for individual 
radiosensitivity. Historically, a patient’s propensity for 
radiation-induced toxicity has been unknown and only 
population-based statistics were available. However, with 
a greater understanding of its molecular basis, genetic 
testing for this is becoming more likely (4). Given the 

critical role that normal tissue damage plays in this analysis, 
knowledge about a particular patient’s chance of suffering 
radiation-induced complications would be very important. 
Such knowledge could be used to determine a particular 
cohort who would benefit and/or it could be used to 
help in individual decision making. Using this example, 
we demonstrate the capabilities of using probabilistic 
knowledge representation to explore different scenarios and 
to highlight areas that need more information or more exact 
predictors. 

Literature review 

Decision analysis is a systematic and quantitative approach 
which synthesizes different types of available information 
such as medical benefits, toxicities, and costs, typically 
from many sources, in order to develop tools that guide 
physicians, patients, third-party payers, or health care policy 
makers to optimal decisions (5,6). It is most commonly 
applied to selecting an optimal strategy in the form of cost-
benefit analysis (7), but can focus on cost (8) or benefit (9)  
alone. Decision analysis is far more general, however, and 
can be used to guide nearly any decision that needs to 
be made such as using value of information analysis (10)  
to estimate which parameter or groups of parameters 
contribute most to decision uncertainty and may be 
candidates for future research (11,12), or determining the 
optimal sample size for a clinical trial (13).

The most common modeling techniques applied to 
radiotherapy include decision trees (14) and state-transition 
models (15). Decision trees are best suited to simple 
problems with a fixed time horizon and without time-
dependent parameters, although the numbers of states in 
the model can become difficult to manage since each state 
is represented many times on the tree. State-transition 
models are able to incorporate time-dependent parameters 
and, through microsimulation the probabilities can depend 
on the characteristics of individuals in the simulation, 
allowing the impact of different parameters to be examined. 
Influence Diagrams are used in many fields and are useful 
for integrating knowledge from disparate sources, exploring 
the effects of different decision variables, and determining 
information needs in order to make an optimal decision (16). 
Influence diagrams, which have long been used for decision 
modeling in health care (17), are gaining in popularity for 
cost-effectiveness analysis (18) and decision analysis in 
radiotherapy (19).

No guidelines exist for a review of decision analysis, 
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to the best of our knowledge. Therefore, this review of 
decision analysis for proton therapy for NSCLC is informed 
by recent guidelines (20) although our focus is more 
general. Searches were conducted in Medline and Embase 
and abstracts from the Particle Therapy Co-Operative 
Group and Particle Therapy Co-Operative Group of 
North America. In order to find results that were relevant 
for cost-benefit analysis and decision analysis in general, 
search results were structured so that results contained one 
term from the list, “non-small cell lung”, “non-small cell 
bronchial”, and one term from the list “NSCLC”, “cancer”, 
and one term from the list, “cost”, “decision”, and the word 
“proton”. Results were reviewed by multiple co-authors 
and references of articles found were manually screened for 
additional articles.

Only one full publication was found, performing cost-
benefit analysis for inoperable and operable stage 1 NSCLC, 
including proton therapy, carbon-ion therapy, and photon 
SBRT and conventional radiotherapy (CRT) as treatment 
strategies (21) in the Dutch health care system. The authors 
also undertake an extensive cost analysis for delivering 
radiotherapy (8) and meta-analysis of effectiveness studies (22) 
and survey patients for utilities for acute health states. They 
find that SBRT and Carbon-ion therapy dominate protons 
and CRT for inoperable patients, and SBRT is the most 
cost-effective for operable patients. In addition they perform 
probabilistic sensitivity analysis and use value of information 
analysis to determine that reducing uncertainty in the 
effectiveness of both carbon-ion therapy and SBRT for this 
population would have the greatest impact on future decision 
making, in terms of monetary gains where QALYs have been 
expressed as euros with a willingness-to-pay-threshold of 
€80k. They also undertake a scenario-based analysis, using 
only more recent publications to determine the effectiveness 
of proton therapy, which show that the effectiveness of 
proton therapy has been increasing for this population, 
and determine that continued research into improving the 
effectiveness may result in proton therapy emerging as a 
more competitive option.

