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Introduction

A major contributing factor to high mortality in lung 
cancer is that most cases are diagnosed at advanced stages 
with limited benefits from currently available therapies, 
hence the interest in implementing screening strategies 
to detect lung cancer at an early stage. The findings from 
the National Lung Screening Trial (NLST) study, which 
demonstrated a 20% reduction in lung cancer mortality 
with low-dose CT (LDCT) screening of subjects aged 
55–74 years with a 30-pack-year smoking history, have 
generated interest in lung cancer screening (1). Based 
on these findings the US Preventive Services Task Force 
recommended LDCT screening of subjects that meet 
the NLST criteria. However the adoption of lung cancer 
screening has been quite modest and a cautious approach to 
screening has been advocated (2). Concerns about the high 
percentage of false positives and potential health hazards 
resulting from exposure to radiation with repeat LDCTs 
as well as concern about the fact that a majority of subjects 
destined to be diagnosed with lung cancer are currently not 
eligible for screening have heightened the need to identify 

subjects at risk for developing lung cancer that do not meet 
current eligibility criteria. Biomarkers offer the potential 
for precision medicine across the cancer continuum 
from risk assessment to early detection and tumor  
classification (3). For lung cancer in particular, approaches 
in which a biomarker based initial screen is followed by 
LDCT or in which a biomarker test is combined with 
LDCT have merit for early detection applications (4,5).

Sources and types of biomarkers for lung cancer 
detection

In principle, biomarkers that may aid in identifying subjects 
that may benefit from LDCT or that complement LDCT 
such as for assessment of indeterminate nodules could be 
found in various biological fluids notably blood, urine, saliva 
or sputum (6-8). Exhaled breath has also been explored as 
a source of biomarkers (9-11) as well airway brushing (12). 
Blood in particular, with its cellular, micro-particulate, and 
plasma constituents, represents a rich source of biomarkers.

Although considerable attention is focused on liquid 
biopsy approaches for lung cancer detection (13), it is 
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likely that no single marker or approach will be useful 
alone, hence the need to explore combinations of markers 
and approaches to determine their performance. This 
undertaking represents a daunting effort. There are 
thousands of publications in the literature pertaining 
to potential lung cancer biomarkers. Testing biomarker 
candidates singly or in combination with informative 
biospecimens relevant to the intended application is 
generally beyond the means of individual laboratories and 
requires a collaborative effort as currently being undertaken 
through the National Cancer Institute Early Detection 
Research Network. Here, we limit the review to circulating 
protein, metabolite and humoral immune response based 
biomarkers that have potential for screening and early 
detection of lung cancer.

Autoantibodies

A humoral immune response in the form of autoantibodies 
to tumor antigens occurs early during tumor development. 
Identif ication of antigens that induce a selective 
autoantibody response in lung cancer has the potential 
to yield markers useful for early detection applications. A 
recent PubMed search of autoantibodies in lung cancer 
yielded 1,090 publications. A sampling of autoantibody-
based biomarker combinations that have been published is 
provided in Table 1. A review of the literature found that the 
most commonly used detection method was enzyme-linked 
immunoassay (ELISA), applied in 31 out of 38 tests for 
single autoantibodies and in 33 out of 49 tests for multiple 
autoantibodies. Multiplex assays are exemplified in a panel 
of seven autoantibodies to tumor antigens which yielded 
improved sensitivity compared to individual autoantibodies 
or smaller panels (32).

Another  s tudy  invo lved  a  pane l  o f  25  s e rum 
autoantibodies associated with non-small cell lung cancer 
(NSCLC) that were tested in a protein microarray format 
containing the autoantigens using sera from 125 patients 
with NSCLC and 125 matched controls with a benign 
nodule (63). In the training data set the logistic regression 
c-index statistic was 0.691 and 0.490 in the test set. The 
relationship between the score and outcome was not 
statistically significant (P=0.460). A meta-analysis of 31 
articles with single autoantibodies and 39 with multiplex 
autoantibodies was recently done, supporting improved 
diagnostic accuracy with multiplex panels (64).

