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Introduction 

With the rise of smoking since World War I (1), lung cancer 
has the highest annual cancer incidence world-wide (2) and 
is the leading cause of cancer mortality in the USA. (3) and 
the world (2). Tobacco smoke contains >60 carcinogens 
including polycyclic aromatic hydrocarbons (PAHs), 
N-nitrosamines, aromatic amines, aldehydes, isoprenes, 
arsenic and cadmium (4).

Lung cancer among never-smokers, defined as those who 
have smoked <100 cigarettes in their lifetime (5), accounts 
for ~10–20% of cases (6-8), with more women than men (6).  
Risk factors include second hand smoke (9-12), radon 
(13,14), occupational exposures (asbestos, chromium, and 
arsenic) (15-17), indoor (18-20) and outdoor (21,22) air 

pollution, oncogenic viruses including human papilloma 
virus (HPV) (23-25), genetic factors (26-29), and a history 
of pulmonary disease (30,31). However, identification of the 
causative factors has remained elusive.

Murine cancer models are now a standard preclinical 
in vivo platform for the elucidation of cancer biology 
and the development of novel therapeutics. The models 
include xenograft or allograft (syngeneic) transplantation, 
carcinogen induced tumor models  (CITMs),  and 
genetical ly-engineered mouse models  (GEMMs). 
In xenograft models, cancer cells are transplanted, 
subcutaneously or orthotopically, to establish tumors 
in vivo. In contrast, CITMs and GEMMs generate 
endogenous spontaneous cancers. Both models accurately 
reflect the histological progression of precancerous lesions 
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to invasive cancers. CITMs may represent a more ‘realistic’ 
model of tobacco smoke-induced tumorigenesis than 
GEMMs. However, CITMs often require extended time 
periods for tumor development, particularly for invasive 
cancers. GEMMs, unlike CITMs, generate cancers 
through manipulation of specific oncoproteins or tumor 
suppressors (TSs). The precise and limited nature of genetic 
manipulation in GEMMs has yielded valuable biological 
insights on tumor initiation and progression. Several 
reviews of lung cancer GEMMs have been published 
recently (32-35). Here, we will focus primarily on CITMs 
and GEMMs of lung cancer and their relation to human 
never-smoker and smoker lung cancers. Methods of tumor 
induction in mouse models are presented in Figure 1.

Histology of lung cancers

Lung cancer is a heterogeneous group of epithelial 
malignancies with four major histological subtypes (36): 
small cell lung cancer (SCLC), adenocarcinoma, squamous 
cell carcinoma (SCC), and large cell carcinoma (LCC). 
The latter three are grouped together as non-small cell 
lung cancer (NSCLC). Adenocarcinoma occurs most 
frequently and accounts for ~45% of all lung cancers in 
the USA, followed by SCC (23%), SCLC (13%) and 
large cell carcinoma (1.7%) (37). Adenocarcinomas tend 
to be peripheral lesions whereas SCC and SCLC are 
more central. Most adenocarcinomas arise from type 2 
pneumocytes in the alveoli (38,39). SCC most likely arises 
from CK5+ basal epithelial cells of bronchi (40). SCLC 
is thought to arise from neuroendocrine cells that often 
congregate into neuroendocrine body clusters located at 
junctions of bronchi (41). Both bronchi and neuroendocrine 
bodies are located more centrally.

Tobacco smoke is significantly associated with all four 
major histological subtypes although the association is 
strongest with SCLC and SCC (42-44). Adenocarcinoma 
is associated with both smokers and never-smokers (5)  
but is  the most common histology among never-
smokers (45-47). Tar in cigarette smoke is associated with 
SCC and SCLC (48,49) whereas nitrosamines such as 
4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) 
and PAHs are known to induce adenomas (50). 

Human genomics

Lung SCC, SCLC, and adenocarcinoma, as smoking-
associated cancers, rank among the top 5 cancers with the 

highest prevalence of somatic mutations (51) with higher 
frequencies of chromosomal abnormalities (52). Lung SCC, 
SCLC, and adenocarcinoma are notable for having a strong 
correlation with C>A transversion and C>T transition 
mutations (44,51). C>A transversions are primarily 
associated with smoking while C>T transitions are found in 
cancers of smokers and never-smokers (44).