Two studies focusing on locally advanced NSCLC were 
found, both in abstract form. One study (23) used a state-
transition model with a 10-year time horizon comparing 
PBT, 3D-conformal (3DCRT), and photon intensity 
modulated radiation therapy (IMRT) and found proton 
therapy to be borderline cost effective in the Belgian health 
care system. Another study (24) used an Influence Diagram 
as a cost model, including the upfront cost of delivering 
3D-conformal, IMRT, and PBT, and the cost to manage 

acute toxicities. The study did not find a scenario where 
PBT reduced financial costs, in part due to the uncertainty 
in which individual patients will develop severe toxicity.

Decision analysis has been utilized to compare the 
expected gains or losses from waiting to adopt PBT until 
after a prospective trial has been completed, to the expected 
gains or losses from adopting PBT before undertaking 
the trial for stage I NSCLC (25). If the trial turns out to 
show a sizable outcome advantage then waiting to adopt 
the technology forgoes gains for current patients, but if 
the trial result is negative, then large sunken costs in term 
of facilities built unnecessarily cannot be recovered. This 
approach is an example of value of information analysis, and 
probability distributions are used to represent uncertain 
parameters, with the uncertainty in outcomes for PBT as 
the dominant uncertainty in the decision. Since the future 
trial result is unknowable, results are averaged over all 
possible trial outcomes. For this patient population the 
authors find that adopting PBT now and conducting a trial 
has the largest expected net gain.

In summary, decision analytic techniques have been used 
to perform cost, cost-effectiveness, and value of information 
analysis to direct future research for PBT for NSCLC. Cost 
and cost-effectiveness studies are most often performed 
for decisions when sufficient evidence exists, while value of 
information techniques are used in areas where evidence 
is sparse, in order to direct research towards reducing 
uncertainty in key decision parameters.

In the remainder of the paper we utilize an influence 
diagram in order to highlight its role in decision analysis, by 
showing that even in the setting of a simple cost-model that 
includes monetary costs for the delivery of proton therapy 
and costs to manage acute toxicities, it can direct future 
research to study impactful decision variables and also place 
boundaries on the uncertainty of the research results in 
order for new information to guide clinicians to optimal 
decisions.

Methods

Model design

An influence diagram (Figure 1) was created to model the 
delivery of protons or photons (3D conformal or IMRT) 
for LA-NSCLC. An influence diagram is a Bayesian 
network with decision, chance, and utility nodes (4). The 
basic model structure (yellow nodes) included a single 
decision node (protons, 3DCRT, or IMRT), several chance 
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nodes (predictors of toxicity and toxicity rates), and a 
utility node (overall costs of treatment). The model was 
based on a patient receiving a 30-fraction definitive course 
of concurrent chemo-radiation for stage III NSCLC. A 
6-month time horizon was assumed for toxicity rates. 

The nodes in purple represent an as-yet-undeveloped 
medical test or ‘biomarker’ which predicts acute esophagitis 
requiring hospitalization. The biomarker tests for 
radiosensitivity, the true state of which is only knowable 
up to the level of sensitivity and specificity of the test. This 
introduces an exploratory decision node for sensitivity 
and specificity which is adjustable, and allowed us to set 
requirements for test accuracy in order to lower costs. In order 
to calculate results using only currently available information 
it is possible to disable these nodes in the model, through 
appropriate values in the conditional probability table.

For photon toxicity rates, we included published 
predictors of both pneumonitis and esophagitis found to be 
significant in large meta-analyses (26,27). For pneumonitis, 
the included predictors were age (≤ vs. >65 years old), 
chemotherapy type (cisplatin/etoposide/other vs. carboplatin/
paclitaxel), the percentage volume of the tumor receiving  
20 Gy, V20 (< vs. ≥25%), and mean lung dose, MLD  
(< vs. ≥10 Gy). For esophagitis, the only significant predictor 
was the fraction of the esophagus that received 60 Gy, V60 

(<0.07% vs. 0.07–17% vs. ≥17%). The dependence of the 
toxicity rates on the radiation modality is instantiated in the 
conditional probability tables that are represented by the 
nodes and links of the influence diagram (Figure 1).

