Genome-wide copy number analyses of samples from LACE-Bio project identify novel prognostic and predictive markers in early stage non-small cell lung cancer

Federico Rotolo^{1,2,3}, Chang-Qi Zhu⁴, Elisabeth Brambilla⁵, Stephen L. Graziano⁶, Ken Olaussen⁷, Thierry Le-Chevalier⁸, Jean-Pierre Pignon^{1,2,3}, Robert Kratzke⁹, Jean-Charles Soria^{7,8}, Frances A. Shepherd^{4,10}, Lesley Seymour¹¹, Stefan Michiels^{1,2,3}, Ming-Sound Tsao^{4,12}; on behalf of the LACE-Bio Consortium

¹Gustave Roussy, Université Paris-Saclay, Service de Biostatistique et d'Epidémiologie, Villejuif, France; ²Université Paris-Saclay, Univ. Paris-Sud, UVSQ, CESP, INSERM, Villejuif, France; ³Ligue Nationale Contre le Cancer Meta-Analysis Platform, Gustave Roussy, Villejuif, France; ⁴University Health Network, Princess Margaret Cancer Centre, Toronto, ON, Canada; ⁵Department of Pathology, Institut Albert Bonniot, Hopital Albert Michallon, Grenoble, France; ⁶Medical Oncology, SUNY Upstate Medical University, Syracuse, NY, USA; ⁷INSERM U981, Université Paris-Sud, Université Paris-Saclay and Gustave Roussy Cancer Campus, Villejuif, France; ⁸Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France; ⁹Department of Medical Oncology, University of Minnesota, Minneapolis, MN, USA; ¹⁰Department of Medicine, Division of Medical Oncology, University of Toronto, ON, Canada; ¹¹Canadian Cancer Trials Group and Queen's University, Kingston, ON, Canada; ¹²Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada

Contributions: (I) Conception and design: E Brambilla, SL Graziano, T Le-Chevalier, R Kratzke, JC Soria, FA Shepherd, L Seymour, S Michiels, MS Tsao; (II) Administrative support: E Brambilla, SL Graziano, T Le-Chevalier, R Kratzke, JC Soria, FA Shepherd, L Seymour, S Michiels, MS Tsao; (III) Provision of study materials or patients: E Brambilla, SL Graziano, T Le-Chevalier, R Kratzke, JC Soria, FA Shepherd, L Seymour, MS Tsao; (IV) Collection and assembly of data: F Rotolo, CQ Zhu; (V) Data analysis and interpretation: F Rotolo, CQ Zhu, E Brambilla, K Olaussen, JP Pignon, S Michiels, MS Tsao; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

Correspondence to: Dr. Ming-Sound Tsao, MD, FRCPC. Princess Margaret Cancer Research Tower, 101 College Street, Room 14-301, Toronto, Ontario M5G1L7, Canada. Email: ming.tsao@uhn.ca.

Background: Adjuvant chemotherapy (ACT) provides modest benefit in resected non-small cell lung cancer (NSCLC) patients. Genome-wide studies have identified gene copy number aberrations (CNA), but their prognostic implication is unknown.

Methods: DNA from 1,013 FFPE tumor samples from three pivotal multicenter randomized trials (ACT vs. control) in the LACE-Bio consortium (median follow-up: 5.2 years) was successfully extracted, profiled using a molecular inversion probe SNP assay, normalized relative to a pool of normal tissues and segmented. Minimally recurrent regions were identified. P values were adjusted to control the false discovery rate (Q values).

Results: A total of 976 samples successfully profiled, 414 (42%) adenocarcinoma (ADC), 430 (44%) squamous cell carcinoma (SCC) and 132 (14%) other NSCLC; 710 (73%) males. We identified 431 recurrent regions, with on average 51 gains and 43 losses; 253 regions (59%) were \leq 3 Mb. Most frequent gains (up to 48%) were on chr1, 3q, 5p, 6p, 8q, 22q; most frequent losses (up to 40%) on chr3p, 8p, 9p. CNA frequency of 195 regions was significantly different (Q \leq 0.05) between ADC and SCC. Fourteen regions (7p11–12, 9p21, 18q12, and 19p11–13) were associated with disease-free survival (DFS) (univariate P \leq 0.005, Q<0.142), with poorer DFS for losses of regions including *CDKN2A/B* [hazard ratio (HR) for 2-fold lower CN: 1.5 (95% CI: 1.2–1.9), P<0.001, Q=0.020] and *STK11* [HR =2.4 (1.3–4.3), P=0.005, Q=0.15]. Chromosomal instability was associated with poorer DFS (HR =1.5, P=0.015), OS (HR =1.2, P=0.189) and lung-cancer specific survival (HR =1.7, P=0.003).

Conclusions: These large-scale genome-wide analyses of gene CNA provide new candidate prognostic markers for stage I–III NSCLC.

Keywords: Copy number aberrations (CNA); non-small cell lung cancer (NSCLC); platinum-based chemotherapy; biomarkers; phase III

Submitted Mar 31, 2018. Accepted for publication May 02, 2018. doi: 10.21037/tlcr.2018.05.01 View this article at: http://dx.doi.org/10.21037/tlcr.2018.05.01

Introduction

Lung cancer is the leading cause of cancer death worldwide. Non-small cell lung cancer (NSCLC), accounting for 85% of all lung cancers, has a 5-year survival of 59% for early resectable disease, but only 15% for cancers in advances stages (1). However, great differences within individual stages suggest the existence of unknown tumor factors. In the era of personalized medicine, the assessment of prognostic factors is crucial for individual treatment decision making. The activation of oncogenes (i.e., EGFR and KRAS) and the inhibition of tumor-suppressors (TP53) drive tumor progression. While targeting some of these genes is a promising therapeutic strategy in adenocarcinoma (ADC), most lung cancers lack proven (targetable) driver genes and identification of additional ones is critical. Recent developments of genome-wide profiling have identified new genes, but the studies reported to date are underpowered or lack a control arm. Bass et al. (2) profiled 40 esophageal squamous cell carcinomas (SCC) (29 primary and 11 cell lines) and 47 primary lung SCC for DNA copy number (CN) change. They reported that SOX2 (chr.3q26.33) was significantly amplified and that it was a lineage-survival oncogene by knockdown experiments in cell lines. However, the small sample size hindered assessment of the prognostic value of CN aberrations (CNA). The Cancer Genome Atlas (TCGA) recruited 10,000 samples from 33 cancer types and profiled alterations from genomic DNA, RNA, and protein. However, due to the inclusion criteria ($\geq 70\%$ tumor cellularity), advanced stages were underrepresented. Furthermore, the samples used in these studies were snapfrozen tissues whereas most of the samples in clinical settings are formalin-fixed and paraffin-embedded (FFPE). Thus, identifying prognostic markers from FFPE samples may be clinically relevant.

The Lung Adjuvant Cisplatin Evaluation (LACE-Bio) project comprises FFPE samples from four LACE adjuvant chemotherapy (ACT) trials and evaluated the prognostic and predictive role of biomarkers including *ERCC1* (3), tumor infiltrating lymphocytes (TILs) (4), mucin (5), beta-tubulin (6), *KRAS* (7), *EGFR* (8) and *TP53* (9). Importantly, 1,013 samples from three trials were profiled for their DNA CNAs. Since the trials were randomized and controlled,

the data were fit for evaluating markers associated with the magnitude of ACT benefit.

Methods

Patients and samples

The LACE-Bio2 consortium includes patients from four pivotal trials comparing platinum-based ACT to observation after complete resection of stage I–III NSCLC (10-15). Of these, 1,013 patients from three trials had FFPE samples available, whereas samples in one trial (15) were exhausted. All individual trials including tissue collection for future research were approved by institutional review boards at each participating site.

DNA isolation and profiling

DNA was successfully extracted from 976 FFPE samples using the AllPrep DNA/RNA FFPE Kit (Quagen, Germantown, MD, USA), and profiled using the OncoScan CNV Plus Assay (ThermoFisher, Carlsbad, California, USA), a molecular inversion probe SNP assay (16). The platform algorithm delivered the median of the absolute values of all pairwise differences (MAPD) (17,18) as quality metrics; 777 samples with MAPD ≤ 0.3 were classified as optimal quality.

Statistical analyses

The data were normalized relative to a pool of reference normal samples and segmented using circular binary segmentation (19,20). Minimal recurrent regions were identified via the CGHregions algorithm (21). Tumor clonal composition number was estimated by using the OncoClone composition program (22). The primary endpoint was disease-free survival (DFS). Secondary endpoints were overall survival (OS) and lung-cancer specific survival (LCSS). CNAs were correlated to endpoints using Cox models stratified by trial and adjusted for treatment and clinicopathological factors. The regression models estimated the hazard ratio HR_{gain} for a 2-fold higher CN, with HR_{loss} = 1/HR_{gain} the relative hazard for a 2-fold lower CN. The predictive role of CNAs was estimated by further adding a treatment-by-CN interaction to the models. We performed univariate (by region) and two multivariate analyses (stepwise selection and penalized regression) (23,24). Q values were used to correct P values for multiple comparisons (25).

Preplanned sensitivity analyses included: histologic subgroups (ADC *vs.* SCC), optimal quality subgroup. CN differences between histologies were assessed by *t*-tests, with P values corrected via step-down multiple testing procedures (26,27). We compared results to those from our reanalysis of the TCGA (28,29) using exactly the same method. Known tumor suppressors and oncogenes were obtained from literature (30).

The association of the number of breakpoints (BPs), quantifying chromosomal instability, with clinicopathological factors was tested in univariate analyses, then in multivariate log-linear models. The association of chromosomal instability and of clonality with outcomes and treatment effect was studied in Cox models.

Full details of statistical methods are provided in the supplementary material.

Results

Three samples (*Figure S1*) were partially processed; 1 failed linkage to the clinical database; the inferred gender of 32 patients was incorrect; 1 sample was duplicate. In total, 976 samples were analyzed: 414 (42%) ADC, 430 (44%) SCC, 132 (14%) other NSCLC; 485 were in the control and 491 in the ACT groups (*Table 1*).

The 217,611 array probes were grouped into 431 common-CN regions; 253 regions (59%) were ≤ 3 Mb, 340 (79%) were ≤ 10 Mb (*Figure 1*); 166 regions had a loss (177 a gain) in $\geq 10\%$ patients. On average, patients had 94 CNAs (standard deviation 69), 51 gains and 43 losses.

The most frequent CN gains (*Table S1*) were in 1q21–23, 3q22–26, 5p13–15, 6p24, 8q21–24, 22q11, containing genes *TERT*, *PIK3CA*, *MECOM*, *CCNL1* among others. The most frequent CN losses were in chromosomes 3p21.31, 8p23, and 9p21.3, containing *CDKN2A/B*. These results remained consistent in the optimal quality samples subset (N=777; *Figure S2, Table S2*).

The CN profile was heterogeneous across histology and results were confirmed in our reanalysis of the TCGA data (*Figure S3*). The frequency of 195 regions (49% were ≤ 3 Mb and 71% ≤ 10 Mb; *Table S3*) was significantly different

between ADC and SCC (Q ≤ 0.05). The most significant differences were: more gains in 3q (including genes *PIK3CA*, *MECOM*, *CCNL1*), 22q (*NF2*, *PDGFB*) and 12p (*KRAS*) in SCC; more losses in 3p (*RASSF1*), 4 (*PTTG2*, *NKX2-1*), and 5q in SCC.

Copy-number aberrations associated with prognosis

The median follow-up for DFS (510 events) was 5.3 years. In univariate analyses (*Table 2*), 14 focal regions ($11 \leq 3$ Mb, 14 ≤10 Mb) in loci 7p11–12, 9p21, 18q12, 19p11–13 were prognostic (P≤0.005) with Q≤0.142. Losses associated with shorter DFS were in: 8 regions in 9p21.3 (loss frequency: 31-40%, including *CDKN2A/B*), with HR_{loss} = 1.5 (95%) CI: 1.2-1.9) (P<0.001, Q=0.02); one region in 19p13 [STK11, 11%, HR_{loss}=2.4 (1.3–4.3), P=0.005, Q=0.15]; one in 18q12.1 [12%, HR_{loss} =1.6 (1.2–2.3), P=0.004, Q=0.12]. Other seemingly deleterious losses were found in 19p11-13 (MLLT1, SH3GL1, TCF3, VAV1). Gains in 7p11-12 (frequency: 17%) were associated with shorter DFS [HR_{gain} = 2.0 (1.2-3.2), P=0.005, Q=0.14]. Two of these regions (7p12.3 and 9p21.3) remained significant in multivariate analyses (Table S4), which also suggested a benefit [HR_{loss} = 0.32 (0.16-0.61), P<0.001] for losses in a region in 1p31-36 (9.8%), including EPS15, FGR, 7UN, LCK, PAX7, STIL, TAL1, NBL1, EPHB2, MUTYH, ARNT. Penalized regression confirmed the prognostic role of the region in 9p21.3, plus another one containing CDKN2A/B (Table S5).

The median follow-up for OS (451 events) was 5.3 years. The above-mentioned CN losses in 9p21, 18q12, 19p13 were also prognostic of shorter OS (P \leq 0.005, Q \leq 0.092; *Table 2*), together with 5 additional regions in 9p21.1, 18q12.1, and 19p12–13 (*ELL*). One further focal region on 14q23.1 (8.5% of losses, 89% of gains) was prognostic for OS (P=0.002, Q=0.079), with HR_{loss} =2.2 (1.3–3.6), corresponding to HR_{gain} =0.46 (0.28–0.76). The prognostic role of a region in 9p12.3 was confirmed in multivariate analyses (*Table S4*), together with the possible benefit for gains in 3q26 [*MECOM*, 45%, HR_{gain} =0.55 (0.38–0.79), P=0.001]. Penalized regression (*Table S5*) did not select any region for OS.