Adenocarcinoma
Sequencing efforts (53,54) revealed that smoking-associated 
lung adenocarcinoma (LAD), when compared to those 
of never-smokers, had significantly higher mutation rates 
(10.5 vs. 0.6 mutations/Mb) (53), C>A transversions, 
and inversely correlated with C>T transitions (higher in 
never-smokers) (53,54). EGFR (53), PIK3CA and RB1 (54) 
mutations, ERRB2 insertions (54) and c-Ros oncogene 1 
(ROS1) and anaplastic lymphoma kinase (ALK) fusions (53) 
were significantly correlated with never-smokers. Mutations 
in KRAS (53,54), BRAF (53), JAK2/3 (53), mismatch repair 
genes (53) and TS genes (e.g., TP53, STK11, SMARCA4, 
KEAP1) (54) were significantly correlated with smoking-
associated LADs. Significant amplifications in NKX2-1, 
TERT, MDM2, KRAS, EGFR, MET, CCNE1, CCND1, 
TERC and MECOM and deletion in CDKN2A were  
noted (54), but not associated with smoking status.

Squamous cell lung cancer
Sequencing efforts from The Cancer Genome Atlas 
(TCGA) Research Network revealed significant rate 
of mutations in TP53, CDKN2A, PTEN, MLL2, RB1, 
PIK3CA, KEAP1, HLA-A, NFE2L2, and NOTCH1 (55). 
Copy number alterations of previously described SOX2, 
PDGFRA, KIT, EGFR, FGFR1, WHSCIL1, CCND1, and 
CDKN2A were identified. Amplifications of NFE2L2, MYC, 
CDK6, MDM2, BCL2L1, and EYS and deletions in FOXP1, 
PTEN, and NF1 were identified. Forty-seven percent of 
tumors had alterations in genes of the PI3K pathway, 24% 
in RAS pathway, and 28% in receptor tyrosine kinase (RTK) 
pathways. Many of the NOTCH1 mutations were truncating 
alterations suggesting a role for NOTCH1 loss-of-function 
(LOF). Currently, there are no clinically-available therapies 
that target these mutations in SCC although a number of 
targeted therapies are under clinical investigation. 

SCLC
SCLC consists of two distinct histological subgroups 
that correlate with the expression of the basic helix-loop-
helix (BHLH) transcription factors (TFs) ASCL1 and  
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Figure 1 Methods of autochthonous lung cancer induction. (A) Carcinogens are applied to mice through intraperitoneal injections, tracheal 
delivery, or cutaneous deposition; (B) oncogenes are expressed under a tissue-specific or a ubiquitous promoter, often during development. 
Expression of oncogenes under lung specific-promoters leads to development of tumors primarily in the lungs whereas as expression under 
ubiquitous promoters may generate tumors in ectopic sites; (C) in conditional knock-in mice, a Loxp or Frt (blue triangle)–STOP–Loxp (LSL) 
or Frt (FSF) cassette prevents expression of an oncogene in the absence of Cre or Flp recombinase, respectively. Cre or Flp can be expressed 
via (I) delivery of adenovirus- or lentivirus-expressing recombinase, (II) expression of Cre under a tissue specific promoter or (III) expression 
of a tamoxifen-inducible Cre-mutated estrogen receptor fusion protein (CreERT) under a tissue-specific promoter. CreERT is expressed 
in a tissue specific manner but is sequestered from the nucleus until tamoxifen engages the fused estrogen receptor leading to DNA 
recombination; (D) loxp or Frt sites are placed in genes such that one or several exons will be deleted by Cre or Flp recombination. Cre or 
Flp is delivered in analogous methods for oncogene expression as in (C); (E) a tissue-specific or ubiquitous promoter regulates the expression 
of tTA (Tet-Off system) or rtTA (Tet-On system) transcriptional activators. Tetracycline or its analogue, doxycycline, binds to tTA (Tet-Off) 
to inhibit transcription and its withdrawal is required for oncogene transcription. In contrast, tetracycline or doxycycline binds to rtTA (Tet-
On) transcriptional activator to induce oncogene transcription; (F) lentiviruses encoding for Cre recombinase, Cas9 nuclease, and sgRNA 
against targeted gene are administered to mice intratracheally. Cre deletes the stop cassette to induce oncogene expression and delete other 
target genes (usually tumor suppressors). Cas9, guided by target sgRNA, induces indels in the target gene to induce knock-outs of the target 
gene. Alternatively, mice with LSL-Cas9 under a ubiquitous promoter (in brackets) can be infected with lentiviruses expressing constructs (in 
brackets) with Cre recombinase, sgRNA against targeted gene, an identification sequence for the sgRNA (ID), and a unique barcode (BC) 
for multiplex knock-out of distinct genes. The CRISPR/Cas9 system is not completely efficient. Thus, the tumors will be heterogeneous 
with some expressing the targeted gene(s) (green tumors) and others with the targeted gene(s) knocked-out (pink tumors).
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NEUROD1 (56): (I) classic SCLC constitute the majority of 
tumors and express high levels ASCL1 expression alone while 
(II) variant SCLC may express high levels of NEUROD1 +/− 
ASLC1 or low levels of NEUROD1/ASCL1 (57) although 
the precise definition of variant SCLC is in flux. ASCL1 
is critical for neuronal and pulmonary neuroendocrine 
cell (PNEC) development and growth of SCLC (58). 
NEUROD1 is a neuronal differentiation TF (59),  
critical for the neural (60,61) and PNEC development. 
Classic ASCL1(+) SCLC present as small cells with high 
nuclear:cytoplasmic ratios, and fine granular chromatin (62).  
Variant NEUROD1+ SCLC are larger cells with prominent 
cytoplasm and nucleoli (62). ASCL1 targets include 
MYCL1, RET, SOX2, BCL2, NFIB, DLL3, 4 and JAG2. 
NEUROD1 primarily targets MYC (63).