Grades of pneumonitis and esophagitis were defined 
according to the RTOG/EORTC Acute Radiation Morbidity 
Scoring Schema. Because the need for hospitalization is 
not explicitly stated for certain toxicities, we assumed that 
all grade 4 toxicities required hospitalization and aggressive 
interventions. Per a previously published study by Shah  
et al. (28), the management of grade 3 pneumonitis was 
assumed to occur as an outpatient with continuous oxygen 
and intermittent steroids. Similarly, although grade 3 
esophagitis can be severe and sometimes require dilation, we 
assumed management as an outpatient requiring aggressive 
hydration, gastric feeding tube placement, and/or initiation 
of total parental nutrition. Grade 2 toxicities were less severe 
and managed as an outpatient with intermittent oxygen and 
steroids (pneumonitis) and narcotics/liquid diet (esophagitis). 
Grade 1 toxicities did not require any interventions, given the 
low severity. 

Determination of costs

The utility assessed in this model was the direct overall 

Radiation 
modality Sensitivity 

specificity

Radiosenstitivity

Esophagitis gradePneumonitis grade

V60MLDV20AgeChemo

Cost

Biomarker

Figure 1 An influence diagram used to model the decisions, chance variables and outcomes of radiation therapy of LA-NSCLC. The 
yellow-shaded nodes denote the basic model. The rectangular node is a decision node (radiation modality); oval nodes denote chance 
variables (use of chemotherapy, age, toxicity grades of V20, V60 and mean lung dose), and the diamond-shaped node is the outcome metric 
(cost). The purple-shaded nodes indicate that part of the influence diagram that represents a potential diagnostic test for patient-specific 
radiosensitivity, with an exploratory decision node used to describe the clinically useful operating region for an ROC curve. LA-NSCLC, 
locally advanced non-small cell lung cancer.
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financial costs of treatment, which included the radiation 
delivery costs and acute toxicity treatment costs. Radiation 
costs were calculated from 2014 Medicare non-facility 
reimbursement rates per current procedural terminology 
(CPT) code (29), checking a subset of the costs against the 
2017 values demonstrated that costs changed negligibly. 

The costs were divided into the different phases of radiation 
therapy: simulation, planning, radiation delivery, and 
consult/weekly management. Costs for grade 0–3 toxicities 
were based on published estimates by Shah et al. Since this 
publication does not reference costs for grade 4 toxicities, 
which require hospitalization and aggressive intervention, 
we used discharge data from the Nationwide Inpatient 
Sample (NIS), Healthcare Cost and Utilization Project 
(HCUP), and Agency for Healthcare Research and Quality 
based on MS-DRG code (30). For grade 3 and 4 esophagitis 
management, which can require outpatient or inpatient 
surgical procedures, we also included estimates based on the 
ICD-9 code for those specific interventions, using the NIS, 
HCUP, and AHRQ discharge data.

Types of analyses

We first performed three separate cost analyses: rate-
adjusted, toxicity-adjusted, and risk group-adjusted analyses, 
without including the effects of a possible biomarker. For 
the rate-adjusted analysis, we determined the average 
overall costs of treatment per patient for each radiation 
modality assuming a population with certain rates of 
toxicities. Rates of population toxicities were obtained from 
the photon STRIPE toxicity meta-analyses and the phase 
II proton lung cancer trial by Chang et al. (26,27,31). Since 
the STRIPE meta-analyses reported overall rates of grade 
≥2 pneumonitis/esophagitis, we applied published toxicity 
distributions for each grade, calculated as the average 
from three previously published studies, to determine the 
STRIPE toxicity rates per grade (32-34). Differences in 
toxicity rates for 3D vs. IMRT for photons were taken from 
a recent retrospective analysis (35).