The median follow-up for LCSS (427 events) was 5.0 years. Results were similar to DFS, with the addition of one region in chr8, for which gains (17%) were associated with longer LCSS [HR_{gain} =0.51 (0.32–0.82), P=0.005, Q=0.13]. In multivariate analyses (*Table S4*), two of the three regions associated with DFS (chr3 and 9) were also associated with

Translational Lung Cancer Research, Vol 7, No 3 June 2018

Table 1 Demographic characteristics of patients with OncoScan analysis results

Trial 66 [14] 58 [12] 124 [13] IALT 258 [53] 266 [54] 524 [54] JBR 10 161 [33] 167 [34] 328 [34] Av- 137 [28] 137 [28] 274 [28] 55-64 202 [42] 205 [42] 407 [42] 65 146 [30] 149 [30] 295 [30]	Characteristics	Control group (N=485) (No., %)	Chemotherapy group (N=491) (No., %)	Total (N=976) (No., %)
CALGB 66 [14] 58 [12] 124 [13] IALT 258 [53] 266 [54] 524 [54] JBR 10 161 [33] 167 [34] 328 [34] Age 55-64 137 [28] 137 [28] 274 [28] \$55-64 202 [42] 205 [42] 407 [42] \$65 146 [30] 149 [30] 295 [30]	Trial			
IALT 258 [53] 266 [54] 524 [54] JBR 10 161 [33] 167 [34] 328 [34] Age 137 [28] 137 [28] 274 [28] 55-64 202 [42] 205 [42] 407 [42] e50 146 [30] 149 [30] 295 [30]	CALGB	66 [14]	58 [12]	124 [13]
JBR 10 161 [33] 167 [34] 328 [34] Age	IALT	258 [53]	266 [54]	524 [54]
Age 137 [28] 137 [28] 274 [28] 55-64 202 [42] 205 [42] 407 [42] ≥65 146 [30] 149 [30] 295 [30]	JBR 10	161 [33]	167 [34]	328 [34]
≤55 137 [28] 137 [28] 274 [28] 55-64 202 [42] 205 [42] 407 [42] ≥65 146 [30] 149 [30] 295 [30]	Age			
55-64202 [42]205 [42]407 [42]≥65146 [30]149 [30]295 [30]	≤55	137 [28]	137 [28]	274 [28]
≥65 146 [30] 149 [30] 295 [30]	55–64	202 [42]	205 [42]	407 [42]
	≥65	146 [30]	149 [30]	295 [30]
Sex	Sex			
Female 139 [29] 127 [26] 266 [27]	Female	139 [29]	127 [26]	266 [27]
Male 346 [71] 364 [74] 710 [73]	Male	346 [71]	364 [74]	710 [73]
PS	PS			
0 248 [51] 252 [51] 500 [51]	0	248 [51]	252 [51]	500 [51]
1-2 235 [49] 238 [49] 473 [49]	1–2	235 [49]	238 [49]	473 [49]
Histology	Histology			
Adenocarcinoma 207 [43] 207 [42] 414 [42]	Adenocarcinoma	207 [43]	207 [42]	414 [42]
Squamous cell carcinoma 218 [45] 212 [43] 430 [44]	Squamous cell carcinoma	218 [45]	212 [43]	430 [44]
Other 60 [12] 72 [15] 132 [14]	Other	60 [12]	72 [15]	132 [14]
т	Т			
T1 57 [12] 64 [13] 121 [12]	T1	57 [12]	64 [13]	121 [12]
T2 372 [77] 365 [75] 737 [76]	T2	372 [77]	365 [75]	737 [76]
T3/T4 54 [11] 60 [12] 114 [12]	T3/T4	54 [11]	60 [12]	114 [12]
Ν	Ν			
NO 250 [52] 251 [51] 501 [52]	N0	250 [52]	251 [51]	501 [52]
N1 167 [35] 175 [36] 342 [35]	N1	167 [35]	175 [36]	342 [35]
N2 66 [14] 63 [13] 129 [13]	N2	66 [14]	63 [13]	129 [13]
Surgery	Surgery			
Lobectomy/other 344 [71] 333 [68] 677 [69]	Lobectomy/other	344 [71]	333 [68]	677 [69]
Pneumonectomy 141 [29] 157 [32] 298 [31]	Pneumonectomy	141 [29]	157 [32]	298 [31]

LCSS, in addition to regions in 6p24.2 [HR_{gain}=1.3 (1.1–1.5), P=0.002], 8p23 [HR_{loss}=0.53 (0.34–0.83), P=0.005], 19p13 [*MLLT1*, *SH3GL1*, *TCF3*, *VAV1*; HR_{loss}=3.7 (1.7–7.7), P<0.001], and 20q11.21 [HR_{gain}=0.44 (0.24–0.81), P=0.009]. Penalized regression (*Table S5*) selected 17 prognostic regions for LCSS on chr1 (*EPS15*, *FGR*, *JUN*, *LCK*, *PAX7*, *STIL*, *TAL1*, *NBL1*, *EPHB2*, *MUTYH*, *NBL1*, *ARNT*), chr9 (*CDKN2A/B*), chr12 (*FGF6*, *ING4*), chr19 (*MLLT1*, *SH3GL1*, *TCF3*, *VAV1*), and chr20 (*HCK*).

Copy-number aberrations associated with the effect of ACT

The average ACT effect on DFS estimated within the 976 patients with CN data was $HR_{ACT} = 0.85 (0.71-1.0)$ (P=0.06). Univariate analyses (*Table 3*) identified five regions in 14q32.33 as potentially predictive of better response to ACT (P<0.05), but with very high Q values. The effect of CNAs in these regions was similar. CN loss in one region in 14q32.33 had HR_{loss} for interaction of 0.42 (0.22–0.83)

Figure 1 The landscape of copy number aberrations in all 976 LACE-Bio patients available for OncoScan assay analysis.

(P=0.012, Q=0.010), corresponding to HR_{gain} for interaction of 2.4 (1.2–4.6). This means that, given a treatment effect (ACT vs. control) of $HR_{[ACT|CN=2]}=0.85$ for a patient with CN=2, such an effect is stronger for a patient with CN=1 ($HR_{[ACT|CN=1]}=0.42\times0.85=0.36$) and reversed with CN=4 ($HR_{[ACT|CN=4]}=2.4\times0.85=2.0$). The predictive role of this region was the only confirmed in multivariate analyses (*Table S6*), with HR_{loss} for interaction of 0.39 (0.20–0.79) (P=0.009).

The average effect of ACT on OS was $HR_{ACT}=0.95$ (0.79–1.1) (P=0.58). At a raw P<0.05, 5 regions were possibly associated to the ACT effect for OS, but with very high Q values (*Table 3*). One region in 8p23.2 showed a treatment effect enhanced for the 31.8% of patients with a CN loss [HR_{loss} for interaction 0.73 (0.57–0.95), P=0.019, Q=0.76), meaning that the HR for a patient with CN=1 was $HR_{[ACT|CN=1]}=0.73\times0.95=0.69$. An adjacent region in 8p23 was selected in multivariate analyses (*Table S6*), with a similar effect [HR_{loss} for interaction 0.42 (0.19–0.93), P=0.032). In univariate analyses, 3 regions in chr10 (*BMI1, NET1, MAP3K8, BMI1, MLLT10, ZMYND11, RET, RASSF4*) with 5–7% losses and 4–5% gains showed predictive effects with HR_{loss} for interaction 0.26–0.28

and CN_{gain} for interaction 3.6–3.9. One region in 15q26 (losses: 4.7%, gains: 4.5%) had HR_{loss} for interaction 0.21 (0.06–0.71) (P=0.012, Q=0.76) corresponding to HR_{gain} for interaction 4.8 (1.4–16). In multivariate analyses (*Table S6*) one region in 14q32.33 was predictive (P=0.006), with HR_{loss} for interaction 0.35 (0.17–0.74) and HR_{gain} for interaction 2.8 (1.4–6.0).

The average effect of ACT on LCSS was $HR_{ACT}=0.83$ (0.68–1.0) (P=0.05). Three of the above-mentioned regions in 14q32 predictive of ACT effect for DFS were also predictive for LCSS (*Table 3*). Two additional regions in 20q11.21 (gain frequency: 20%) had possibly significant interaction with ACT, with HR_{gain} for interaction 5.6 (1.9–16) (P=0.002, Q=0.57) and 5.9 (1.9–19) (P=0.003, Q=0.57), respectively. Two of them (14q32 and 20q11) were confirmed in multivariate analyses (*Table S6*).

Penalized regression did not select any predictive region for either endpoint.

Sensitivity analyses

The results within the optimal quality sample subgroup (*Tables S7-S10*) were consistent with those of the whole

Table	2 Gen	omic reg	ions with	progno	stic effec	et of copy nu	umber aberra	tions (C	(NA)										1
				CNA free	guency	Di	sease-free sur	vival)	Overall survive	ابر ا		Lung-c	sancer specific	c surviva	al		
ID	Chr c	ytoBands	dM	Loss	Gain	HR for loss* (95% CI)	HR for gain** (95% Cl)	٩	σ	HR for loss* (95% Cl)	HR for gain** (95% Cl)	٩	т Ø	R for loss* (95% CI)	HR for gain** (95% CI)	٩	Ø	Genes	
142	7	p12.3- p11.2	8.0E+0	0.7%	17%	0.51 (0.31–0.82)	2.0 (1.2–3.2)	0.005 (0.142										
185	Ø	p11.1– q11.1	4.0E+0	7.3%	17.4%									2.0 (1.2–3.1)	0.51 (0.32–0.82)	0.005	0.130		
211	0	p21.3	3.0E-1	34.8%	3.4%	1.7 (1.3–2.3)	0.57 (0.44–0.76)	<0.001	0.020	1.8 (1.4–2.5)	0.55 (0.41–0.74)	<0.001	0.029	1.8 (1.4–2.4)	0.55 (0.41–0.74)	<0.001	0.019		
212	o	p21.3	6.0E-1	35.9%	3.3%	1.6 (1.2–2.0)	0.64 (0.49–0.84)	0.001	0.076	1.7 (1.3–2.2)	0.59 (0.44–0.79)	<0.001	0.044	1.6 (1.2–2.1)	0.62 (0.47–0.83)	0.001	0.062		
213	o	p21.3	6.0E-2	38.7%	3.2%	1.5 (1.2–1.9)	0.67 (0.53–0.86)	0.001	0.076	1.5 (1.2–2.0)	0.66 (0.51–0.86)	0.002	0.079	1.5 (1.2–2.0)	0.65 (0.50–0.85)	0.001	0.062		
214	o	p21.3	3.0E-1	40.2%	3.0%	1.5 (1.2–1.9)	0.66 (0.53–0.81)	<0.001	0.020	1.5 (1.2–1.9)	0.67 (0.54–0.84)	<0.001	0.049	1.6 (1.2–2.0)	0.64 (0.51–0.80)	<0.001	0.021	CDKN2A, CDKN2B	
215	o	p21.3	2.0E+0	36.3%	3.3%	1.6 (1.2–2.1)	0.62 (0.48–0.81)	<0.001	0.034	1.7 (1.3–2.2)	0.59 (0.45–0.79)	<0.001	0.044	1.7 (1.3–2.2)	0.61 (0.46–0.80)	<0.001	0.029		
217	0	p21.3	9.0E-3	35.0%	3.9%	1.7 (1.3–2.2)	0.60 (0.46–0.79)	<0.001	0.026	1.5 (1.2–2.1)	0.65 (0.48–0.87)	0.004	0.084	1.7 (1.3–2.3)	0.58 (0.44–0.78)	<0.001	0.026		
218	Ø	p21.3	5.0E-1	32.8%	4.5%	1.6 (1.2–2.2)	0.61 (0.45–0.82)	0.001	0.076	1.7 (1.2–2.3)	0.60 (0.43–0.83)	0.002	0.079	1.7 (1.2–2.4)	0.59 (0.42–0.82)	0.002	0.064		
219	Ø	p21.3-2	2.0E+0	30.5%	4.6%	1.8 (1.2–2.6)	0.57 (0.39–0.82)	0.003	0.106	1.8 (1.2–2.7)	0.56 (0.37–0.83)	0.004	0.084	1.9 (1.2–2.8)	0.54 (0.36–0.80)	0.002	0.085		
220	o	p21.2	2.0E-2	30.1%	4.8%									1.6 (1.2–2.1)	0.64 (0.47–0.86)	0.004	0.11		
222	Ø	p21.1	2.0E+0	27.8%	5.2%					1.9 (1.2–2.8)	0.54 (0.36–0.81)	0.003	0.084						
223	0	p21.1	7.0E-1	26.0%	6.4%					1.8 (1.2–2.8)	0.54 (0.36–0.82)	0.003	0.084						
312	14	q23.1	1.0E-1	8.5%	8.9%					2.2 (1.3–3.6)	0.46 (0.28–0.76)	0.002	0.079						
366	18	q12.1	1.0E+0	10.8%	8.6%					1.9 (1.2–3.1)	0.52 (0.32–0.82)	0.005	0.105						
367	18	q12.1	6.0E-1	10.9%	7.1%					2.0 (1.2–3.3)	0.49 (0.30–0.80)	0.005	0.092						
Table 2	. (contin	(pən																	