All sequencing studies (64-67) identified high levels of 
C>A transversions consistent with smoking-associated cancers 
and nearly all tumor samples had inactivating alterations 
in TP53 and RB1. In contrast to adenocarcinoma (54) and 
SCC (55), few significant oncogenic driver mutations were 
identified (67). However, recurring amplifications in MYC 
family members (MYC, MYCN, and MYCL1), FGFR1, IRS2 
were identified (67). SOX2 amplifications have also been 
reported (66). Other significantly mutated genes include 
CREBBP, COL22A1, RBL1, RBL2, TP73, FMN2, and 
NOTCH1 (67). No therapies that target these mutations are 
currently in clinical use although clinical trials of such agents 
are underway.

Mouse genomics

Adenocarcinoma

Whole exome sequencing (WES) revealed that carcinogen-
induced adenomas had far more single nucleotide variations 
(SNVs) than KrasLA2 GEMM adenomas (68), with 728, 
185, and 47 SNVs in MNU-, urethane-treated, and KrasLA2 
mice, respectively (68). In addition to KrasG12D (MNU) and 
KrasQ61R (urethane) mutations, carcinogen-induced tumors 
frequently had mutations in genes commonly found in 
human adenocarcinomas including Arid1b, Atm, Crebbp, and 
Mll2. In contrast, KrasLA2 mice had frequent copy number 
alterations (CNAs) whereas CNAs and aneuploidies 
in CITMs were extremely infrequent. In most KrasLA2 
adenomas, chromosome 6 (Chr6) gained an extra copy, 
where Kras is located. Other chromosomal changes include 
gains of chromosomes 2, 10, 12, 15 and 17 and losses of 
chromosomes 4, 9, 11, and 17.  Frequently amplified genes 
included Kras, Ret, Met, Alk, Arid1b, and Akt1.

WES of adenomas from KrasG12D/+, KrasG12D/+;Trp53fl/fl, 
CCSP-rtTA;TetO-EGFRL858R, and CCSP-rtTA;TetO-MYC 
revealed a similarly low nonsynonymous mutation rate of 
0.06, 0.07, 0.02, and 0.14 mutations/MB  in comparison 
to 1.97 and 7.76 mutations/MB for human never-smoker 
and smoking-associated LAD, respectively (69). CNAs 
were common in all GEMMs with gains in chromosome 
6, 2, 15, and 19 and losses of chromosome 9 and 14 for the 
Kras models, including amplification of the mutant KrasG12D 

gene. EGFR mutant GEMMs displayed a different pattern 
of CNAs with gain of Chr12 as the dominant feature for 
unclear reasons. 