For our rate-adjusted analysis, individual dosimetric 
parameters were not modified (in contrary to the risk group 
analysis), as published toxicity distributions inherently reflect 
an ability to meet dosimetric parameters that were not 
explicitly stated in those publications. We calculated a “rate 
adjusted cost” based upon the expected rate of each grade of 
toxicity (pneumonitis and esophagitis) from each modality 
(3DCRT/IMRT/protons). Toxicity-adjusted analyses 
were performed by calculating the overall treatment costs 

for each toxicity grade per patient and comparing them 
for each modality. For the risk group-adjusted analysis, 
group criteria from the photon toxicity meta-analyses were 
applied to the model, generating average overall treatment 
costs per patient in each group. Risk group classifications 
incorporated treatment planning parameters, such as V20, 
MLD, and V60, which were modified to affect the toxicity 
distributions and determine treatment costs.

The previous analyses were conducted with the effects of 
the radiosensitivity biomarker disabled in the cost model. 
With the effects of the biomarker in effect, the sensitivity 
and specificity were both varied independently from 0 to 
1 in a 2-way analysis to determine which values resulted 
in a cost reduction for proton treatments. This analysis 
explores the cost trade-offs between false positives which 
may result in greater upfront costs (protons) in cases for 
which increased toxicity-avoidance is unnecessary, and false 
negatives which result in greater overall costs from a photon 
treatment which also accrues costs to manage toxicities that 
could have been avoided.

Model assumptions

We assumed that overall survival and local control were 
equivalent between photons and protons, given the similar 
target volumes and doses used for both modalities. When 
exploring dosimetric input parameters, we assumed that 
protons always resulted in superior dosimetry compared to 
photons. For cases where photons result in an equivalent 
or superior dose distribution then it is assumed photons 
would be the modality of choice. At our institution, 
protons are considered on a case by case basis, only when 
they impart some dosimetric advantage. For example, for 
the intermediate risk group V20 dosimetric parameter, 
we assumed protons always resulted in a V20 <25% and 
photons ≥25%. If this parameter was not met with protons, 
we assumed limited ability for protons to reduce toxicity 
risks compared to the photons. Lastly, we assumed a third-
party payer (Medicare) perspective for calculating costs.

Results

Radiation and toxicity costs

Based on a 30-fraction course of radiotherapy, the upfront 
cost of delivering PBT, IMRT, and 3DCRT was $41,061.80, 
$23,893.83, and $16,730.37, respectively. The baseline cost 
difference between proton and photons was $24,331.43 
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(3DCRT) and $17,167.97 (IMRT). The phase of radiation 
which contributed the most to the baseline cost difference 
was the actual treatment delivery, with a cost of $35,564.40, 
$17,764.20, and $12,914.01 for PBT, IMRT, and 3DCRT, 
respectively.

Costs of managing acute pneumonitis and esophagitis 
are as follows. Grade 0/1 acute toxicities had no associated 
costs. Grade 2 pneumonitis was defined as requiring 
narcotic antitussives and intermittent steroids, with an 
associated cost of $96.50/month. Grade 3 pneumonitis was 
defined as requiring intermittent oxygen and steroids, with 
an associated cost of $1,466.27 (one time) and $291/month. 

Grade 4 pneumonitis was defined as requiring continuous 
oxygen, assisted ventilation, or at least a 4-day length of stay 
in the hospital or ICU, with an average cost of $18,414.00 
(range, $6,873–$45,023). Grade 2 esophagitis was defined 
as requiring narcotics, puree, or liquid diet, with a cost of 
$26.54/month. Grade 3 esophagitis was defined as requiring 
2 liters of IV fluid infusion (outpatient), nasogastric tube 
placement, and/or total parenteral nutrition, with an 
average cost of $12,687.86 (range of $444.01–$29,332.01). 
Grade 4 esophagitis was managed with an EGD, or a 
surgical procedure/repair for perforation or fistula, with an 
average cost of $33,235.00 (range of $9,109.00–$65,607.00).