421

I able	comun	(pana																
				CNA fre	quency	D	isease-free sui	rvival			Overall surviv	ସ୍ଥ		Lung-c	cancer specifio	c surviva	_	
ID	Chr. 6	sytoBands	MM	Loss	Gain	HR for loss* (95% CI)	HR for gain** (95% CI)	۵.	a	HR for loss* (95% Cl)	HR for gain** (95% Cl)	٩	σ	IR for loss* (95% CI)	HR for gain** (95% CI)	٩	a	Genes
368	18	q12.1	1.0E-3	12.1%	6.6%	1.6 (1.2–2.3)	0.61 (0.44–0.85)	0.004	0.119	1.7 (1.2–2.5)	0.58 (0.41–0.82)	0.002 (0.079	1.7 (1.2–2.4)	0.59 (0.42–0.85)	0.004	0.11	
376	19	p13.3	1.0E+0	10.7%	0.4%	2.4 (1.3–4.3)	0.42 (0.23–0.77)	0.005	0.142									FSTL3, STK11
378	19	p13.3–2	8.0E+0	9.2%	0.3%	2.6 (1.4–4.8)	0.38 (0.21–0.72)	0.003	0.106	2.9 (1.5–5.6)	0.34 (0.18–0.66)	0.001 0	0.078	3.4 (1.7–6.6)	0.29 (0.15–0.58)	<0.001	0.029 A	ILLT1, SH3GL1, TCF3, VAV1
379	19	p13.2	3.0E-3	10.3%	%6.0	2.2 (1.3–3.8)	0.45 (0.26–0.76)	0.003	0.106	2.3 (1.3-4.2)	0.43 (0.24–0.77)	0.004 (0.092	2.6 (1.4–4.6)	0.39 (0.22–0.69)	0.001	0.062	
380	19 F	o13.2-p12	1.0E+1	8.0%	2.2%					2.7 (1.4–5.1)	0.38 (0.20–0.73)	0.004 0	0.084					L YL 1, RAB8A, ELL, CDKN2D
383	19	p12-p11	4.0E+0	8.0%	2.5%	2.4 (1.4–4.2)	0.42 (0.24–0.74)	0.003	0.106	2.7 (1.5–5.0)	0.36 (0.2–0.66)	<0.001 (0.066	2.5 (1.3–4.5)	0.41 (0.22–0.75)	0.004	0.11	
The u shows interva	nivaria the n ul; Chr,	tte hazaro elative ris chromos	d ratio (I sk of a I some. *,	HR) for batient	loss sh with a 2 ratio fo	ows the rel 2-fold high€ r a 2-fold lo	ative risk of sr CN, for ex wer copy nu	a patie (ample mber; *	int with four cc	a 2-fold lov ppies as cor rd ratio for a	wer CN, for mpared to tv 12-fold highe	example wo copié er copy r	s one c ss. Of L	opy as co note, HR f	mpared to t or gain is 1/	:wo cop /HR for	ies. Th loss. (e HR for gain Jl, confidence

population. Table S11 shows the genomic regions for which the prognostic effect was significantly different between ADC and SCC (interaction P<0.005). CN gains in two regions in 1q23-31 (FCGR2B, PBX1, TPR, LHX4, CDC73) were associated to shorter DFS in ADC [HR =2.8 (1.3-5.8) and 2.3 (1.1-4.7)] and longer DFS in SCC [HR = 0.44 (0.18-1.1) and 0.53 (0.27-1.0)]. One of these regions showed similar results for LCSS. Similar results were observed for 3 regions in 7p11 (also for LCSS and including EGFR), one in 7q11, one in 11p14 (also for OS), and one in 20q11, with increased risk in ADC and reduced risk in SCC for CN gains. Of note, only one region (chr11p14) had quite low interaction Q-value and only for OS (Q=0.056). Conversely, CN gains in 3 further regions [1p13, 4p12-15 (PTTG2), 4q27] were associated to longer OS in ADC [HR = 0.50 (0.19-1.3), 0.20 (0.07-0.57), and 0.51 (0.28-0.92), respectively] than in SCC [HR =2.4 (1.0-5.6), 2.1 (0.9-4.8), and 1.6 (0.97-2.6), respectively].

Chromosomal instability

The number of BPs was heterogeneous across trials, higher for men and possibly for high performance status (Table S12). Patients with a very high number of BPs (≥ 314) had shorter DFS than patients with very few (≤ 109) [HR =1.5 (1.1-2.0), P=0.015). This result was weaker for OS [HR =1.2 (0.90-1.7), P=0.19), but stronger for LCSS [HR =1.7 (1.2-2.3), P=0.003). Flexible models (Figure S4) in all patients showed that the BP effect can be considered log-linear. Such an effect was HR =1.1 (0.99-1.2, P=0.084, Table 4) on DFS for a patient as compared to another having a two times fewer BPs; this log-linear effect was similar LCSS [HR =1.1 (1.0-1.3), P=0.036) and statistically not significant on OS [HR =1.0 (0.93-1.2), P=0.51). The treatment effect was independent of the number of BPs both when comparing extreme groups (HR range: 0.96 to 1.1, P range: 0.78 to 0.93) and in terms of log-linear effects (HR: 0.93 to 0.99, P: 0.53 to 0.93).

Clonality

Patients with 2+ clones (N=518) had shorter DFS and LCSS [HR =1.2 (1.0–1.4 and 1.0–1.3), *Table S13*] than patients with 0–1 clones (N=456). This result was statistically non-significant (P=0.054 and 0.051, respectively) notably for OS [HR =1.1 (0.88–1.3), P=0.48]. The treatment effect was not associated to clonality [P=0.63 (DFS), 0.47 (OS), 0.52 (LCSS)].

				CNA Fre	quency	Dise	ease-free surv	ival		Ó	verall surviva		Lung-car	ncer specific s	survival	
Regio ID	Chr	cytoBands	dM s	Losses	Gains	HR for loss* F (95% Cl)	HR for gain** (95% Cl)	٩	a	HR for loss [*] F (95% CI)	HR for gain** (95% CI)	Q	HR for loss [*] 1 (95% Cl)	HR for gain** (95% Cl)	o d	Genes
160	œ	p23.2	6.0E-3	31.8%	2.5%					0.73 (0.57–0.95)	1.4 (1.1–1.8)	0.019 0.76				
235	10	p15.3- p11.21	4.0E+1	5.9%	4.0%					0.27 (0.09–0.82)	3.6 (1.2–11)	0.021 0.76				BMI1, NET1, MAP3K8, BMI1, MLLT10, ZMYND11
237	10	p11.21- q11.21	7.0E+0	4.6%	4.5%					0.28 (0.09–0.83)	3.6 (1.2–11)	0.022 0.76				
238	10	q11.21–22	2 4.0E+0	7.2%	4.6%					0.26 (0.08–0.8)	3.9 (1.3–12)	0.019 0.76				RET, RASSF4
318	14	q32.33	2.0E-2	8.9%	10.0%	0.40 (0.19–0.88)	2.5 (1.1–5.4)	0.022	>0.99				0.33 (0.14–0.78)	3.0 (1.3–7.1)	0.011 0.90	
319	14	q32.33	1.0E-1	10.8%	11.4%	0.42 (0.22–0.83)	2.4 (1.2-4.6)	0.012	0.99				0.38 (0.18–0.79)	2.6 (1.3–5.4)	0.00 0.00	
324	14	q32.33	5.0E-2	9.1%	%0.6	0.37 (0.15–0.87)	2.7 (1.2–6.5)	0.022	0.99							
325	14	q32.33	3.0E-2	16.3%	8.3%	0.68 (0.51–0.92)	1.5 (1.1–2.0)	0.012	0.99				0.66 (0.48–0.91)	1.5 (1.1–2.1)	0.012 0.90	
326	14	q32.33	4.0E-1	8.7%	9.2%	0.33 (0.14–0.77)	3.1 (1.3–7.2)	0.011	0.99							
333	15	q26.1–3	9.0E+0	4.7%	4.5%					0.21 (0.06–0.71)	4.8 (1.4–16)	0.012 0.76				
408	20	q11.21	5.0E-1	0.8%	20.8%								0.18 (0.06–0.52)	5.6 (1.9–16)	0.002 0.57	
409	20	q11.21	1.0E-1	0.8%	20.2%								0.17 (0.05–0.54)	5.9 (1.9–19)	0.003 0.57	
*, haz	and ratic	o for a 2-fo	id lower c	mnu Kdos	ber; **, ha	zard ratio for a	a 2-fold higher	copy nu	umber.							

Table 3 Predictive effect of the copy number aberration (CNA) at various genomic regions for the magnitude of the effect of adjuvant chemotherapy. Univariate results

Table 4 Association between chromosomal instability and patient outcomes

Variables	HR (95% CI)	P value
Prognostic effect of the number of BPs		
DFS		
Comparison between extreme classes*	1.5 (1.1–2.0)	0.015
Comparison on all the sample range**	1.1 (0.99–1.2)	0.084
OS		
Comparison between extreme classes*	1.2 (0.90–1.7)	0.19
Comparison on all the sample range**	1.0 (0.93–1.2)	0.51
LCSS		
Comparison between extreme classes*	1.7 (1.2–2.3)	0.003
Comparison on all the sample range**	1.1 (1.0–1.3)	0.036
Predictive effect of the number of BPs		
DFS		
Comparison between extreme classes*	0.96 (0.54–1.7)	0.91
Comparison on all the sample range**	0.95 (0.54–1.7)	0.62
OS		
Comparison between extreme classes*	0.97 (0.52–1.8)	0.93
Comparison on all the sample range**	0.93 (0.76–1.2)	0.53
LCSS		
Comparison between extreme classes*	1.1 (0.57–2.1)	0.77
Comparison on all the sample range**	0.99 (0.80–1.2)	0.93

*, HR between the high-number-of-breakpoints group (≥314, N=200) and the low-number-of-breakpoints group (≤109, N=197); **, Log2-linear effect, i.e., the HR is the ratio of the risk of a patient with a given number of breakpoints (BPs) as compared to a patient with a 2-fold lower number of BPs. DFS, disease-free survival; OS, overall survival; LCSS, lung-cancer specific survival; HR, hazard ratio.

Discussion

Increased understanding of the genomic changes of NSCLC facilitates the identification of prognostic and predictive biomarkers and provides vital information for personalized therapy, potentially allowing tailored treatments for individual patients. We utilized NSCLC FFPE samples from the LACE-Bio project to profile DNA CNAs. The most frequent CN gains were found on 1p13, 1q21, 3q22-26, 5p13-15, 6p24, and 22q11, the most frequent losses on 3p21.31, 8p23, and 9p21.3. The more focal and less frequent losses might be due to harder identification of losses in tumors with stromal cell contamination. Telomerase reverse transcriptase (TERT), among the most frequently amplified genes, is the catalytic subunit of the enzyme telomerase; its overexpression has been associated with poor prognosis (31). Among the loss genes, cyclindependent kinase Inhibitor 2A (CDKN2A), reported to be deleted in many tumors including lung cancer (32), codes for two proteins, p16 (or p16^{*INK4a*}) and p14^{*arf*}, which act as tumor suppressors by regulating the cell cycle.

The different spectrum of CNAs between ADC and SCC has been reported previously (33,34). Genes such as *PIK3CA* (33) and *PDGFB* (35) were amplified in lung SCC. Cyclin L (*CCNL1*) has been identified as oncogene in head and neck cancer (36). Mutations in *CHEK2* (37) and *NF2* (38) have been reported to be associated with SCC. CN loss and promoter hypermethylation of *RASSF1* was reported in SCCHN (39) and in early stage NSCLC (40). *NKX2-1* amplification was significantly less frequent than in ADC (33).

Our analyses confirmed some of the prognostic genes reported in the literature, such as shorter survival with CN loss of *CDKN2A/B* (32). In the present study, *CDKN2A/B* CN loss occurred in 40% of the cases and was significantly associated with shorter DFS. *CDKN2A/B* CN loss was

Translational Lung Cancer Research, Vol 7, No 3 June 2018

also prognostic in ADC. Copy number loss of the tumor suppressor STK11 (or LKB1) has been associated with increased risk of brain metastasis (41). We were not able to confirm this due to incomplete reporting of metastatic sites. NSCLC patients with STK11 exon 1 or 2 mutations have shorter survival (42). A recent meta-analysis (14 studies, 1915 patients with solid tumors) revealed that decreased expression of STK11 was a prognostic factor [HR =2.2 (1.5-3.2), P<0.001] (43). In the present study, STK11 CN loss was found in 11% of samples and was significantly associated with shorter DFS [HR =2.4 (1.3-4.3), P=0.005]. We also identified novel prognostic genes, such as FSTL3, which encodes a secreted glycoprotein, and transcriptional factors MLLT1, SH3GL1, and TCF3, and the guanine nucleotide exchange factor (GEF) gene VAV1. Its overexpression significantly increased the risk of death [HR =1.81 (1.39-2.36), P<0.001) (44). However, in the present study, the CN loss frequency of the region containing these genes was 9%. Additional studies on their prognostic value are warranted.

The LACE-bio study has the unique possibility to identify biomarkers that predict efficacy of ACT in NSCLC by comparison to observation arms. Three regions had significant differences in multivariate analyses between the two study arms, but they came with high false discovery rate (Table S6). Particularly, 8p23.3-2 losses were significantly associated with increased ACT efficacy for OS. The frequent gains of 20q11.21 strongly were associated with no benefit from ACT for LCSS. This deleterious effect from ACT was in strong contrast with the small group (0.8%) of patients with 20q11.21 loss where ACT lead to a notably high survival benefit. The 20q11.21 region is rich in genes that might have a potential role in cancer such as HCK (tyrosine kinase), BCL2L1 (apoptotic regulator), MAPRE1 and TPX2 (microtubule associated factors), DNMT3B (epigenetic modifier) and transcriptional regulators. It is even more striking to find the p53 and DNA damageregulated gene named PDRG1 in 20q11.21. PDRG1 is an oncogene in lung cancer cell lines, is selectively regulated by DNA damaging agents such as UV, and promotes radioresistance (45,46). Whatsoever, its exact role in mediating resistance to ACT in NSCLC remains to be confirmed. Finally, the 14q32.33 region also had differential HR (loss predictive of ACT efficacy, gain predictive of inefficacy), but the proportion of patients with losses and gains were equally high (10.8% and 11.4% respectively), making interpretation more difficult in the context of prediction of ACT efficacy.

In exploratory analyses in the LACE-Bio2 samples, the prognosis of patients with very high chromosomal instability was significantly worse than for patients with very low, independently of the clinical factors. Chromosomal instability could likely be associated with the risk of relapses rather than to death. We found no association with the magnitude of the ACT effect.

The LACE-Bio data and tissue bank provided a valuable source for studying the prognostic and predictive role of the CN of genomic regions in stage I–III NSCLC. These largescale genome-wide analyses were consistent with previous results and provide new candidate prognostic markers. Furthermore, as the data come from randomized controlled trials, we propose new markers which could predict the effect of ACT.

Acknowledgements

The authors would like to acknowledge Ni Liu (Princess Margaret Cancer Centre), Nicolas Lemaitre (Institut Albert Bonniot) and Shakeel Virk (Canadian Cancer Trials Group) for technical assistance. Grants from the US NCI R01 grant, Ligue Nationale Contre le Cancer (France), le Programme National d'Excellence Spécialisé cancer du poumon de l'Institut National du Cancer (INCa) (France), Canadian Cancer Society, the Gustave Roussy Foundation, the Princess Margaret Cancer Foundation and the European contract EU-FP7 Curelung.

Footnote

Conflicts of Interest: The authors have no conflicts of interest to declare.

Ethical Statement: The study was approved by institutional review boards (No. UHN 04-0333-T).

References

- Howlader N, Noone A, Krapcho M, et al. SEER Cancer Statistics Review, 1975-2014. Bethesda, MD; 2017. Available online: https://seer.cancer.gov/csr/1975_2014/. Based on November 2016 SEER data submission, posted to the SEER web site, April 2017.
- Bass AJ, Watanabe H, Mermel CH, et al. SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat Genet 2009;41:1238-42.
- 3. Friboulet L, Olaussen KA, Pignon JP, et al. ERCC1

Isoform Expression and DNA Repair in Non–Small-Cell Lung Cancer. N Engl J Med 2013;368:1101-10.