An ongoing study is intended to determine whether 
a panel of autoantibodies can identify subjects at high 

risk for  lung cancer, followed by X-ray and computed 
tomography (CT) scanning, resulting in reduced incidence 
of patients with late-stage lung cancer (III & IV) or 
unclassified presentation at diagnosis, compared to standard 
practice (65). The study involves 12,000 participants aged 
50–75 who are at high risk for lung cancer in Scotland. The 
intervention is a seven-autoantibody test, followed by X-ray 
and CT for subjects with a positive result. The primary 
outcome is the difference, after 24 months, between the 
rates of patients with stage III, IV or unclassified lung 
cancer at diagnosis. Participants with a positive test result 
but for whom the CT scan does not lead to a lung cancer 
diagnosis will be offered follow-up CTs for 24 months. An 
initial chest X-ray will be used to determine the urgency 
and the need for intravenous contrast in the first screening 
CT. Participants who are found to have lung cancer will 
be followed to assess both time to diagnosis and stage of 
disease at diagnosis.

From a practical perspective a biomarker approach 
based on autoantibodies is appealing as antigenic targets 
could be printed or synthesized on a chip. Hybridization 
to detect autoantibody reactivity would require no more 
blood volume than a drop of blood. Additionally, with the 
availability of autoantibody marker panels, each having 
specificity to one of the common cancers, a chip could be 
produced that would allow screening across cancer types. 
However, at present, the definitive validation of the utility 
of autoantibody biomarkers for screening either alone or in 
combination with other markers has not been demonstrated.

Protein based biomarker panels

A wide world of technologies is currently available for the 
discovery of protein markers as well as for the development 
of corresponding assays with applications to lung cancer 
(Table 1). Widely used approaches consist of multiple 
forms of mass spectrometry for both discovery and assay 
development and the use of antibody arrays for discovery 
and ELISA for assay development either singly or in 
multiplex formats.

At present time, several protein-based biomarkers are 
available in the clinic that are primarily used for diagnosis 
or for patient monitoring. These assays are particularly 
suited for subjects with symptoms or for imaging-
based findings including stratification of indeterminate 
nodules. Guidelines for the management of subjects with 
nodules detected through CT screening are evolving. 
The National Comprehensive Cancer Network (NCCN) 
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provides guidelines that avoid invasive follow-up for 
small nodules with low probably of malignancy (NCCN.
org). The guidelines incorporate recommendations based 
on the NLST, the International Early Lung Cancer 
Action Program protocols and the Fleischner Society 
guidelines. Reporting systems have been suggested that 
classify nodules observed with screening CTs based 
on the risk of malignancy which is linked to suggested 
follow-up [American College of Radiology. Lung CT 
Screening Reporting and Data System (Lung-RADS). 
Available at: http://www.acr.org/Quality-Safety/Resources/ 
LungRADS] (66). A recent study encompassed 691 patients 

Table 1 Lung cancer blood based biomarker combinations reported

Protein based biomarker combinations

ProGRP, CEA, SCC, and CYFRA21-1 (14)

MIC-1, Cyfra21-1, CA125 and CEA (15)

CEA, CA125, ProGRP, and MCP-1, IL6, IL10 (16)

LRP1, BGH3, COIA1, TETN, TSP1, ALDOA, GRP78, ISLR, FRIL, 
LG3BP, PRDX1, FIBA and GSLG1 124/123 71 44 LR (17)

Cadherin-1, CD30 ligand, endostatin, HSP90α, LRIG3, MIP-4, 
pleiotrophin, PRKCI, RGM-C, SCF-sR, sL-selectin and YES (18)

CYFRA 21–1, NSE and CRP (19)

CRP, SAA and mucin 1 (20)

CEA, RBP, A1AT and SCC 49/48 77.8 75.4 CART (21)

CYFRA 21–1, NSE and CRP (22)