Toxicity-adjusted analysis

Overall costs were calculated per grade of pneumonitis and 
esophagitis and are presented in Figures 2,3, respectively. As 
expected, as the grade of toxicity increases, the overall costs 
of treatment increases. We analyzed this data to determine 
if there is a scenario in which a patient receiving photons 
experiencing a specific grade of toxicity would have overall 
costs that exceeded a proton patient. For pneumonitis, 
a patient treated with IMRT experiencing a grade 4 
pneumonitis had overall costs that exceeded a proton 
patient who experienced grade 0–2 toxicities ($42,307.83 vs.  
$41,061.80–$41,640.80). The 6-month costs associated with 
a patient treated with 3DCRT who experienced any grade 
pneumonitis always were lower than proton patients with 
any grade pneumonitis. For esophagitis toxicities, an IMRT 
patient experiencing a grade 4 toxicity had costs exceeding 
that of a proton patient with grade 0–3 toxicities ($57,129.43 
vs. $41,061.80–$53,749.48). Similar results were seen if 
a 3DCRT patient experienced a grade 4 esophagitis with 
costs exceeding a proton patient with grade 0–2 esophagitis 
($49,965.97 vs. $41,061.80–$41,221.04).

Rate-adjusted analysis

Distributions of pneumonitis and esophagitis were applied 
to the model based on a population of LA-NSCLC 
patients (26,27,31,35). In general, rates of symptomatic 
pneumonitis were lower with the use of proton radiation. 
Grade 4 pneumonitis was a rare toxicity with a photon 
rate of 1% compared to a proton rate of 0%. Based on the 
expected rate of each grade of radiation pneumonitis with 
each of these modalities, the average cost of treatment per 
patient was $41,200.67 (protons), $24,222.56 (IMRT), and 
$17,296.83 (3DCRT). Based on the ability of protons to 

Protons
3D conformal

Grade 0/1 Grade 2 Grade 3 Grade 4

Pneumonitis

IMRT

$60000

$40000

$20000

$0

Protons
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Grade 0/1 Grade 2 Grade 3 Grade 4

Esophagitis

IMRT

$60000

$40000

$20000

$0

Figure 2 Vertical bars indicate overall costs (cost of radiation plus 
cost of toxicity management) per grade of pneumonitis. Horizontal 
lines indicate baseline cost of each modality. Both bars and lines 
color-coded to legend.

Figure 3 Vertical bars indicate overall costs (cost of radiation plus 
cost of toxicity management) per grade of esophagitis. Horizontal 
lines indicate baseline cost of each modality. Both bars and lines 
color-coded to legend.
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reduce rates of pneumonitis, $427.59 (3DCRT) and $189.86 
(IMRT) were recovered from the baseline cost difference 
with protons. The overall average costs of protons were not 
found to be lower than photons based on these pneumonitis 
rates. Summary of these results are presented in Table 1.

For esophagitis, PBT resulted in lower rates of 
symptomatic esophagitis (26,27,31). Grade 4 esophagitis 
was a rare toxicity with a photon rate of 2% and a proton 
rate of <1%. Based on population esophagitis toxicities, 
the average cost of treatment per patient was $42,835.68 
(protons), $26,746.04 (IMRT), and $19,582.58 (3DCRT). 
Compared to the baseline cost difference, the use of PBT 
was able to recover $1,078.33 of that difference through 
reducing the rates of esophagitis. Overall, PBT was not 
found to lower the overall costs of treatment based on the 
rates of esophagitis. Results are summarized in Table 2. Since 
pneumonitis and esophagitis are not mutually exclusive 

toxicities, we analyzed costs combining both toxicity 
distributions. Average cost per patient for this combined 
analysis was $42,974.55 (protons), $27,074.79 (IMRT), and 
$20,149.01 (3DCRT). Cost recovered from proton toxicity 
reduction was $1,505.89 (3DCRT) and $1,268.21 (IMRT).