- Brambilla E, Le Teuff G, Marguet S, et al. Prognostic Effect of Tumor Lymphocytic Infiltration in Resectable Non-Small-Cell Lung Cancer. J Clin Oncol 2016;34:1223-30.
- Graziano SL, Lacas B, Vollmer R, et al. Cross-validation analysis of the prognostic significance of mucin expression in patients with resected non-small cell lung cancer treated with adjuvant chemotherapy: Results from IALT, JBR.10 and ANITA. Lung Cancer 2013;82:149-55.
- Reiman T, Lai R, Veillard AS, et al. Cross-validation study of class III beta-tubulin as a predictive marker for benefit from adjuvant chemotherapy in resected non-small-cell lung cancer: analysis of four randomized trials. Ann Oncol 2012;23:86-93.
- Shepherd FA, Domerg C, Hainaut P, et al. Pooled Analysis of the Prognostic and Predictive Effects of KRAS Mutation Status and KRAS Mutation Subtype in Early-Stage Resected Non-Small-Cell Lung Cancer in Four Trials of Adjuvant Chemotherapy. J Clin Oncol 2013;31:2173-81.
- Shepherd FA, Lacas B, Le Teuff G, et al. Pooled Analysis of the Prognostic and Predictive Effects of TP53 Comutation Status Combined With KRAS or EGFR Mutation in Early-Stage Resected Non–Small-Cell Lung Cancer in Four Trials of Adjuvant Chemotherapy. J Clin Oncol 2017;35:2018-27.
- Tsao M-S, Marguet S, Le Teuff G, et al. Subtype Classification of Lung Adenocarcinoma Predicts Benefit From Adjuvant Chemotherapy in Patients Undergoing Complete Resection. J Clin Oncol 2015;33:3439-46.
- Arriagada R, Bergman B, Dunant A, et al. Cisplatin-Based Adjuvant Chemotherapy in Patients with Completely Resected Non–Small-Cell Lung Cancer. N Engl J Med 2004;350:351-60.
- Arriagada R, Dunant A, Pignon JP, et al. Long-Term Results of the International Adjuvant Lung Cancer Trial Evaluating Adjuvant Cisplatin-Based Chemotherapy in Resected Lung Cancer. J Clin Oncol 2010;28:35-42.
- Winton T, Livingston R, Johnson D, et al. Vinorelbine plus cisplatin vs. observation in resected non-small-cell lung cancer. N Engl J Med 2005;352:2589-97.
- Butts CA, Ding K, Seymour L, et al. Randomized phase III trial of vinorelbine plus cisplatin compared with observation in completely resected stage IB and II nonsmall-cell lung cancer: updated survival analysis of JBR-10. J Clin Oncol 2010;28:29-34.
- 14. Strauss GM, Herndon JE, Maddaus MA, et al. Adjuvant

Paclitaxel Plus Carboplatin Compared With Observation in Stage IB Non-Small-Cell Lung Cancer: CALGB 9633 With the Cancer and Leukemia Group B, Radiation Therapy Oncology Group, and North Central Cancer Treatment Group Study Groups. J Clin Oncol 2008;26:5043-51.

- 15. Douillard JY, Rosell R, De Lena M, et al. Adjuvant vinorelbine plus cisplatin versus observation in patients with completely resected stage IB–IIIA non-small-cell lung cancer (Adjuvant Navelbine International Trialist Association [ANITA]): a randomised controlled trial. Lancet Oncol 2006;7:719-27.
- Foster JM, Oumie A, Togneri FS, et al. Cross-laboratory validation of the OncoScan® FFPE Assay, a multiplex tool for whole genome tumour profiling. BMC Med Genomics 2015;8:5.
- Wang Y, Carlton VE, Karlin-Neumann G, et al. High quality copy number and genotype data from FFPE samples using Molecular Inversion Probe (MIP) microarrays. BMC Med Genomics 2009;2:8.
- Xie T, d' Ario G, Lamb JR, et al. A Comprehensive Characterization of Genome-Wide Copy Number Aberrations in Colorectal Cancer Reveals Novel Oncogenes and Patterns of Alterations. Corvalan AH, ed. PLoS One 2012;7:e42001.
- Olshen AB, Venkatraman ES, Lucito R, et al. Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics 2004;5:557-72.
- 20. Venkatraman ES, Olshen AB. A faster circular binary segmentation algorithm for the analysis of array CGH data. Bioinformatics 2007;23:657-63.
- van de Wiel MA, Van Wieringen WN. CGHregions: Dimension reduction for array CGH data with minimal information loss. Cancer Inform 2007;3:55-63.
- 22. Sakai K, Ukita M, Schmidt J, et al. Clonal composition of human ovarian cancer based on copy number analysis reveals a reciprocal relation with oncogenic mutation status. Cancer Lett 2017;405:22-8.
- 23. Ternès N, Rotolo F, Michiels S. Empirical extensions of the lasso penalty to reduce the false discovery rate in high-dimensional Cox regression models. Stat Med 2016;35:2561-73.
- 24. Ternès N, Rotolo F, Heinze G, et al. Identification of biomarker-by-treatment interactions in randomized clinical trials with survival outcomes and high-dimensional spaces. Biom J 2017;59:685-701.
- 25. Storey JD. A direct approach to false discovery rates. J R Stat Soc Ser B (Statistical Methodol) 2002;64:479-98.

426

Translational Lung Cancer Research, Vol 7, No 3 June 2018

- Westfall PH, Young SS. Resampling-Based Multiple Testing: Examples and Methods for P-Value Adjustment. New York, NY: John Wiley & Sons, 1993.
- 27. Dudoit S, Shaffer JP, Boldrick JC. Multiple Hypothesis Testing in Microarray Experiments. Stat Sci 2003;18:71-103.
- Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature 2012;489:519-25.
- Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 2014;511:543-50.
- Weir BA, Woo MS, Getz G, et al. Characterizing the cancer genome in lung adenocarcinoma. Nature 2007;450:893-98.
- Aviel-Ronen S, Coe BP, Lau SK, et al. Genomic markers for malignant progression in pulmonary adenocarcinoma with bronchioloalveolar features. Proc Natl Acad Sci 2008;105:10155-60.
- Nobori T, Miura K, Wu DJ, et al. Deletions of the cyclindependent kinase-4 inhibitor gene in multiple human cancers. Nature 1994;368:753-6.
- 33. Inoue Y, Matsuura S, Kurabe N, et al. Clinicopathological and Survival Analysis of Japanese Patients with Resected Non-Small-Cell Lung Cancer Harboring NKX2-1, SETDB1, MET, HER2, SOX2, FGFR1, or PIK3CA Gene Amplification. J Thorac Oncol 2015;10:1590-600.
- Lee E, Moon JW, Wang X, et al. Genomic Copy Number Signatures Uncovered a Genetically Distinct Group from Adenocarcinoma and Squamous Cell Carcinoma in Non-Small Cell Lung Cancer. Hum Pathol 2015;46:1111-20.
- 35. Donnem T, Al-Shibli K, Al-Saad S, et al. Prognostic Impact of Fibroblast Growth Factor 2 in Non-small Cell Lung Cancer: Coexpression with VEGFR-3 and PDGF-B Predicts Poor Survival. J Thorac Oncol 2009;4:578-85.
- 36. Redon R, Hussenet T, Bour G, et al. Amplicon mapping and transcriptional analysis pinpoint cyclin L as a candidate oncogene in head and neck cancer. Cancer Res

Cite this article as: Rotolo F, Zhu CQ, Brambilla E, Graziano SL, Olaussen K, Le-Chevalier T, Pignon JP, Kratzke R, Soria JC, Shepherd FA, Seymour L, Michiels M, Tsao MS; on behalf of the LACE-Bio Consortium. Genome-wide copy number analyses of samples from LACE-Bio project identify novel prognostic and predictive markers in early stage non-small cell lung cancer. Transl Lung Cancer Res 2018;7(3):416-427. doi: 10.21037/tlcr.2018.05.01

2002;62:6211-7.

- Wang Y, McKay JD, Rafnar T, et al. Rare variants of large effect in BRCA2 and CHEK2 affect risk of lung cancer. Nat Genet 2014;46:736-41.
- Yoo NJ, Park SW, Lee SH. Mutational analysis of tumour suppressor gene NF2 in common solid cancers and acute leukaemias. Pathology 2012;44:29-32.
- Hogg RP, Honorio S, Martinez A, et al. Frequent 3p allele loss and epigenetic inactivation of the RASSF1A tumour suppressor gene from region 3p21.3 in head and neck squamous cell carcinoma. Eur J Cancer 2002;38:1585-92.
- 40. Buckingham L, Penfield Faber L, Kim A, et al. PTEN, RASSF1 and DAPK site-specific hypermethylation and outcome in surgically treated stage I and II nonsmall cell lung cancer patients. Int J Cancer 2010;126:1630-9.
- Zhao N, Wilkerson MD, Shah U, et al. Alterations of LKB1 and KRAS and risk of brain metastasis: Comprehensive characterization by mutation analysis, copy number, and gene expression in non-small-cell lung carcinoma. Lung Cancer 2014;86:255-61.
- Pécuchet N, Laurent-Puig P, Mansuet-Lupo A, et al. Different prognostic impact of STK11 mutations in non-squamous non-small-cell lung cancer. Oncotarget 2017;8:23831-40.
- Xiao J, Zou Y, Chen X, et al. The Prognostic Value of Decreased LKB1 in Solid Tumors: A Meta-Analysis. PLoS One 2016;11:e0152674.
- 44. Qi Y, Kong FM, Deng Q, et al. Clinical significance and prognostic value of Vav1 expression in Non-small cell lung cancer. Am J Cancer Res 2015;5:2491-7.
- 45. Jiang L, Luo X, Shi J, et al. PDRG1, a novel tumor marker for multiple malignancies that is selectively regulated by genotoxic stress. Cancer Biol Ther 2011;11:567-73.
- 46. Tao Z, Chen S, Mao G, et al. The PDRG1 is an oncogene in lung cancer cells, promoting radioresistance via the ATM-P53 signaling pathway. Biomed Pharmacother 2016;83:1471-77.

Detailed bioinformatics and statistical methods

Bioinformatics pre-processing

The CGH data were normalized relative to an internal pool of 390 reference normal tissues, segmented using circular binary segmentation (CBS) (17,18), and minimal recurrent regions were identified via the CGHregions algorithm (19). We planned to discard regions with <20 CNAs. The proportion of probes on the X-chromosome with called allelic imbalance allowed inferring patient gender. The inferred gender was compared to the actual gender and inconsistent samples were discarded.

Endpoints

The primary endpoint was:

 Disease-free survival (DFS), defined as the time from randomization to first recurrence (loco-regional or distant) or death from any cause.

Secondary endpoints were:

- Overall survival (OS), defined as the time from randomization to death from any cause, and;
- Lung-cancer specific survival (LCSS), defined as the time from randomization to death from lung cancer. Death without evidence of cancer relapse was treated as censoring for LCSS.

Statistical analyses

The called copy number (CN) of each region was correlated to survival endpoints via Cox models stratified by trial and adjusted for treatment arm, patient age, sex, performance status, histology, type of surgery, T, and N stage. The CN entered in the regression models as $log_2(CN)$. Thus, the estimated hazard ratio (HR_{gain}) expresses the relative hazard for a 2-fold higher CN of a given region. Its reciprocal (HR_{loss} = 1/HR_{gain}) is the relative hazard for a 2-fold lower CN. To evaluate the predictive role of CNAs, a treatmentby-log₂(CN) interaction was further added. In both the prognostic and the predictive models, the Cox model was stratified by trial and adjusted for treatment arm and clinical variables.

We performed both univariate (each region separately) and multivariate analyses (several regions jointly). The P values were corrected to control the false discovery rate [Q values (20)]. Multivariate models were built by stepwise selection (α in =0.10 and α out =0.01) and using a penalized regression approach (21,22) with lasso penalty for prognostic analyses and adaptive lasso for predictive analyses.

Preplanned sensitivity analyses were

The analyses were repeated, in addition to the entire study population, within the following subgroups:

- Histological subtypes (ADC vs. SCC);
- Optimal quality subgroup (MAPD ≤ 0.3).

The significance of the CN differences between histologic subtypes was assessed by *t*-tests; the P values were corrected via step- down multiple testing procedures (23,24). We compared the obtained results to those from TCGA (25,26). Known tumor suppressor genes and oncogenes were obtained from previously published results (27).

Chromosomal instability

The number of breakpoints (BPs) in the CN was used as measure of chromosomal instability. Its association with clinicopathological factors was first tested in univariate analyses (Kruskal-Wallis tests), then in a multivariate analysis using a log-linear quasi-Poisson model. Its association with outcomes and treatment effect was studied in Cox models comparing the 20% of patients with the highest number of BPs (\geq 314) to the 20% of patients with the lowest (\leq 109).

Software

The bioinformatics pre-processing and the statistical analyses were performed using R software v3.3, with the following packages: biospear, CGHbase, CGHcall, CGHregions, DNAcopy, glmnet, gplots, parallel, qvalue, scales, survival, TxDb.Hsapiens.UCSC.hg19.knownGene, XLConnect.

Figure S1 Flowchart. FFPE, formalin fixation and paraffin embedding; CALBG, Cancer and Leukemia Group B trial 9633 (8); IALT, International Adjuvant Lung Trial (4,5); JBR.10, National Cancer Institute of Canada intergroup (6,7); CAN, copy number aberration.