MIP-1α, CEA, SCF, TNF-RI, IFN-γ and TNF-α (23)

CYFRA 21–1, NSE and CRP (24)

β2-microglobulin, CEA, gastrin, CA125, NSE and sIL-6R (25)

CEA, gastrin and NSE (26)

Prolactin, TTR, THBS1, E-selectin, CCL5, MIF, PAI-1, erbB-2, 
CYFRA 21.1 and SAA (27)

A1AT, Cyfra 21–1, IGF1, RANTES and AFP (28)

CYFRA 21–1, CEA, CA-125 and CRP (29)

MMP-1, MMP-9, CYFRA 21–1, CRP, CEA, YKL-40 and  
CA-125 (30)

IL-6, IL-10, IL-1ra, sIL-2Rα, SDF-1α+β, TNF-α and MIP-1α (31)

Autoantibody based marker combinations

p53, CAGE, NY-ESO-1, GBU4-5, SOX2, MAGE A4 and Hu-D (32)

p53, PGP9.5, SOX2, GAGE7, GBU4-5, CAGE, and MAGEA1 
(33,34)

Survivin, Cyclin B1, HCC1, and p53 (35)

BARD1 epitopes (36)

ECH1 and HNRNPA2B1 (37)

ANXA1 and FOXP3 (38)

14-3-3ζ, c-Myc, MDM2, NPM1, p16, p53 and cyclin B1 (39)

MDM2, C-Myc (40)

keratin 8, type II, TTC14, Kruppel-like factor 8, BRAF, and 
tousled like kinase 1 (41)

p53, NY-ESO-1, CAGE, GBU4–5, annexin A1 and SOX2 (42,43)

p53, NY-ESO-1, CAGE, GBU4–5, SOX-2, HuD, MAGE A4, 
α-enolase, p53 C, CK8, CK20 and Lmyc2 (30)

Table 1 (continued)

Table 1 (continued)

Autoantibody based marker combinations

c-Myc, cyclin A, cyclin B1, cyclin D1, CDK2 and survivin (44)

IMPDH, PGAM, HSP70–9B, Ubiquilin, annexin A1 and annexin 
A2 (45)

paxillin, SEC15L2, BAC clone RP11–499F19, XRCC5 and 
MALAT1 (46)

Metabolites

Glucose lactate and phospholipids (47)

Lysophosphatidylcholines (48)

Glutamic acid, choline, threonine (49)

Glutamic acid, aspartic acid, xylose (50)

Phosphorylcholine, sphingosine (51)

Glycerol, lactic acid, tryptophan (52)

Benzaldehyde, urea, isoleucine, glycolic, phenylalanine (53)

Bilirubin (54)

Citric acid, choline, lysine (55)

Alanine, threonine, linoleic acid (56)

Alanine, valine, isoleucine (57)

Carnitine, propionylcarnitine, tyrosine, methionine, malic acid, 
histidine, 5-oxo-proline (58)

Mixed panels of markers

Proteins CEA, CYFRA21-1, CA125, and NY-ESO-1  
autoantibody (59)

Proteins CEA, CYFRA21-1, ENO1 and ENO1 autoantibody (60)

Pro-surfactant B protein and diacetylspermine metabolite (61)

C-reactive protein (CRP), prolactin and hepatocyte growth factor 
(HGF), NY-ESO-1 autoantibody (62)
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with pulmonary lesions from three centers in China and 
was intended to develop and validate a nomogram model 
based on clinically available tumor markers to assess 
the likelihood of cancer for patients with pulmonary  
lesions (67). The predictive performance of the nomogram 
was measured by concordance index and calibrated 
with 1,000 bootstrap samples to reduce over-fitting. A 
multivariate logistic regression model identified tumor 
size, CEA, SCC, CYFRA21-1, pro-GRP, and HE4 as 
independent risk factors for lung cancer. The nomogram 
developed showed concordance index of 0.901 (95% CI: 
0.842–0.960; P<0.001) for lung cancer in the training 
set and 0.713 (95% CI: 0.599–0.827; P<0.001) in the  
validation set.