SCLC

Sequencing efforts of murine Trp53fl/fl;Rb1fl/fl SCLC identified 
chromosomal gains and losses as the dominant genetic 
aberrations (70). Murine SCLC had a point mutation rate 
of 0.91 per MB in contrast to 5.5–8.62 per MB of human 
SCLC (66,67). Murine SCLC most frequently exhibited 
hemizygous loss of Chr19 followed by gain of Chr14. 
Others changes include hemizygous loss of chromosomes 
8, 12, 14 and gain of Chr16. Focal amplifications of 
Mycl1 and Nfib on Chr4 and deletions of Mir200a/b  
and Hes family members were noted. LOF mutations in 
Pten, located on Chr19, were frequently identified with 
hemizygous loss Chr19. Trp53fl/fl;Rb1fl/fl;Ptenfl/fl tumors 
harbored two copies of intact Chr19 whereas tumors from 
Trp53fl/fl;Rb1fl/fl;Ptenfl/+ mice contained hemizygous loss of 
Chr19 suggesting that Pten LOF mutations may drive the loss 
of Chr19 in murine Trp53fl/fl;Rb1fl/fl SCLC. In contrast, Rb1fl/fl; 
Trp53fl/fl;MycLSL/LSL mice that express a constitutively active 
MYC-T58A do not have any Mycl or Nfib amplifications (71),  
perhaps due to the sufficiency of MYC-T58A to drive 
tumor progression in the context of Trp53 and Rb1 loss.

Never-smoker lung cancer

Adenocarcinoma is the dominant histology of never-smoker 
lung cancers. Here, we will focus on prominent genetic 
alterations of adenocarcinomas and their corresponding 
mouse models (Table 1).

EGFR mutations

EGFR is a RTK that regulates multiple downstream 
pathways including RAS/MAP kinase pathway, PI3K 
pathway, and the JAK-STAT pathways (81). EGFR mutations 
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occur primarily in never-smokers (53,54) and are the most 
common mutations in never-smoker LAD with ~15% of 
all LADs (54). Activating mutations occur in exons 18–21 
of the tyrosine kinase domain (82-84) with L858 mutations 
and exon 19 deletions being most common (84). The 
tumors are highly susceptible to oral EGFR tyrosine kinase 
inhibitors (TKIs), such as erlotinib and gefitinib, and can 
lead to dramatic responses with durations of ~6–12 months.  
Secondary mutations in the EGFR tyrosine kinase domain 
account for 60% of acquired resistance to EGFR TKIs, 
of which, the T790M mutation accounts for 90% of 
resistant mutations (85). Osimertinib, a third generation, 
irreversible antagonist of the EGFR kinase domain, is FDA-
approved for treatment-naïve LAD with activating-EGFR 
mutations and for second-line EGFR-T790M mutations 
after erlotinib or gefitinib therapy. An EGFR-C797S 
mutation confers resistance to osimertinib (86-88). Other 
mechanisms of resistance to TKIs include compensatory 
amplification of the MET gene leading to activation of the 

PI3K pathway (85), activating mutations in PIK3CA and 
BRAF, amplification of CRKL and ERK genes (85), and 
transformation to SCC (89) and SCLC (90,91).

EGFR mutant mouse models
In mutant EGFR GEMMs with tetracycline-inducible 
EGFR exon 19 deletion or EGFR-L858R mutants (72,73), 
the club cell secretory protein (CCSP or CC10) promoter 
regulated the expression of the reverse tetracycline 
transactivator (rtTA; Tet-On) (92,93). Treatment of both 
models with doxycycline resulted in LAD (72,73). Bi-
transgenic L858R mutant mice generated adenocarcinoma 
in situ at  2 weeks with progression to multifocal 
adenocarcinoma with >4 weeks of doxycycline treatment. 
The tumors expressed surfactant protein C (SPC) but 
not CCSP consistent with an alveolar type 2 pneumocyte 
origin (72,73). Mice with exon 19 deletions developed 
tumors similarly to EGFR-L858 mice but at a slower rate. 
The tumors regressed when doxycycline treatment was 

Table 1 Never-smoker lung cancer models

Mouse (Ref.) Mutation Induction method Phenotype Metastasis

CCSP-rtTA;  
TetO-EGFRL858R (72)

EGFR-L858R Tetracycline or  
doxycycline

Adenocarcinoma. Sensitive to EGFR TKIs. Tumors 
regress after tetracycline withdrawal

Not noted

CCSP-rtTA;  
TetO-EGFR∆L747-S752 
(72,73)

EGFR-exon 19 
deletion

Tetracycline or  
doxycycline

Adenocarcinoma. Sensitive to EGFR TKIs. Tumors 
regress after tetracycline withdrawal