Table S1 Most frequent copy num	ber aberrations in all the samples (N=97
---------------------------------	--

Table	S1 Most frequ	uent copy num	ber aberration	s in all the sampl	es (N=976)			
Chr	Region ID	Loss Freq	Gain Freq	Start	End	Mb	Genes	cytoBands
1	6	15.8%	44.7%	110 231 909	110 240 929	9.0E-3		p13.3
	13	0.5%	31.8%	145 394 955	148 544 968	3.0E+0	BCL9, TXNIP	q21.1–2
	15	0.5%	32.8%	149 742 045	161 515 326	1.0E+1	MLLT11, NTRK1, PRCC, TPM3, PYHIN1, EFNA1, MUC1, PLEKHO1, AIM2	q21.2–q23.3
	16	3.8%	30.6%	161 591 477	161 607 441	2.0E-2		q23.3
	17	1.7%	31.7%	161 609 660	161 622 701	1.0E-2		q23.3
3	48	30.0%	0.2%	46 804 388	46 831 840	3.0E-2		p21.31
	50	31.0%	1.6%	75 444 906	75 554 646	1.0E-1		p12.3
	64	3.5%	31.2%	134 402 484	143 774 592	9.0E+0	XRN1	q22.2–q24
	65	3.0%	36.9%	143 794 370	151 504 070	8.0E+0	WWTR1	q24, q25.1
	66	3.6%	38.2%	151 520 944	151 546 041	3.0E-2		q25.1
	67	2.8%	39.8%	151 563 527	162 500 864	1.0E+1	CCNL1, GMPS	q25.1–q26.1
	68	12.7%	40.0%	162 540 700	162 602 984	6.0E-2		q26.1
	69	2.6%	41.5%	162 640 497	162 702 814	6.0E-2		q26.1
	70	2.2%	41.8%	162 719 684	165 245 914	3.0E+0		q26.1
	71	2.3%	42.6%	165 270 444	165 296 562	3.0E-2		q26.1
	72	1.8%	44.8%	165 314 375	169 905 944	5.0E+0	MECOM	q26.1–2
	73	2.2%	45.4%	169 918 311	175 861 931	6.0E+0	PRKCI, PRKCI	q26.2–32
	74	2.6%	45.1%	175 889 230	175 905 626	2.0E-2		q26.32
	75	2.4%	45.5%	175 920 884	187 866 388	1.0E+1	PIK3CA, DCUN1D1, BCL6	q26.32–q27.3
	76	3.2%	43.1%	187 870 778	189 361 993	1.0E+0		q27.3–q28
	77	3.5%	43.0%	189 365 570	189 367 551	2.0E-3		q28
	78	3.1%	42.7%	189 370 963	195 341 037	6.0E+0		q28–q29
	79	3.3%	42.0%	195 419 229	197 852 564	2.0E+0		q29
5	101	0.3%	47.6%	38 139	685 504	6.0E-1	SDHA	p15.33
	102	2.4%	47.1%	718 972	766 213	5.0E-2		p15.33
	103	0.2%	45.7%	776 473	8 685 711	8.0E+0	TERT	p15.33–31
	104	1.5%	45.6%	8 704 021	8 737 812	3.0E-2		p15.31
	105	0.3%	45.9%	8 753 733	17 516 734	9.0E+0		p15.31–p15.1
	106	1.5%	45.9%	17 602 685	17 634 942	3.0E-2		p15.1
	107	0.3%	44.0%	17 648 614	32 164 826	1.0E+1		p15.1–p14.3
	108	0.2%	43.4%	32 168 437	45 893 362	1.0E+1	DAB2	p13.3–p12
	109	1.2%	40.3%	45 895 885	45 915 513	2.0E-2		p12
	110	1.5%	39.0%	45 939 674	46 381 782	4.0E-1		p12–p11
6	122	1.5%	40.3%	11 488 926	11 492 749	4.0E-3		p24.2
8	159	30.4%	2.6%	172 417	2 232 383	2.0E+0		p23.3–2
	160	31.8%	2.5%	2 254 703	2 260 986	6.0E-3		p23.2
	177	33.2%	14.0%	39 274 995	39 383 000	1.0E-1		p11.22
	199	0.7%	31.7%	91 055 345	114 039 680	2.0E+1	RUNX1T1, TP53INP1	q21.3–q23.3
	200	2.6%	31.1%	114 041 368	114 044 217	3.0E-3		q23.3
	201	0.9%	33.2%	114 052 153	123 551 840	9.0E+0	EXT1	q23.3–q24.13
	202	0.7%	38.2%	123 567 563	130 055 981	6.0E+0	MYC, MTSS1	q24.13–21
	203	1.0%	35.6%	130 070 130	137 656 246	8.0E+0	WISP1	q24.21–23
	204	4.3%	32.6%	137 693 433	137 855 026	2.0E-1		q24.23
	205	1.0%	33.7%	137 862 600	146 114 526	8.0E+0	MAFA, MAFA	q24.3–23
9	207	31.9%	4.0%	204 738	12 433 357	1.0E+1	JAK2, KANK1, PTPRD	p24.3–p23
	208	32.3%	4.0%	12 445 364	13 036 438	6.0E-1		p23
	209	32.8%	3.9%	13 059 473	16 048 844	3.0E+0		p23–p22.3
	210	31.4%	3.9%	16 060 347	20 876 513	5.0E+0	MLLT3	p22.3–p21.3
	211	34.8%	3.4%	20 890 669	21 179 174	3.0E-1		p21.3
	212	35.9%	3.3%	21 194 379	21 778 976	6.0E-1		p21.3
	213	38.7%	3.2%	21 785 018	21 845 577	6.0E-2		p21.3
	214	40.2%	3.0%	21 853 221	22 176 560	3.0E-1	CDKN2A, CDKN2B	p21.3
	215	36.3%	3.3%	22 202 151	23 953 634	2.0E+0		p21.3
	216	34.7%	4.1%	23 971 815	24 725 697	8.0E-1		p21.3
	217	35.0%	3.9%	24 741 204	24 750 179	9.0E-3		p21.3
	218	32.8%	4.5%	24 769 948	25 268 867	5.0E-1		p21.3
	219	30.5%	4.6%	25 294 701	27 670 083	2.0E+0		p21.3-2
<u> </u>	220	30.1%	4.8%	27 678 194	27 700 539	2.0E-2		p21.2
22	425	21.3%	45.5%	24 346 428	24 390 318	4.0E-2		q11.23

Figure S2 Copy number aberrations in optimal quality (MAPD ≤0.3) samples only (N=777).

Table S2 Most frequent copy number aberrations in the optimal quality samples only (N=777)

Chr	Region ID	Loss Freq	Gain Freq	Start	End	Mb	Genes	cytoBands
1	13	1%	34%	145 394 955	148 544 968	3.0E+0	BCL9, TXNIP	q21.1–2
1	15	0%	35%	149 742 045	161 515 326	1.0E+1	MLLT11, NTRK1, PRCC, TPM3, PYHIN1, EFNA1, MUC1, PLEKHO1, AIM2	q21.2–q23.3
1	16	1%	32%	161 591 477	161 607 441	2.0E-2		q23.3
1	17	1%	34%	161 609 660	161 622 701	1.0E-2		q23.3
1	18	0%	32%	161 641 596	196 703 707	4.0E+1	FCGR2B, PBX1, TPR, LHX4, CDC73	q23.3–q31.3
3	65	3%	32%	143 794 370	151 504 070	8.0E+0	WWTR1	q24–q25.1
3	66	3%	33%	151 520 944	151 546 041	3.0E-2		q25.1
3	67	3%	34%	151 563 527	162 500 864	1.0E+1	CCNL1, GMPS	q25.1–q26.1
3	69	2%	34%	162 640 497	162 702 814	6.0E-2		q26.1
3	70	2%	34%	162 719 684	165 245 914	3.0E+0		q26.1
3	71	2%	34%	165 270 444	165 296 562	3.0E-2		q26.1
3	72	2%	35%	165 314 375	169 905 944	5.0E+0	MECOM	q26.1–2
3	73	2%	34%	169 918 311	175 861 931	6.0E+0	PRKCI, PRKCI	q26.2–32
3	74	2%	33%	175 889 230	175 905 626	2.0E-2		q26.32
3	75	2%	33%	175 920 884	187 866 388	1.0E+1	PIK3CA, DCUN1D1, BCL6	q26.32– q27.3
3	76	3%	33%	187 870 778	189 361 993	1.0E+0		q27.3–q28
3	77	3%	32%	189 365 570	189 367 551	2.0E-3		q28
3	78	3%	34%	189 370 963	195 341 037	6.0E+0		q28–q29
3	79	3%	34%	195 419 229	197 852 564	2.0E+0		q29
5	101	0%	47%	38 139	685 504	6.0E-1	SDHA	p15.33
5	102	1%	45%	718 972	766 213	5.0E-2		p15.33
5	103	0%	46%	776 473	8 685 711	8.0E+0	TERT	p15.33–31
5	104	0%	45%	8 704 021	8 737 812	3.0E-2		p15.31
5	105	0%	45%	8 753 733	17 516 734	9.0E+0		p15.31– p15.1
5	106	0%	45%	17 602 685	17 634 942	3.0E-2		p15.1
5	107	0%	44%	17 648 614	32 164 826	1.0E+1		p15.1–p13.3
5	108	0%	42%	32 168 437	45 893 362	1.0E+1	DAB2	p13.3–p12
5	109	1%	41%	45 895 885	45 915 513	2.0E-2		p12
5	110	1%	39%	45 939 674	46 381 782	4.0E-1		p12–p11
8	199	1%	32%	91 055 345	114 039 680	2.0E+1	RUNX1T1, TP53INP1	q21.3–q23.3
8	200	1%	32%	114 041 368	114 044 217	3.0E-3		q23.3
8	201	1%	34%	114 052 153	123 551 840	9.0E+0	EXT1	q23.3– q24.13
8	202	1%	37%	123 567 563	130 055 981	6.0E+0	MYC, MTSS1	q24.13–21
8	203	1%	36%	130 070 130	137 656 246	8.0E+0	WISP1	q24.21–23
8	204	2%	33%	137 693 433	137 855 026	2.0E-1		q24.23
8	205	1%	34%	137 862 600	146 114 526	8.0E+0	MAFA	q24.3–23
9	209	30%	4%	13 059 473	16 048 844	3.0E+0		p23–p22.3
9	213	30%	3%	21 785 018	21 845 577	6.0E-2		p21.3
9	214	31%	3%	21 853 221	22 176 560	3.0E-1	CDKN2A, CDKN2B	p21.3
9	215	30%	3%	22 202 151	23 953 634	2.0E+0		p21.3

Figure S3 Copy number aberrations in adenocarcinomas (A and D) and squamous cell carcinomas (B and E) in the LACE-Bio (A,B,C) and the Cancer Genome Atlas (TCGA) data (D,E,F).

 $\textbf{Table S3} \ \text{Regions [195] with significantly (Q \leq 0.05) different copy number aberration frequency between adenocarcinomas and squamous cell carcinomas in all the samples (N=976) and (N=976) are constrained as a strained at the samples (N=976) are constrained at the samples (N=976) ar$