A multitude of other studies have explored the 
contribution of existing protein lung cancer biomarkers 
as well as additional markers resulting from discovery 
s tudies .  One group ut i l i z ing  mass  spectrometry 
developed a 13-protein blood-based classifier that 
differentiated malignant and benign nodules with high  
confidence (17). The group identified 371 protein 
candidates and developed a mass spectrometry based 
multiple reaction monitoring assay for each. The classifier 
was validated on an independent set of plasma samples with 
good performance. The source and the relationship of the 
tumor markers to tumor characteristics was not clear. In a 
subsequent study, an integrated model incorporating clinical 
risk factors and proteomic molecular markers was developed 
and its performance assessed on a subset of 222 lung 
nodules, between 8 and 20 mm in diameter (68). Whereas 
the protein markers were found to be most predictive, the 
integration of protein markers with clinical features was 
found to be superior. Rigorous independent validation of 
these markers is required before such a test is adopted.

Metabolites as lung cancer biomarkers

Comprehensive metabolomic profil ing using high 
performance liquid chromatography coupled with tandem 
mass spectrometry (LC-MS/MS), encompassing a few 
thousand identified metabolites covering metabolic 
pathways relevant to health and disease has become well 
established. Metabolomic profiling offers a dynamic view of 
cell tissue and organismal function. Active effort is ongoing 
in the search for metabolomics biomarkers that have 
relevance to lung cancer detection (69) (Table 1).

Phospholipids are important constituents of the 
cell membrane. Phospholipid metabolic pathways are 

upregulated in lung cancer yielding distinct signatures (70). 
A blood based metabolomics study was conducted as part 
of lung cancer screening (71). Analysis encompassed 31 
patients with screen detected lung cancer and a matched 
group of 92 healthy controls. Several metabolites in 
serum discriminated patients from controls. Most were 
downregulated in cancer samples, including amino acids, 
carboxylic acids and tocopherols. Benzaldehyde was the 
only compound found to be significantly upregulated. A 
follow-up study based on lipid profiling encompassed 100 
patients with early stage lung cancer, including 31 screen-
detected cases and a matched group of 300 healthy screened 
subjects (48). Downregulation of lysophosphatidylcholines 
(LPC18:2, LPC18:1 and LPC18:0) distinguished cases 
from controls. Other studies have uncovered a diversity of 
metabolites that distinguished cases from controls (Table 1) 
thus necessitating rigorous validation studies that address 
specific intended clinical application(s) for their validation.

Modeling lung cancer risk based on subject’s 
characteristics and biomarker profile

An intended goal of molecular testing is to identify subjects 
that would benefit from LDCT. There is not a currently 
recommended risk prediction model for lung cancer for 
general use. Several models based on subject’s characteristics 
have been proposed (72-74). The addition of pulmonary 
function has been shown to improve risk prediction (75,76). 
Cotinine, a circulating metabolite of nicotine has been 
found to be associated with lung cancer risk (77), and may 
represent a more sensitive assessment of smoking intensity 
than self-reporting.

The contribution of inflammatory markers to lung cancer 
risk has been explored. Circulating levels of CRP, SAA, 
sTNFRII, and CXCL9/MIG were found to be associated 
with lung cancer risk in the Prostate, Lung, Colorectal, 
and Ovarian Cancer Screening Trial (78). However, these 
markers did not improve lung cancer risk stratification 
beyond models based on subject characteristics. Cytokine 
profiling has revealed an increased risk of lung cancer 
associated with high levels of IL6 and IL8 (79). A causal role 
of fasting insulin and low-density lipoprotein cholesterol 
in lung cancer etiology, and for BMI in squamous cell and 
small cell carcinoma, has been suggested (80).