Risk group analysis

As part of the STRIPE meta-analysis for pneumonitis, 
Palma et al. presents different pneumonitis risk groups 
based on the results of the recursive partitioning analysis. 
This includes a high risk group, two intermediate risk 
groups, and two low risk groups (26,27). We used the 
model to determine the potential cost benefits of protons 
for each risk group. For the high risk group (age >65 years 
old, concurrent carboplatin/paclitaxel), the overall cost 
difference between protons and photons was $22,594.06 for 

Table 1 Population-based rates of pneumonitis for photons and protons and associated rate-adjusted costs. Money recovered is the difference 
between the population average costs per treatment and the baseline cost difference

Items 3D conformal IMRT Protons

Pneumonitis grade 0/1 63% 71% 82%

Pneumonitis grade 2 30% 26% 16%

Pneumonitis grade 3 6% 3% 1%

Pneumonitis grade 4 1% <1% 0%

Total cost $17,296.83 $24,222.56 $41,200.67

Cost difference $23,903.84 $16,978.11 –

Baseline cost difference $24,331.43 $17,167.97 –

Money recovered $427.59 $189.86 –

Table 2 Population-based distribution of esophagitis for photons and protons and associated rate-adjusted costs. Money recovered is the 
difference between the population overall costs and the baseline cost difference

Items 3D conformal IMRT Protons

Esophagitis grade 0/1 45% 45% 57%

Esophagitis grade 2 35% 35% 31%

Esophagitis grade 3 18% 18% 11%

Esophagitis grade 4 2% 2% <1%

Total cost $19,582.58 $26,746.04 $42,835.68

Cost difference $23,253.10 $16,089.64 –

Baseline cost difference $24,331.43 $17,167.97 –

Money recovered $1,078.33 $1,078.33 –
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3DCRT and $15,803.45 for IMRT, with a cost recovered 
of $1,737.37 (3DCRT) and $1,364.52 (IMRT) from the 
baseline cost differential. For intermediate risk group 1 
(age ≤65 years old, MLD ≥10 Gy, carboplatin/paclitaxel) 
and intermediate risk group 2 (cisplatin/etoposide/other, 
V20 ≥25%), the cost recovered using protons was smaller, 
averaging $1,463.62 (3DCRT) and $1,256.97 (IMRT). 
Lastly, for low risk group 1 (age ≤65 years old, carboplatin/
paclitaxel, MLD <10 Gy) and low risk group 2 (cisplatin/
etoposide/other, V20 <25%), the cost recovered with 
protons averaged $1,282.04 (3DCRT) and $1,152.92 
(IMRT). 

Effects of esophageal radiosensitivity biomarker on 
decision-making

Overall costs of treating with photons and managing grade 
4 esophagitis exceed the costs of PBT when PBT avoids 
grade 4 esophagitis, as shown in Figure 3. A perfect test for 
esophageal radiosensitivity would enable patient selection 

for protons in cases where protons exhibit a superior dose 
distribution (lower V60). Since a perfect test is unlikely we 
establish boundaries for sensitivity and specificity in order 
for a test to lower overall costs. The gray line in Figure 4 
is an isocost line for equal costs, tests with TP and FP to 
the left and above the line will lower overall costs, tests 
to the right and below increase them. Increasing distance 
from the isocost line indicates greater cost advantages or 
disadvantages, depending on the direction of movement. 
Generally, decreases in FP rate are more financially valuable 
than increase in TP rate. The three symmetric ROC curves 
are for illustrative purposes. The green line in Figure 4 
illustrates the isocost line if the cost to deliver protons falls 
by 15%. 

Discussion

We created a practical, multi-parametric cost-benefit 
model, exploring the potential cost benefits of PBT relative 
to two types of X-ray therapy (3D conformal, IMRT). This 
model is unique in that it allows the radiation oncologist to 
estimate the total treatment costs while comparing different 
treatment modalities. Our model incorporates patient-
specific factors (age, anatomy) and treatment-specific factors 
(chemo-type, radiation modality, radiation dosimetric 
parameters) to help estimate the costs. The dosimetric input 
parameters are clinically useful for radiation oncologists as 
they perform comparative planning of proton and photon 
plans. Essentially, one could use this type of model to 
present the toxicity estimates and the overall treatment 
costs to patients for more tailored discussions regarding 
outcomes and costs prior to deciding a treatment course. 
On the public health level, such a model can be used to help 
anticipate future resource needs or savings.