Chr	Region ID	Loss ADC	s Freq SCC	Gain ADC	Freq SCC	- Q	Start	End	Mb	Genes	cytoBands
1	1 3	7% 5%	18% 15%	1% 2%	1% 1%	0.001 0.001	754 192 13 181 849	12 833 428 72 758 707	1.0E+0 6.0E+0	SKI, PARK7, CHD5, ERRFI1, TP73 EPS15, FGR, JUN, LCK, PAX7, STIL, TAL1, NBL1, EPHB2, MUTYH, NBL1, ARNT	p36.21–33 p36.21–p31.1
	5	8% 10%	17% 21%	2% 1%	1% 0%	0.001	72 814 783 110 246 359	110 222 219 110 761 020	4.0E+0 5.0E-2	BCL10	p31.1-p13.3
	8	11%	18%	2%	1%	0.001	110 777 105	120 508 803	1.0E+0	NRAS, RBM15, RAP1A	p13.3–p12
	11 12	1% 1%	6% 3%	26% 31%	13% 16%	0.001 0.001	144 852 910 145 115 883	145 095 477 145 382 341	2.0E-2 3.0E-2		q21.1 q21.1
	13 15	0% 0%	1% 1%	43% 45%	22% 22%	0.001 0.001	145 394 955 149 742 045	148 544 968 161 515 326	3.0E–1 1.0E+0	BCL9, TXNIP MLLT11, NTRK1, PRCC, TPM3, PYHIN1, EFNA1, MUC1, PLEKHO1, AIM2	q21.1–2 q21.2–q23.3
	16	3%	5%	41%	21%	0.027	161 591 477	161 607 441	2.0E-3		q23.3
	17	0%	2% 0%	42% 37%	22% 22%	0.001	161 609 660	196 703 707	1.0E-3 4.0E+0	FCGR2B, PBX1, TPR, LHX4, CDC73	q23.3 q23.3–q31.3
	20 21	1% 1%	1% 1%	37% 37%	20% 19%	0.001 0.001	196 823 613 196 922 021	196 882 344 248 687 952	6.0E-3 5.0E+0	FH, PHLDA3, LIN9, LGR6, RASSF5	q31.3 q31.3–q44
2	22 23	2% 1%	3% 1%	37% 2%	20% 7%	0.001 0.001	248 773 062 21 494	249 212 878 34 689 435	4.0E-2 3.0E+0	ALK, MYCN, NCOA1, RHOB	q44 p25.3–p22.3
_	25	1%	0%	2%	10%	0.001	34 741 001	89 572 881	5.0E+0	REL, MSH2	p22.3–p11.2
	32 33	4% 4%	14% 17%	3% 4%	5% 5%	0.006 0.001	141 786 613 141 893 894	141 882 709 142 075 788	1.0E-2 2.0E-2		q22.1 q22.1
	42 43	1% 3%	11% 15%	3% 3%	2% 1%	0.001 0.001	206 472 683 220 035 105	220 020 335 220 042 675	1.0E+0 8.0E-4	IDH1	q33.3–q35 q35
3	44 46	3% 15%	13% 36%	3% 1%	1% 1%	0.001	220 056 954 63 411	242 834 648 30 625 123	2.0E+0 3.0E+0	PAX3, DIS3L2 RAF1_RABB_VHI	q35–q37.3 p26.3–p24.1
5	47	16%	38%	1%	0%	0.001	30 638 028	46 778 842	2.0E+0	MLH1, LIMD1, DLEC1	p24.1–p21.31
	48 49	18% 17%	41% 41%	1% 1%	0% 1%	0.004 0.001	46 804 388 46 852 679	46 831 840 75 394 787	3.0E-3 3.0E+0	RHOA, NCKIPSD, TCTA, USP4, NPRL2, RASSF1, TUSC2, FHIT, NAT6, PBRM1, PRKCD	p21.31 p21.31–p12.3
	50	18%	43%	2%	1%	0.001	75 444 906	75 554 646	1.0E-2		p12.3
	52	16%	40% 40%	1%	2%	0.001	78 930 451	78 927 132	3.0E-1 7.0E-4		p12.3
	53 54	17% 15%	39% 35%	2% 3%	2% 6%	0.001 0.001	78 939 727 84 068 424	84 046 628 89 392 778	5.0E–1 5.0E–1		p12.3–1 p12.1–p11.1
	56	13%	33%	5%	7%	0.001	89 423 343	90 418 473	1.0E-1		p11.1
	58 59	9% 8%	5% 4%	9% 10%	34% 36%	0.001	93 530 364 100 351 896	100 327 532 111 493 739	7.0E-1 1.0E+0	TFG	q11.1–q12.2 q12.2–q13.13
	60 61	7% 7%	4% 3%	11% 10%	39% 40%	0.001 0.001	111 521 268 111 567 238	111 555 200 129 762 859	3.0E-3 2.0E+0		q13.2 q13.2–q22.1
	62	6%	2%	12%	43%	0.001	129 784 388	129 810 022	3.0E-3		q22.1
	63 64	6% 5%	2% 1%	12% 14%	46% 50%	0.001	129 823 705 134 402 484	134 398 090 143 774 592	5.0E-1 9.0E-1	XRN1	q22.1-2 q22.2-q24
	65 66	5% 5%	0% 1%	14% 15%	61% 64%	0.001 0.001	143 794 370 151 520 944	151 504 070 151 546 041	8.0E–1 3.0E–3	WWTR1	q24–q25.1 q25.1
	67	5%	0%	15%	67%	0.001	151 563 527	162 500 864	1.0E+0	CCNL1, GMPS	q25.1–q26.1
	68 69	15% 4%	11% 1%	21% 18%	61% 68%	0.001	162 540 700 162 640 497	162 602 984 162 702 814	6.0E-3 6.0E-3		q26.1 q26.1
	70 71	4% 4%	0% 0%	17% 18%	69% 70%	0.001 0.001	162 719 684 165 270 444	165 245 914 165 296 562	3.0E–1 3.0E–3		q26.1 q26.1
	72	3%	0%	18%	74%	0.001	165 314 375	169 905 944	5.0E-1	MECOM	q26.1–2
	73	4% 4%	0% 1%	16%	77%	0.001	175 889 230	175 905 626	8.0E-1 2.0E-3	ΡΗΛΟΙ, ΡΗΛΟΙ	q26.32
	75 76	4% 5%	0% 1%	16% 15%	78% 74%	0.001 0.001	175 920 884 187 870 778	187 866 388 189 361 993	1.0E+0 1.0E–1	PIK3CA, DCUN1D1, BCL6	q26.32–q27.3 q27.3–q28
	77 78	5%	1%	15% 15%	74% 73%	0.001	189 365 570	189 367 551 195 341 037	2.0E-4		q28
	79	6%	0%	15%	72%	0.001	195 419 229	197 852 564	2.0E-1		q29
4	80 82	5% 5%	21% 22%	3% 3%	1% 0%	0.001 0.001	69 404 9 586 764	9 153 037 34 772 494	9.0E-1 3.0E+0	WHSC1	p16.3–1 p16.1–p15.1
	84 85	3% 3%	20% 16%	3% 5%	1% 4%	0.001 0.001	34 847 676 48 083 885	48 061 771 49 085 053	1.0E+0 1.0E-1	PTTG2	р15.1–р12 р12–р11
	86	3%	16%	4%	3%	0.001	49 085 414	49 092 454	7.0E-4		p11
	92 93	9% 5%	23% 19%	2% 2%	3% 4%	0.001 0.001	87 465 741 88 208 266	88 195 494 90 739 539	7.0E–2 3.0E–1	AFF1	q21.3–q22.1 q22.1
	95 96	6% 7%	21% 25%	1% 1%	2% 2%	0.001 0.001	90 784 528 122 282 972	122 271 282 122 288 144	3.0E+0 5.0E-4	TET2	q22.1–q27 q27
	97	6%	25%	2%	2%	0.001	122 299 078	134 264 058	1.0E+0	IL2	q27–q28.3
	98 99	6% 6%	26% 27%	2% 3%	2% 2%	0.001 0.001	134 271 747 134 304 705	134 295 157 166 810 338	2.0E-3 3.0E+0		q28.3 q28.3–q32.3
5	100 111	12% 5%	30% 17%	1% 27%	1% 22%	0.001	166 830 580 49 441 966	190 915 650 49 562 291	2.0E+0	HPGD	q32.3–q35.2
-	112	10%	26%	16%	9%	0.001	49 597 497	49 608 094	1.0E-3		q11.1
	113 114	10% 13%	29% 35%	13% 8%	7% 2%	0.001	49 640 141 51 505 665	51 484 497 60 219 800	2.0E-1 9.0E-1	PLK2, PDE4D	q11.1-2 q11.2-q12.1
	115 116	15% 17%	36% 36%	6% 5%	1% 1%	0.001 0.001	60 241 946 70 306 678	68 828 372 112 950 805	9.0E-1 4.0E+0	FER, RASA1, APC, MCC	q12.1–q13.2 q13.2–q22.2
	118	18%	36%	5%	1%	0.001	112 997 656	139 372 404	3.0E+0	AFF4, IRF1	q22.2–q31.2
	119 120	15% 16%	31% 35%	11% 5%	6% 1%	0.010	139 379 707 139 411 703	139 400 093 180 698 312	2.0E-3 4.0E+0	CSF1R, ARHGAP26, NPM1, PDGFRB, NSD1, PTTG1	q31.2 q31.2–q35.3
6	121 123	1% 0%	7% 6%	9% 10%	4% 5%	0.001 0.001	204 909 11 521 599	11 474 632 31 276 175	1.0E+0 2.0E+0	DEK	p25.3–p24.2 p24.2–p21.33
	125	1%	6%	10%	2%	0.001	31 297 365	32 528 026	1.0E-1		p21.33-32
	126 127	1% 1%	7% 5%	11% 9%	2% 2%	0.001	32 561 716 32 581 816	32 577 756 42 552 548	2.0E-3 1.0E+0	PIM1	p21.32 p21. 32–p21.1
	128 133	0% 6%	3% 2%	10% 4%	7% 5%	0.026 0.017	42 572 859 64 281 705	51 038 424 65 202 867	8.0E–1 9.0E–2	VEGFA	p21.1–p12.3 q12
	134	11%	3%	2%	3%	0.001	65 286 066	78 962 125	1.0E+0		q12-q14.1
	136 138	16% 14%	6% 7%	1% 1%	1% 2%	0.001	79 042 157 103 766 477	103 728 158 170 913 051	2.0E+0 7.0E+0	UFL1 FOXO3, FYN, MAS1, MLLT4, MYB, ROS1, SASH1, FRK, RPS6KA2, LATS1	q14.1–q16.3 q16.3–q27
7 8	152 163	2% 25%	1% 36%	14% 4%	20% 2%	0.001 0.023	88 259 445 16 025 118	100 958 270 25 073 138	1.0E+0 9.0E–1	PCM1, LZTS1, DMTN, NKX3-1, MTUS1	q21.13–q22.1 p22–p21.2
	169	19% 18%	20%	8%	20%	0.047	36 025 847	36 621 588	6.0E-2		p12-p11.23
	170	18%	13%	11%	28%	0.001	37 667 018	37 767 527	1.0E-1		p11.23
	172 173	17% 17%	11% 10%	11% 11%	30% 31%	0.001 0.001	37 786 457 38 137 530	38 127 768 38 139 729	3.0E-2 2.0E-4	PPAPDC1B WHSC1L1	p11.23 p11.23
	174 175	17% 17%	9% 10%	10% 10%	32% 30%	0.001	38 143 357 38 552 757	38 528 508 39 217 074	4.0E-2 7.0E-2	WHSC1L1	p11.23-22
	178	15%	11%	11%	27%	0.001	39 412 457	39 969 006	6.0E-2		p11.22–21
	179 180	15% 14%	12% 11%	11% 12%	23% 22%	0.001 0.001	39 976 970 41 077 098	41 058 677 41 261 544	1.0E-1 2.0E-2		p11.21 p11.21
	181 182	13% 12%	10% 10%	13% 13%	22% 20%	0.003 0.012	41 280 152 42 574 931	42 559 586 43 157 099	1.0E–1 6.0E–2	KAT6A	p11.21 p11.21–1
9	211	28%	42% 43%	3% 3%	3% 3%	0.003	20 890 669	21 179 174 21 778 976	3.0E-2		p21.3
	212	32%	46%	3%	3%	0.001	21 785 018	21 845 577	6.0E-2		p21.3
	214 215	33% 30%	48% 44%	3% 3%	2% 3%	0.001 0.012	21 853 221 22 202 151	22 176 560 23 953 634	3.0E-2 2.0E-1	CDKN2A, CDKN2B	p21.3 p21.3
	216	28%	41%	4%	4%	0.017	23 971 815	24 725 697	8.0E-2		p21.3
	232	21% 19%	16% 14%	1% 2%	4% 5%	0.001	71 035 938 91 440 590	91 434 530 96 341 196	2.0E+0 5.0E-1	FAM120A	q21.11–q22.1 q22.1–31
10	234 235	18% 3%	14% 8%	1% 5%	4% 3%	0.005 0.001	96 382 906 126 070	141 054 761 35 317 317	4.0E+0 4.0E+0	ABL1, SET, TAL2, NR4A3, NUP214, GFI1B, DAB2IP, DEC1, PTCH1, TSC1 BMI1, NET1, MAP3K8, BMI1, MLLT10, ZMYND11	q22.31–q34.3 p15.3–p11.21
	237	3% 4%	6% 9%	6% 4%	3% 5%	0.001	35 351 249 42 614 561	42 608 180 46 177 093	7.0E-1	BET BASSEA	p11.21-q11.21
	239	7%	14%	8%	9%	0.024	46 965 151	47 127 279	2.0E-2		q11.22
	241 242	6% 7%	12% 15%	4% 2%	3% 2%	0.001 0.001	48 302 618 51 785 728	51 594 462 63 841 130	3.0E–1 1.0E+0	NCOA4 CCDC6	q11.22–23 q11.23–q21.2
	243 244	7% 8%	16% 17%	3% 2%	2% 2%	0.001	63 861 600 68 077 764	68 064 594 68 114 481	4.0E-1		q21.2–3
	245	8%	17%	3%	2%	0.001	68 128 614	83 887 644	2.0E+0		q21.3–q23.1
	246 247	8% 9%	20% 18%	3% 3%	1% 1%	0.001 0.001	83 894 966 91 422 054	91 400 384 131 496 457	8.0E-1 4.0E+0	PIEN FRAT1, DMBT1, FGFR2, TLX1, MXI1, NFKB2, WDR11, C10orf90, DMBT1, PDCD4, SUFU,	q23.1–q23.31 q23.31–q26.3
	249	10%	19%	3%	2%	0.001	131 540 611	135 434 303	4.0E-1	NEURL1	q26.3
11	250 258	3% 4%	12% 9%	0% 4%	0% 3%	0.001 0.015	192 764 65 186 348	27 362 359 65 271 832	3.0E+0 9.0E-3	RRAS2, CSNK2A3, HRAS, LMO1, AKIP1, CARS, CDKN1C, HTATIP2, PRKCDBP	p15.5–p14.1 q13.1
	259	1%	5%	7%	5%	0.004	65 283 143	67 656 861	2.0E-1	BRMS1	q13.1–2
	264 265	3% 4%	8% 10%	7% 8%	5% 3%	0.001	71 620 699 77 055 862	77 051 820 89 473 402	5.0E-1 1.0E+0	PICALM	q13.4–5 q13.5–q14.3
12	266 268	8% 6%	12% 1%	5% 11%	2% 22%	0.007 0.001	89 654 897 189 400	118 621 410 866 208	3.0E+0 7.0E-2	YAP1, DDX6, KMT2A, POU2AF1, ZBTB16, PDGFD, CADM1, ATM, ARHGAP20	q14.3–q23.3 p13.33
	270 273	7% 8%	1% 1%	9% 9%	24% 24%	0.001	876 288 9 739 885	9 623 841	9.0E-1 2.0E-1	FGF6, ING4 STYK1	p13.33-31
	274	14%	7%	8%	22%	0.001	11 515 281	11 543 338	3.0E-3		p13.2
	275 276	۵% 5%	1%	7% 12%	∠3% 23%	0.001	17 635 521	31 241 345	0.0E−1 1.0E+0	KRAS	p13.2–013.2 p12.3–p11.21
	277 278	4% 4%	1% 2%	10% 9%	20% 18%	0.001 0.001	31 296 219 33 994 599	33 982 162 34 749 065	3.0E-1 8.0E-2		p11.21–1 p11.1
	279 285	3%	2% 1%	9%	15% 6%	0.026	34 755 947	34 828 211 93 622 200	7.0E-3	RTG1 7044017	p11.1
13	294	13%	23%	4%	3%	0.018	81 036 784	103 258 600	2.0E+0		q31.1–q33.1
14	295 303	13% 3%	24% 11%	4% 17%	2% 8%	0.001 0.001	103 273 465 28 292 800	103 286 814 34 485 112	1.0E–3 6.0E–1		q33.1 q12–q13.1
	304 305	2% 2%	10% 10%	22% 25%	9% 11%	0.001 0.001	34 490 900 35 605 465	35 596 092 38 959 413	1.0E-1 3.0E-1	NKX2-1, MBIP	q13.1–2 q13.2–a21.1
	306	2%	10%	21%	10%	0.001	38 976 380	39 121 670	1.0E-2		q21.1
	308	<i>∠ 7</i> 0 3%	10%	18%	<i>37</i> 0 8%	0.001	39 311 307	41 601 018	2.0E-3	PNN	q21.1
	310 311	3% 4%	10% 11%	16% 12%	8% 7%	0.001 0.022	41 673 714 43 093 389	43 083 557 61 786 976	1.0E-1 2.0E+0		q21.1 q21.1–q23.1
15	312 327	4% 13%	12% 8%	10% 1%	7% 2%	0.014 0.001	61 799 920 20 161 372	61 917 178 34 671 061	1.0E-2 1.0E+0		q23.1 q11.1–q14
	329	14%	7%	1%	2%	0.001	34 870 223	38 622 707	4.0E-1		q14
	330 331	14% 10%	7% 4%	1% 2%	1% 3%	0.001 0.001	उర 623 948 44 016 417	43 995 380 76 738 959	ວ.0E–1 3.0E+0	ZFYVE19, BUB1B PML, ARID3B, PML	q14–q15.3 q15.3–q24.3
	332 333	8% 7%	3% 2%	2% 3%	5% 7%	0.001 0.001	76 752 698 93 429 646	93 407 788 102 397 317	2.0E+0 9.0E-1	AKAP13, FES, FES, ST20, IDH2	q24.3–q26.1 q26.1–3
16	334	4%	10%	4%	0%	0.001	83 887	6 988 411	7.0E-1	TSC2, AXIN1	p13.3
	335 336	4% 4%	9% 7%	13% 7%	4% 1%	0.008 0.001	o 999 231 7 023 927	י טוז 483 28 609 205	1.0E-3 2.0E+0	MYH11, TNFRSF17, LITAF, PALB2	p13.3 p13.3–p11.2
17	338 346	2% 16%	5% 24%	6% 1%	2% 1%	0.002 0.004	28 628 225 400 959	32 137 965 18 928 388	4.0E-1 2.0E+0	FUS, PYCARD CRK, ELAC2, GAS7, USP6, TP53, KCTD11. DPH1. FLCN_HIC1_XAF1	p11.2 p13.3–p11.2
	348	8%	17%	3%	3%	0.001	21 690 667	22 217 883	5.0E-2		p11.2–1
	352 353	2% 1%	4% 6%	12% 10%	7% 8%	0.001 0.001	36 861 302	აზ 854 507 45 005 703	∠.0E–1 8.0E–1	ERBB2, MLLT6, RARA, WNT3, BRCA1	q12 q12–q21.32
18	360 361	1% 7%	7% 5%	15% 4%	11% 12%	0.001	80 185 188 12 842	80 263 427 14 240 269	8.0E–3 1.0F±0	YES1. FPB41L3	q25.3 p11.32-21
	362	7%	5%	4%	10%	0.001	14 270 974	15 377 471	1.0E-1		p11.21
	363 364	8% 11%	5% 6%	5% 4%	9% 10%	0.026 0.001	18 554 999 21 659 508	21 648 788 24 123 575	3.0E-1 2.0E-1	ZNF521, SS18	q11.1–2 q11.2
	365	14% 15%	7% 7%	3%	10% 11%	0.001	24 143 454 27 678 997	27 670 629	4.0E-1		q11.2-q12.1
	367	15%	8%	3%	9%	0.001	29 119 357	29 715 321	6.0E-2		q12.1
	368 369	16% 14%	9% 8%	3% 3%	9% 9%	0.001 0.001	29 736 017 29 754 749	29 737 077 29 779 205	1.0E-4 2.0E-3		q12.1 q12.1
	370	14%	8%	3%	9%	0.001	29 790 889	30 339 291	5.0E-2		q12.1
19	371 378	15% 11%	9% 6%	2% 0%	7% 0%	0.001 0.001	აυ 358 394 1 335 531	აა 590 529 9 051 725	ು.0E–1 8.0E–1	MLLT1, SH3GL1, TCF3, VAV1	q12.1–2 p13.3–2
	380 382	11% 11%	4% 4%	1% 2%	3% 5%	0.001 0.001	9 059 232 20 723 899	20 499 493 20 758 368	1.0E+0 3.0E-3	LYL1, RAB8A, ELL, CDKN2D	p13.2–p12 p12
20	383 300	10% 6%	5% 3%	2% 10%	3% 21%	0.001	20 769 956 69 094	24 505 466 13 595 807	4.0E-1	RASSE2	p12-p11
	400	5%	3%	11%	20%	0.004	13 618 382	14 780 319	1.0E-1	101007 E	p12.1
	402 403	5% 5%	4% 2%	12% 12%	20% 22%	0.008 0.001	14 827 680 15 560 791	15 557 228 23 693 161	7.0E-2 8.0E-1		p12.1 p12.1–p11.21
21	404 419	3% 10%	3% 18%	13% 1%	22% 1%	0.024 0.014	23 700 872 9 648 315	25 672 987 10 964 130	2.0E-1		p11.21–p11.1 p11 2–1
.,	420	8%	16%	1%	1%	0.002	14 344 537	34 787 312	2.0E+0	OLIG2, TCP10L	q11.2-q22.11
22	421 422	8% 6%	19% 5%	1% 2%	1% 9%	0.001 0.001	34 796 886 16 054 713	48 097 610 19 009 167	1.0E+0 3.0E-1	EHG, ETS2, RUNX1, SIK1	q22.11-q22.3 q11.1-21
	423 424	5% 5%	2% 3%	3% 3%	14% 11%	0.001 0.001	19 026 877 21 804 610	21 462 601 24 338 651	2.0E-1 3.0E-1	BCR, SMARCB1	q11.21 q11.21-23
	426 427	6% 7%	6% 3%	12%	18% 11%	0.026	24 394 088 24 398 769	24 396 598 25 917 800	3.0E-4 2.∩⊑ 1		q11.23 a11 23-~10 f
	428	9%	3%	3 <i>%</i> 1%	11%	0.001	550 708 25 942 595	36 907 098	0⊆−1 1.0E+0	EWSR1, PATZ1, RASL10A, CHEK2, MN1, NF2	q12.1–3
	429 430	8% 9%	3% 4%	2% 1%	10% 11%	0.001 0.001	ახ 919 447 39 363 830	उष्र 343 292 42 517 758	2.0E-1 3.0E-1	PDGFB, MKL1	q12.3–q13.1 q13.1–2
	431	9%	5%	1%	9%	0.001	42 518 382	51 213 826	9.0E-1	PIM3, PRR5	q13.2–33