Vitamin status has been associated with risk of numerous 
diseases including cancer (81,82). A nested case-control 
study within the European Prospective Investigation 
into Cancer and Nutrition provided strong evidence that 
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increased vitamin B6 catabolism is independently associated 
with a higher risk of future lung cancer (83). A recent 
study of circulating folate, vitamin B6, and methionine 
found that subjects with higher circulating concentrations 
of vitamin B6 and folate had a modestly decreased risk of 
lung cancer (82). The kynurenine/tryptophan ratio has 
also been found to be associated with increased risk of lung 
cancer (84). A study that involved a prospective cohort of 
395,875 participants in Taiwan was conducted to improve 
risk prediction models for lung cancer by incorporating 
biomarkers (85). Age, gender, smoking pack-years, family 
history of lung cancer, personal cancer history, BMI, lung 
function, and serum biomarkers were included as variables. 
The area under the curve (AUC) in overall population was 
0.851 (95% CI: 0.840–0.862), with never smokers 0.806 
(95% CI: 0.790–0.819), light smokers 0.847 (95% CI: 
0.824–0.871), and heavy smokers 0.732 (95% CI: 0.708–
0.752). By integrating risk factors together with CEA and 
AFP for light smokers, and lung function testing, AFP, and 
CEA for light and never smokers, cancer risks as high as 
those for heavy smokers could be identified. The risk model 
for heavy smokers allowed stratification of heavy smokers 
into subgroups with distinct risks. 

Few studies have assessed the contribution of biomarkers 
based on rigorous validation studies using lung cancer 
screening cohorts. Proteomic studies have led to the 
identification of several candidate markers associated with 
the development of lung cancer including pro-surfactant 
protein B (pro-SFTPB), a target of NKX2-1, a lineage 
survival oncogene in lung cancer (86). Multivariable logistic 
regression models were used to evaluate the predictive 

ability of pro-SFTPB among subjects undergoing LDCT 
screening. The AUC values of the full model with and 
without pro-SFTPB were 0.741 (95% CI: 0.696 to 0.783) 
and 0.669 (95% CI: 0.620 to 0.717), respectively (difference 
in AUC, P=0.0002) (87). (Figure 1A) In a related study, a 
mass spectrometry method designed to profile a wide range 
of metabolites was applied to pre-diagnostic serum samples 
from a high-risk cohort that encompassed 100 subjects 
who subsequently developed NSCLC and 199 matched 
controls. A separate aliquot was used to quantify levels of 
pro-SFTPB (61). N1, N12-diacetylspermine was identified 
as a metabolite with significant increase in concentration 
in samples from cases compared to controls. A validation 
study of DAS and pro-SFTPB was performed using an 
independent set of pre-diagnostic sera from 108 patients 
with NSCLC and 216 matched controls. DAS significantly 
complemented performance of pro-SFTPB in both the 
discovery and validations sets, with a combined area under 
the curve in the validation set of 0.808 (P=0.001 DAS + pro-
SFTPB vs. pro-SFTPB alone) (Figure 1B).

While these risk marker studies show promise for 
identifying subjects with increased risk based on their 
biomarker profiles that otherwise may not be eligible for 
screening, much work remains to be done to determine an 
optimal, cost effective approach to assess risk based on a 
combination of biomarkers and subject characteristics.

Conclusions

It is likely that biomarker panels will emerge in the near 
future that have relevance to lung cancer early detection 
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that will be useful in clinical practice. As experience is 
gained, it is also likely that improvement in biomarker 
testing will ensue through better biomarker combinations 
or through increased understanding of the population(s) 
that would best benefit from tailoring of biomarkers, for 
instance patients with COPD, light smokers ineligible 
for LDCT-based screening, or those with indeterminate 
nodules discovered incidentally or after LDCT-based 
screening. Biomarker panels will need careful validation 
among populations relevant to their intended application, 
which will be greatly facilitated by multi-center cooperation 
between lung cancer screening programs, ongoing clinical 
trials, and speciality diagnostic clinics.
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