Our rate-adjusted analysis results demonstrate that 
compared to photons, protons are not likely to produce 
cost-savings based on previously published rates of toxicities 
for patients receiving concurrent chemo-radiation for LA-
NSCLC. Although protons were found to reduce toxicities 
compared to photons, this was not cost-beneficial as the 
rates of the higher grade toxicities are relatively low. Larger 
toxicity reductions with protons are seen with grade 1–3 
toxicities for both pneumonitis and esophagitis; however, 
these toxicities are not as expensive to manage compared to 
grade 4 toxicities, adding little to overall costs. This suggests 
that patient populations at highest risk of severe acute 
toxicity may see greater cost benefits using protons. This 
was the motivation for computing costs per RPA risk group.

Figure 4 Isocost lines for radio sensitivity test for esophagitis. 
Arrow from the gray line indicate the region where a test can 
be used to refer patients to protons to reduce overall costs for 
the treatment of esophagitis in cases when a proton plan shows 
reduced dose to the esophagus. Arrows from the green short-
dashed line indicate the test requirements for the same result if the 
cost to deliver protons falls by 15%. Symmetric ROC curves (blue) 
with AUC of 0.9, 0.8, 0.7 are added to guide the eye.
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Although protons were not cost equivalent with photons 
for any of the risk groups, the high risk group had the 
largest cost recovery using protons. The two intermediate 
risk groups did not benefit as much, with smaller cost 
recoveries. The low risk groups had the smallest cost 
differences compared to the baseline. If one considers using 
protons for LA-NSCLC in future trials or off-trial, this 
high risk group likely would experience the largest benefit 
from toxicity reduction and would result in a smaller cost 
difference. 

The toxicity-adjusted analysis results raise interesting 
points. It seems that there are situations where protons 
could produce overall cost savings, analyzing on a cost per 
toxicity grade basis. For example, an IMRT patient with a 
grade 4 esophagitis had higher overall costs compared to 
a proton patient with a grade 0–3 esophagitis. Although a 
clinically reliable tool does not yet exist to predict patient 
toxicities, we were able to incorporate the use of such a 
tool in our decision model and define the sensitivity and 
specificity requirements for this tool to be useful from a cost 
perspective.

There are several limitations of our model/analyses to 
address. Toxicity was assessed at a 6-month time point, 
representing acute toxicity only. Long-term toxicity can be 
debilitating for LA-NSCLC patients, including pulmonary 
fibrosis, cardiac events, and esophageal dysfunction, which 
we did not model. Additionally, the only toxicities that we 
examined are pneumonitis and esophagitis, as they are the 
major dose limiting radiation toxicities. There are limited 
data to support the possibility that protons reduce the 
rate of both non-hematologic and hematologic toxicities 
in patients with lung cancer, but these toxicities were not 
modeled in this study (36).

Another limitation was the selection of utility. We used 
direct financial costs only. Non-medical costs associated 
with toxicities were not considered. For example, grade 4 
pneumonitis comes at an increased cost to the patient in 
terms of hospitalization, needing ventilator support, time 
lost from work, and further co-morbidities. Although not 
included in our model, these additional costs may not be 
negligible. In addition, utilities such as quality of life were 
not considered even though society may deem them of 
comparable importance.

We used a third party payer (Medicare) perspective 
for this study when calculating costs. One limitation 
when obtaining Medicare cost data is variability between 
institutions, particularly with inpatient costs. The cost data 
presented here is an estimate from our own institution and 

may not be generalizable to other clinics/hospitals. We 
attempted to minimize cost variability by using inpatient 
data from the Nationwide Inpatient Sample (NIS), 
Healthcare Cost and Utilization Project (HCUP), and 
Agency for Healthcare Research and Quality based on MS-
DRG code. This data represents 20% of discharges from 
all participating community hospitals in the United States 
(47/50 states). We did compare our institutional Medicare 
reimbursements with NIS data for hospitalizations, and 
they were similar.