Table S4 Prognostic effect of the copy	number of genomic regions	. Multivariate results
--	---------------------------	------------------------

	Deview	CNA fre	equency	Dise	ase-free survival			Overall survival		Lung-ca	ncer specific surviva	l			
Chr	ID	Losses	Gains	HR for loss* (95% Cl)	HR for gain** (95% Cl)	Р	HR for loss* (95% Cl)	HR for gain** (95% Cl)	Ρ	HR for loss* (95% Cl)	HR for gain** (95% Cl)	Ρ	Mb	Genes	cytoBands
1	3	9.8%	1.6%	0.32 (0.16–0.61)	3.2 (1.6–6.1)	<0.001				0.21 (0.10–0.43)	4.8 (2.3–10)	<0.001	6.0E+1	EPS15, FGR, JUN, LCK, PAX7, STIL, TAL1, NBL1, EPHB2, MUTYH, ARNT	p36.21-p31.1
3	72	1.8%	44.8%				1.8 (1.3–2.6)	0.55 (0.38–0.79)	0.001				5.0E+0	MECOM	q26.1–2
6	122	1.5%	40.3%							0.78 (0.66–0.91)	1.3 (1.1–1.5)	0.002	4.0E-3		p24.2
7	142	0.7%	17.3%	0.46 (0.29–0.75)	2.1 (1.3–3.5)	0.002							8.0E+0		p12.3–p11.2
8	159	30.4%	2.6%							0.53 (0.34–0.83)	1.9 (1.2–3.0)	0.005	2.0E+0		p23.3–2
9	211	34.8%	3.4%	1.9 (1.4–2.5)	0.54 (0.41–0.72)	<0.001	2.1 (1.5–2.8)	0.49 (0.36–0.66)	<0.001	2.1 (1.5–3.0)	0.47 (0.34–0.65)	<0.001	3.0E-1		p21.3
19	378	9.2%	0.3%							3.7 (1.7–7.7)	0.27 (0.13–0.58)	<0.001	8.0E+0	MLLT1, SH3GL1, TCF3, VAV1	p13.3–2
20	409	0.8%	20.2%							2.3 (1.2–4.2)	0.44 (0.24–0.81)	0.009	1.0E-1		q11.21

*, hazard ratio for a 2-fold lower copy number; **, hazard ratio for a 2-fold higher copy number.

Table S5 Prognostic effect of the copy number of genomic regions. Multivariate results obtained via penalized regression

	Decien	CNA fre	quency	Disea	ase-free survival		Ove	erall survival		Lung-can	cer specific surviva	I			
Chr	ID	Losses	Gains	HR for loss* (95% Cl)	HR for gain** (95% CI)	Р	HR for loss* (95% Cl)	HR for gain** (95% Cl)	Р	HR for loss* (95% Cl)	HR for gain** (95% Cl)	Ρ	Mb	Genes	cytoBands
1	3	9.8%	1.6%							0.92 (0.83–1.0)	1.1 (0.98–1.2)	0.129	6.0E+1	EPS15, FGR, JUN, LCK, PAX7, STIL, TAL1, NBL1, EPHB2, MUTYH, NBL1, ARNT	p36.21–p31.1
1	14	15.6%	25.9%							1.0 (0.92–1.1)	0.99 (0.90–1.1)	0.837	2.0E-1		q21.2
3	71	2.3%	42.6%							1.0 (0.90–1.1)	0.99 (0.88–1.1)	0.919	3.0E-2		q26.1
6	122	1.5%	40.3%							0.97 (0.87–1.1)	1.0 (0.93–1.1)	0.554	4.0E-3		p24.2
7	142	0.7%	17.3%							0.97 (0.87–1.1)	1.0 (0.93–1.1)	0.531	8.0E+0		p12.3–p11.2
8	166	23.5%	7.4%							0.98 (0.89–1.1)	1.0 (0.91–1.1)	0.771	1.0E+0		p12
8	185	7.3%	17.4%							1.0 (0.94–1.1)	0.96 (0.87–1.1)	0.460	4.0E+0		p11.1-q11.1
9	211	34.8%	3.4%	1.0 (0.91–1.2)	0.98 (0.86–1.1)	0.686				1.1 (0.92–1.2)	0.94 (0.81–1.1)	0.427	3.0E-1		p21.3
9	214	40.2%	3.0%	1.0 (0.88–1.1)	1.0 (0.88–1.1)	0.984				1.0 (0.89–1.2)	0.98 (0.85–1.1)	0.724	3.0E-1	CDKN2A, CDKN2B	p21.3
9	217	35.0%	3.9%							1.0 (0.90–1.2)	0.98 (0.85–1.1)	0.717	9.0E-3		p21.3
12	270	3.9%	16.4%							0.98 (0.88–1.1)	1.0 (0.92–1.1)	0.705	9.0E+0	FGF6, ING4	p13.33–31
14	312	8.5%	8.9%							1.0 (0.92–1.1)	0.99 (0.90–1.1)	0.844	1.0E-1		q23.1
18	368	12.1%	6.6%							1.1 (0.95–1.2)	0.95 (0.86–1.1)	0.321	1.0E-3		q12.1
19	378	9.2%	0.3%							1.1 (0.92–1.2)	0.95 (0.84–1.1)	0.443	8.0E+0	MLLT1, SH3GL1, TCF3, VAV1	p13.3–2
19	379	10.3%	0.9%							1.0 (0.90–1.1)	0.99 (0.87–1.1)	0.821	3.0E-3		p13.2
19	383	8.0%	2.5%							1.0 (0.91–1.1)	0.99 (0.88–1.1)	0.802	4.0E+0		p12–p11
20	410	1.1%	20.8%							1.0 (0.9–1.1)	0.99 (0.89–1.1)	0.895	2.0E+0	НСК	q11.21–22

Results from a model adjuster by treatment arm, patient age, sex, performance status (PS), histology, T, and N stage. *, hazard ratio for a 2-fold lower copy number; **, hazard ratio for a 2-fold higher copy number.

Table S6 Predictive effect of the copy number of genomic regions. Multivariate results

Chr	Region	CNA frequency		Disease-free survival			O	verall survival		Lung-cancer specific survival				outoBondo
GH	ID	Losses	Gains	HR for loss* (95% CI)	HR for gain** (95% CI)	Р	HR for loss* (95% CI)	HR for gain** (95% CI)	Р	HR for loss* (95% CI)	HR for gain** (95% CI)	Ρ		Cytobarius
8	159	30.4%	2.6%				0.42 (0.19–0.93)	2.4 (1.1–5.2)	0.032				2.0E+0	p23.3–2
14	319	10.8%	11.4%	0.39 (0.20–0.79)	2.5 (1.3–5.1)	0.009	0.35 (0.17–0.74)	2.8 (1.4–6.0)	0.006	0.37 (0.17–0.82)	2.7 (1.2–5.9)	0.015	1.0E-1	q32.33
20	409	0.8%	20.2%							0.11 (0.03–0.39)	8.8 (2.6–30)	<0.001	1.0E-1	q11.21

Results from a model adjuster by treatment arm, patient age, sex, performance status (PS), histology, T, and N stage. The multivariate model has been obtained via stepwise selection (ain =0.10 and aout =0.01). Only regions with P<0.005 are shown. *, hazard ratio for a 2-fold lower copy number; **, hazard ratio for a 2-fold higher copy number.