Not noted 

CCSP-rtTA;  
TetO-EGFRL858R-T790M (74)

EGFR-L858R; 
T790M

Tetracycline or  
doxycycline

Adenocarcinoma. Resistant to EGFR TKIs. Tu-
mors regress after tetracycline withdrawal. Slower 
tumor growth than L8585R or exon 19 deletion

Not noted 

SPC-FLAG-EML4-ALK 
(75)

EML4-ALK fusion EML4-ALK expression 
under SPC promoter

Papillary adenomas. EML4-ALK expression initiat-
ed during lung development

None

CCSP-rtTA;  
TetO-EML4-ALK (76)

EML4-ALK fusion Tetracycline or  
doxycycline

Bronchioloalveolar adenocarcinomas.  
Tumors regress after tetracycline withdrawal

Not noted

SPCCreERT2; EML4-ALKLSL 
(77)

EML4-ALK fusion Tamoxifen Papillary adenocarcinoma Not noted 

SPC-CD74-ROS1 (78) CD74-ROS1 CD74-ROS1 expression 
under SPC promoter

Adenocarcinoma. Metastases in <1% of mice Yes (rare)

SPC-SDC4-ROS1 (78) SCD4-ROS1 SDC4-ROS1 expression 
under SPC promoter

Adenocarcinoma. Metastases in <1% of mice Yes (rare)

SPC-EZR-ROS1 (79) EZR -ROS1 EZR-ROS1 expression 
under SPC promoter

Adenocarcinoma None

CCSP-rtTA;  
TetO-PIK3CAH1047R (80)

PIK3CAH1047R Tetracycline or  
doxycycline

Adenocarcinoma. Sensitive to PI3K-mTOR  
inhibition. Tumors regress after tetracycline  
withdrawal

Not noted

Cancers are all adenocarcinoma. “Not noted” designates that metastases were not discussed by the authors.
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withdrawn suggesting that the tumors are dependent on the 
mutant EGFR activity for growth. Furthermore, the tumors 
were sensitive to growth inhibition by erlotinib (72) or 
HKI-272 (73), two EGFR TKIs. 

A GEMM with tetracycline-inducible expression 
of a dual mutant EGFR–L858R-T790M (EGFR-TL) 
under CCSP-rtTA control developed adenocarcinoma 
in situ with progression to both peripheral and bronchial 
adenocarcinoma (74). The T790M mutation induced 
resistance to erlotinib. The peripheral adenocarcinomas 
had bronchoalveolar features whereas the bronchial tumors 
were papillary adenocarcinomas. Peripheral tumors were 
strongly SPC(+) and CCSP(−) (74), suggesting a type II 
pneumocyte origin. In contrast, the bronchial tumors were 
CCSP(+) and SPC(−), suggesting a club cell origin. All 
tumors were resistant to erlotinib. Only peripheral tumors 
showed any responses with HKI-272, an irreversible 
EGFR TKI. Peripheral and bronchial tumors responded 
to treatment with rapamycin, an mTOR antagonist, and 
HKI-272 (74).

ALK fusions

ALK is an orphan RTK that was first identified in anaplastic 
large cell lymphomas and a subset of T-cell lymphomas (94). 
ALK fusions are found in ~3–7% of LADs, mostly among 
never-smokers (53). In LAD, echinoderm microtubule 
associated protein like 4 (EML4) is the primary fusion 
partner with ALK resulting in the constitutive activation of 
the ALK kinase (95). Smaller subsets of fusions with other 
proteins have also been identified (96). Crizotinib (97),  
an oral ATP-competitive TKI of ALK, MET, and ROS1 
RTKs, is approved by the FDA for the treatment of 
advanced ALK-fusion LAD. Responses to crizotinib can 
be dramatic but only last ~6–12 months. Mutations in the 
ALK tyrosine kinase domain constitute ~30% of resistant 
cases with L1196M mutation being the most common 
(98,99). Other resistance mutations include C1156Y (100),  
G1202R (99), S1206Y (99), G1269A (98), and F1174L (101).  
Al ternat ive  res i s tance  mechanisms inc lude ALK 
amplification, activating KRAS mutations,  EGFR 
activation, and c-KIT overexpression. Second generation 
ALK antagonists, ceritinib (102,103), brigatinib (104,105) 
and alectinib (106-108), are more potent ALK antagonists 
with activity against many of the crizotinib-resistance 
mutants including L1196M. The three antagonists have 
been approved by the FDA after progression on crizotinib. 
Alectinib has been approved by the FDA for initial therapy. 