There is also the possibility that PBT for lung cancer 
could improve local control rates, although we assumed 
equal local control rates in our model. The phase II 
proton trial by Chang et al. (31) demonstrated low rates of 
isolated local failures (9.1%) with a median follow-up of 
19.7 months. This compares favorably to their long-term 
IMRT results with a 2-year local-regional recurrence rate 
of 43%. If these encouraging local control rates persist 
with longer follow-up, we could incorporate them into 
our model, potentially improving the cost-benefits of 
protons. This could also reflect the use of protons to dose 
escalate to >70 Gy, as the prescribed dose in that study 
was 74 Gy (RBE). Similar to the use of IMRT, PBT can 
be used to reduce complications for the same rate of local 
control or the proton dose distribution can be utilized to 
increase tumor dose (and hopefully local control) while 
seeking to achieve the same rate of complications. Given 
that previous photon studies used doses ranging from  
60–66 Gy, we elected to base our model on a safe dose of 
60 Gy in 30 fractions for both modalities.

Although Decision Trees and Markov models are 
commonly used for cost and cost-benefit analysis, influence 
diagrams are gaining in popularity and have been shown to 
be more computationally efficient than decision trees (18).  
In particular, decision trees can grow to be very large 
since each state is represented several times on the various 
branches of the tree. Any decision tree can be represented 
as an influence diagram, and for large decision trees provide 
a much more compact and understandable representations. 
In this model we used an influence diagram since it allowed 
for the placement of a threshold on the accuracy required 
for a test in order to improve a decision.

This type of analysis has potential applications both in 
determining a cohort which would benefit, and in individual 
decision making. Although radiotherapy has long used CT 
scans to develop treatment plans which are personalized to 
a patient’s anatomy, the current interest in cohort selection 
or personalization focuses on predicting the therapeutic 



131Translational Lung Cancer Research, Vol 7, No 2 April 2018

© Translational lung cancer research. All rights reserved.   Transl Lung Cancer Res 2018;7(2):122-133tlcr.amegroups.com

response to radiation, rates of radiosensitivity for normal 
tissue, and may include patient preferences for health states. 
These efforts require contributions from many fields such as 
genomics (4), radiomics (37,38), machine learning (39-41),  
and shared decision making (42,43). One of the most 
commonly used metrics to evaluate a medical test is the 
area-under-the-curve (AUC).

We find that the AUC alone is not sufficient to 
determine the clinical usefulness of a test. This is primarily 
due to the fact that maximizing the area under the ROC 
places equal weights on false-positive and false-negative 
results (44,45). By providing the opportunity to model the 
trade-offs between sensitivity and specificity, the influence 
diagram was shown to be instrumental in expanding the 
possibilities for exploring different scenarios. Such a tool 
can be very helpful to both researchers and clinicians.

Another important consideration is that the overall 
cost of definitive concurrent chemoradiotherapy for 
locally advanced NSCLC is likely to change considerably 
with the publication of the PACIFIC trial (46). This trial 
demonstrated an improvement in progression-free survival 
with the addition of 1-year of anti-PD-1 immunotherapy 
with durvalumab when compared to placebo. As such, this 
is now a standard-of-care recommendation and included in 
the NCCN guidelines. With the inclusion of one-year of 
adjuvant immunotherapy, costing approximately $12,000 
per month, for a total annual cost of $144,000 per year, the 
cost of chemoradiotherapy regardless of modality employed 
(protons, IMRT, 3DCRT) will likely comprise a small 
portion of the overall treatment. 

Conclusions

We developed a simple cost model using an influence 
diagram in order to demonstrate that protons offer the 
possibility to actually lower costs for a subset of patients, by 
accounting only for the reduction in acute toxicities. The 
cost reduction for such a group of patients would increase 
when long term outcomes are taken into account. We then 
determined sensitivity and specificity requirements for a 
test for radiosensitivity that would enable practitioners to 
identify this group of patients. These test requirements go 
beyond simply maximizing the AUC, and show that, with 
the assumption of a realistic cost reduction in delivering 
proton therapy, a clinically useful radiosensitivity test may 
be achievable.

This result demonstrates that a shift in the methodology 
by which these tests are developed is possible. Typically 

researchers develop tools to predict outcomes while 
maximizing a metric such as the AUC. We show that a 
decision model can set goals for research tools by defining 
the accuracy requirements for a test before these tests are 
developed in order to guide research to develop tools that 
are likely to be adopted clinically.
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