		CNA frequency			Disease-free surviva		Overall survival			Lung-cancer specific survival								
Chr	Region ID	Losses	Gains	HR for loss* (95% Cl)	HR for gain** (95% Cl)	Ρ	Q	HR for loss* (95% Cl)	HR for gain** (95% Cl)	Ρ	Q	HR for loss* (95% Cl)	HR for gain** (95% Cl)	Ρ	Q	Mb	Genes	cytoBands
3	71	2.1%	34.0%					1.8 (1.2–2.6)	0.56 (0.39–0.81)	0.002	0.096					3.0E-2		q26.1
	72	2.1%	34.7%	1.8 (1.2–2.6)	0.57 (0.39–0.83)	0.004	0.164	2.1 (1.4–3.1)	0.48 (0.32–0.73)	<0.001	0.096	1.9 (1.2–2.8)	0.54 (0.35–0.81)	0.003	0.123	5.0E+0	MECOM	q26.1–2
9	210	29.0%	3.6%	2.3 (1.4–3.7)	0.44 (0.27–0.72)	0.001	0.077	2.2 (1.3–3.8)	0.45 (0.27–0.76)	0.003	0.107	2.6 (1.5–4.3)	0.39 (0.23–0.66)	<0.001	0.051	5.0E+0	MLLT3	p22.3-p21.3
	211	34.8%	3.4%	1.9 (1.4–2.7)	0.52 (0.37–0.72)	<0.001	0.053	2.0 (1.4–2.9)	0.50 (0.34–0.72)	<0.001	0.075	2.1 (1.5–3)	0.48 (0.33–0.68)	<0.001	0.016	3.0E-1		p21.3
	212	35.9%	3.3%	1.6 (1.2–2.2)	0.62 (0.45–0.85)	0.003	0.147	1.7 (1.2–2.4)	0.57 (0.41–0.81)	0.001	0.096	1.7 (1.2–2.4)	0.59 (0.42–0.83)	0.002	0.100	6.0E-1		p21.3
	213	38.7%	3.2%	1.5 (1.1–2)	0.67 (0.5–0.88)	0.004	0.164					1.6 (1.2–2.1)	0.64 (0.47–0.86)	0.003	0.123	6.0E-2		p21.3
	214	40.2%	3.0%	1.5 (1.2–1.9)	0.66 (0.52–0.84)	<0.001	0.077					1.5 (1.2–2.0)	0.65 (0.50–0.84)	0.001	0.066	3.0E-1	CDKN2A, CDKN2B	p21.3
	215	36.3%	3.3%	1.7 (1.2–2.2)	0.61 (0.45–0.82)	0.001	0.077	1.7 (1.2–2.4)	0.59 (0.42–0.81)	0.001	0.096	1.7 (1.3–2.4)	0.58 (0.42–0.80)	<0.001	0.058	2.0E+0		p21.3
	217	35.0%	3.9%	1.7 (1.3–2.4)	0.58 (0.42–0.79)	<0.001	0.077					1.9 (1.4–2.7)	0.52 (0.38–0.73)	<0.001	0.027	9.0E-3		p21.3
	218	32.8%	4.5%	1.7 (1.2–2.3)	0.60 (0.43–0.83)	0.002	0.136	1.7 (1.2–2.4)	0.59 (0.41–0.85)	0.004	0.133	1.8 (1.3–2.6)	0.54 (0.38–0.77)	<0.001	0.051	5.0E-1		p21.3
	219	30.5%	4.6%	2.0 (1.3–3.0)	0.51 (0.34–0.76)	0.001	0.077	2.0 (1.3–3.1)	0.49 (0.32–0.77)	0.002	0.096	2.1 (1.4–3.3)	0.47 (0.3–0.73)	<0.001	0.051	2.0E+0		p21.3-2
	220	30.1%	4.8%									1.6 (1.2–2.2)	0.63 (0.46–0.86)	0.004	0.133	2.0E-2		p21.2
	222	27.8%	5.2%					2.1 (1.3–3.3)	0.48 (0.30–0.77)	0.002	0.096					2.0E+0		p21.1
	223	26.0%	6.4%	1.9 (1.2–2.9)	0.53 (0.35–0.82)	0.004	0.164	2.1 (1.3–3.3)	0.48 (0.3–0.77)	0.002	0.096					7.0E-1		p21.1
19	383	8.0%	2.5%	2.5 (1.3–4.6)	0.41 (0.22–0.76)	0.005	0.164	2.8 (1.4–5.3)	0.36 (0.19–0.7)	0.003	0.103					4.0E+0		p12–p11
	386	4.6%	7.3%									2.2 (1.3–3.9)	0.45 (0.26–0.79)	0.005	0.161	3.0E-1		q11

Table S7 Prognostic effect of the copy number of genomic regions. Univariate results in optimal quality samples only

Results from a model adjuster by treatment arm, patient age, sex, performance status (PS), histology, T, and N stage. *, hazard ratio for a 2-fold lower copy number; **, hazard ratio for a 2-fold higher copy number.

	Table S8 Prognostic effect o	f the copy number o	f genomic regions.	Multivariate results in	optimal	quality samples of	only
--	------------------------------	---------------------	--------------------	-------------------------	---------	--------------------	------

Regior Chr		CNA frequency		Disease-free survival				Overall survival	Lung-cancer specific survival				Conco	ou to Donado		
Ghi	ID	Losses	Gains	HR for loss* (95% CI)	HR for gain** (95% CI)	Р	HR for loss* (95% CI)	HR for gain** (95% CI)	Р	Q	HR for loss* (95% CI)	HR for gain** (95% CI)	Р		Genes	Cytobarius
3	72	1.8%	44.8%	2.4 (1.6–3.5)	0.42 (0.28–0.63)	<0.001	2.8 (1.8–4.4)	0.35 (0.23–0.55)	<0.001		2.5 (1.6–3.8)	0.40 (0.26–0.62)	<0.001	5.0E+0	MECOM	q26.1–2
9	211	34.8%	3.4%	2.4 (1.7–3.3)	0.43 (0.30–0.60)	<0.001	2.8 (1.9–4.1)	0.36 (0.24–0.53)	<0.001					3.0E-1		p21.3
12	277	2.4%	14.9%								0.47 (0.27–0.81)	2.1 (1.2–3.7)	0.007	3.0E+0		p11.21–1
17	354	2.7%	10.3%	0.45 (0.23–0.86)	2.2 (1.2–4.3)	0.016	0.41 (0.21–0.82)	2.4 (1.2–4.9)	0.012					2.0E-2		q21.32
19	396	4.6%	10.5%				0.64 (0.46–0.88)	1.6 (1.1–2.2)	0.006					2.0E-2		q13.32

Results from a model adjuster by treatment arm, patient age, sex, performance status (PS), histology, T, and N stage. *, hazard ratio for a 2-fold lower copy number; **, hazard ratio for a 2-fold higher copy number.

	Deview	CNA fre	equency	I	Disease-free surviva	I			Overall survival			Lung	-cancer specific su	rvival				
Chr	ID	Losses	Gains	HR for loss* (95% Cl)	HR for gain** (95% Cl)	Ρ	Q	HR for loss* (95% Cl)	HR for gain** (95% Cl)	Ρ	Q	HR for loss* (95% Cl)	HR for gain** (95% CI)	Ρ	Q	Mb	Genes	cytoBands
5	102	0.6%	45.3%					0.45 (0.22–0.88)	2.2 (1.1–4.4)	0.021	0.705					5.0E-2		p15.33
9	232	17.2%	2.4%	4.0 (1.2–14)	0.25 (0.07–0.85)	0.026	0.979									2.0E+1		q21.11–q22.1
	233	15.6%	3.2%	4.1 (1.2–14)	0.25 (0.07–0.84)	0.025	0.979									5.0E+0	FAM120A	q22.1–31
10	238	7.2%	4.6%					0.22 (0.06–0.82)	4.6 (1.2–17)	0.024	0.705					4.0E+0	RET, RASSF4	q11.21–22
14	318	8.9%	10.0%	0.29 (0.11–0.75)	3.4 (1.3–8.8)	0.010	0.979					0.22 (0.08–0.62)	4.5 (1.6–13)	0.004	0.614	2.0E-2		q32.33
	319	10.8%	11.4%	0.37 (0.17–0.81)	2.7 (1.2–6.0)	0.013	0.979									1.0E-1		q32.33
	325	16.3%	8.3%	0.66 (0.45–0.95)	1.5 (1.0–2.2)	0.028	0.979									3.0E-2		q32.33
	299	13.5%	9.4%					0.33 (0.13–0.83)	3.0 (1.2–7.6)	0.019	0.705					5.0E-1		q11.2
	302	6.4%	9.5%					0.29 (0.10–0.84)	3.4 (1.2–9.8)	0.022	0.705					4.0E+0		q11.2–q12
17	360	2.1%	14.2%					0.23 (0.07–0.82)	4.3 (1.2–15)	0.023	0.705					8.0E-2		q25.3
20	408	0.8%	20.8%									0.19 (0.06–0.63)	5.3 (1.6–18)	0.007	0.614	5.0E-1		q11.21
	409	0.8%	20.2%									0.19 (0.06–0.65)	5.3 (1.5–18)	0.008	0.614	1.0E-1		q11.21
	411	3.0%	17.4%									0.18 (0.05–0.60)	5.7 (1.7–19)	0.006	0.614	7.0E+0	SRC, MAFB, RBL1, MAFB	q11.22–q12
	412	3.1%	17.5%									0.21 (0.07–0.68)	4.7 (1.5–15)	0.009	0.614	3.0E-2		q12

Table S9 Predictive effect of the copy number of genomic regions. Univariate results in optimal quality samples only

Results from a model adjuster by treatment arm, patient age, sex, performance status (PS), histology, T, and N stage. *, hazard ratio for a 2-fold lower copy number; **, hazard ratio for a 2-fold higher copy number.

Table S10 Predictive effect of the copy number of genomic regions. Multivariate results in optimal quality samples only

Chr Begion ID		CNA frequency		Disease-free survival			C	Overall survival		Lung-cancer specific survival				autoDanda
Chr	Region ID	Losses	Gains	HR for loss* (95% CI)	HR for gain** (95% CI)	Р	HR for loss* (95% CI)	HR for gain** (95% CI)	Р	HR for loss* (95% CI)	HR for gain** (95% CI)	Ρ	divi	CytoBands
14	319	10.8%	11.4%				0.25 (0.10–0.62)	4.0 (1.6–10)	0.003				1.0E-1	q32.33
18	368	12.1%	6.6%	2.6 (1.1–6.1)	0.39 (0.16–0.91)	0.029							1.0E-3	q12.1
20	407	1.3%	18.4%							0.19 (0.05– 0.77)	5.2 (1.3–21)	0.020	5.0E-2	q11.21

Results from a model adjuster by treatment arm, patient age, sex, performance status (PS), histology, T, and N stage. *, hazard ratio for a 2-fold lower copy number; **, hazard ratio for a 2-fold higher copy number.

Table S11 Genomic regions with differential prognostic effect according to the histologic subtype

			Disease free survi	val			Overall survival			Lur	ng cancer specific s	survival				
Chr	Region ID	HR for ADC (95% Cl)	HR for SCC (95% Cl)	P inter	Q inter	HR for ADC (95% Cl)	HR for SCC (95% Cl)	P inter	Q inter	HR for ADC (95% CI)	HR for SCC (95% Cl)	P inter	Q inter	Mb	Genes	cytoBands
1	7					0.50 (0.19–1.3)	2.4 (1.0–5.6)	0.003	0.252					5.0E-1		p13.3
	16									1.6 (0.93–2.9)	0.68 (0.47–0.99)	0.004	0.213	2.0E-2		q23.3
	18	2.8 (1.3–5.8)	0.44 (0.18–1.1)	0.003	0.169					3.7 (1.7–8.1)	0.55 (0.20–1.5)	0.005	0.213	4.0E+1	FCGR2B, PBX1, TPR, LHX4, CDC73	q23.3–q31.3
	20	2.3 (1.1–4.7)	0.53 (0.27–1.0)	0.004	0.169									6.0E-2		q31.3
4	84					0.20 (0.07–0.57)	2.1 (0.9–4.8)	0.001	0.184					1.0E+1	PTTG2	p15.1–p12
	96					0.51 (0.28–0.92)	1.6 (0.97–2.6)	0.005	0.252					5.0E-3		q27
7	144	1.6 (1.0–2.4)	0.63 (0.40–0.97)	0.002	0.169					1.6 (1.0–2.5)	0.55 (0.33–0.94)	0.002	0.213	5.0E-1	EGFR	p11.2
	145	2.3 (1.3–4.0)	0.63 (0.33–1.2)	0.001	0.169					2.5 (1.4–4.6)	0.55 (0.26–1.1)	0.001	0.212	2.0E+0		p11.2
	146	2.6 (1.4–4.9)	0.59 (0.28–1.2)	<0.001	0.169					3.1 (1.6–5.9)	0.56 (0.24–1.3)	0.001	0.212	1.0E-2		p11.1
	147	2.5 (1.3–4.9)	0.62 (0.29–1.4)	0.004	0.169									8.0E-1		q11.1–21
11	251	1.3 (1.0–1.6)	0.78 (0.62–0.98)	0.002	0.169	1.4 (1.1–1.7)	0.72 (0.56–0.93)	<0.001	0.056					1.0E-2		p14.1
20	407	1.8 (0.79–4.3)	0.33 (0.15–0.74)	0.005	0.169									5.0E-2		q11.21

Results from a model adjuster by treatment arm, patient age, sex, performance status (PS), histology, T, and N stage. All the hazard ratios (HR) are for a 2-fold higher copy number.

Table S12 Chromosomal instability

Factor	nBP ratio	LCI	UCI	uP value	mP value
Trial					
CALGB	1.0			0.001	<0.001
IALT	1.0	0.89	1.2		
JBR 10	1.3	1.1	1.5		
Age					
≤55	0.96	0.86	1.1	0.631	0.327
55–64	1.0				
≥65	1.0	0.93	1.2		
Arm					
Control	1.00			0.512	0.999
Chemotherapy	1.00	0.92	1.1		
Sex					
Woman	1.0			0.013	0.009
Men	1.1	0.99	1.2		
PS					
0	1.0			0.002	0.047
1–2	1.1	0.99	1.2		
Surgery					
Lobectomy/other	1.0			0.016	0.163
Pneumonectomy	1.0	0.94	1.2		
Histology					
Adenocarcinoma	1.0			<0.001	0.194
Squamous cell carcinoma	1.1	0.99	1.2		
Other	1.1	0.93	1.2		
T stage					
T1	1.1	0.93	1.2	0.117	0.470
T2	1.0				
T3/T4	1.1	0.92	1.2		
N stage					
N0	0.99	0.89	1.1	0.050	0.775
N1	1.0				
N2	1.0	0.90	1.2		

nBP ratio, the ratio between the expected number of breakpoints (BPs) as compared to the reference class; LCI and UCI, lower and upper bounds of the 95% confidence interval; uP value, P value in the univariate analyses (Kruskal-Wallis test); mP value, P value in the multivariate analysis (likelihood ratio test).

Figure S4 Flexible model (splines) to account for the possibly non-linear effect of the number of breakpoints (BPs) on the patient outcomes in all patients (prognostic effects, left) and within each arm (predictive effect, right). The two vertical lines are the tertiles of the number of BPs.

Table S13 Association between clonality and patient outcomes

Variables	HR	LCI	UCI	P value
Prognostic effect of the number of BPs				
Disease-free survival (DFS)				
Stratified	1.2	0.99	1.4	0.063
Stratified + adjusted	1.2	1.0	1.4	0.054
Overall survival (OS)				
Stratified	1.1	0.90	1.3	0.38
Stratified + adjusted	1.1	0.88	1.3	0.48
Lung-cancer specific survival (LCSS)				
Stratified	1.2	0.99	1.45	0.068
Stratified + adjusted	1.2	1.0	1.5	0.051
Predictive effect of the number of BPs				
Disease-free survival (DFS)				
Stratified	1.2	0.81	1.6	0.42
Stratified + adjusted	1.1	0.76	1.6	0.63
Overall survival (OS)				
Stratified	1.2	0.82	1.7	0.35
Stratified + adjusted	1.2	0.79	1.7	0.47
Lung-cancer specific survival (LCSS)				
Stratified	1.3	0.86	1.9	0.25
Stratified + adjusted	1.1	0.77	1.7	0.52

HR, hazard ratio between the patients with 2 or more clones (N=518) and patients with 0 or 1 clones (N=456); LCI and UCI: lower and upper bounds of the 95% confidence interval; stratified, model stratified on the trial; adjusted, model adjusted on clinicopathological factors.