Pemetrexed, an anti-metabolite chemotherapy, has activity 
against ALK-fusion LAD albeit with decreased response 
rates and shorter PFS than targeted agents (109-111).

ALK fusion mouse models
E M L 4 - A L K  e x p r e s s i o n ,  r e g u l a t e d  b y  t h e  S P C  
promoter (75) or CC10-rtTA with tetracycline (76), led 
to development of adenocarcinomas that were sensitive 
to ALK inhibition. No distant metastases were noted in 
either model. In SPCCreERT2; EML4-ALKLSL mice (Figure 1C),  
treatment with tamoxifen induced nuclear translocation of 
cre recombinase to initiate the expression of EML4-ALK 
in type II pneumocytes (77). Crizotinib-sensitive tumors 
developed within 1 week. Crizotinib-resistant EML4-
ALK-L1196MLSL or -F1174LLSL mutant LAD, induced 
with adenovirus-expressing Cre recombinase (adeno-Cre), 
showed susceptibility to the combination of 17-DMAG, an 
HSP90 antagonist, and TAE684, a second-generation ALK 
antagonist (112).

Two groups independently used Clustered Regularly 
Interspaced Short Palindromic Repeats (CRISPR)/Cas9 
technology to generate adenocarcinomas with endogenous 
EML4-ALK fusions.  Adenoviruses or lentiviruses 
expressing Cas9 with single guide RNAs (sgRNAs) 
against EML4 intron 14 and ALK intron 19 were used to 
generate the fusion proteins (113,114). Tumors progress 
through papillary intrabronchial hyperplasia, atypical 
adenomatous hyperplasia (AAH), and adenocarcinoma 
within 8 weeks (113,114). Tumors were sensitive to 
crizotinib treatment (113).

ROS1 fusions

ROS1 is an RTK of the insulin receptor family with 
significant sequence and structural homology to ALK (115). 
ROS1 fusion proteins occur in ~1–2% of LADs (116-118) 
and are sensitive to crizotinib (116,119,120). CD74-ROS1 
and SLC34A2-ROS1 are the most frequent alterations 
of the >20 ROS1 fusion proteins found in solid tumors 
(115,118,121).

ROS1 fusion mouse models
To date, three GEMMs of ROS1 fusion LAD have been 
developed: CD74-ROS1 (78), SDC4-ROS1 (78), and EZR-
ROS1 (79) under the control of the SPC promoter. The 
mice develop papillary nodules within 3–4 weeks after birth 
and progress to adenocarcinoma, with decreased survival 
compared to wild type cohorts (78,79). Distant metastases 
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were identified in <1% of CD74-ROS1 and SDC4-ROS1 
mice (78).

PIK3CA mutations

PI3K is the upstream mediator of the PI3K-mTOR 
pathway and is one of the most commonly mutated 
pathways in human cancers (122). Mutations in PIK3CA 
occur in 7% of human LAD and are associated with the 
never-smoker group (54). The helical domain E545K and 
E542K mutations are the most common followed by the 
kinase domain H1047R mutations (54). These mutations 
occur in the p110 catalytic subunit of PI3K, leading to its 
activation and downstream signaling of the PI3K-mTOR 
pathway (123-125). 

PIK3CA mouse models
Doxycycline treatment of CCSP-rtTA; TetO-PIK3CAH1047R 
mice induced expression of PIK3CAH1047R and developed 
LAD within 12 weeks of doxycycline treatment with 
regression of tumors upon doxycycline withdrawal (80).  
Treatment with the NVP-BEZ235,  a  dual  PI3K-
mTOR antagonist ,  decreased tumor growth and 
18fluorodeoxyglucose (18FDG) avidity of the tumors on 
positron emission tomography (PET) scans (80).

Smoking-associated lung cancers

Tobacco smoke still causes the majority of LAD and is the 
primary cause of lung SCC and SCLC (42-44). Mouse 
models of smoking-associated lung cancer consist of three 
distinct groups: GEMMs, CITMs, and tobacco smoke-
induced mouse models (TSMs). GEMMs are the most 
popular models due to the precise modulation of critical 
oncogenes and TSs with relatively short and consistent 
duration to tumor formation compared to TSMs and 
CITMs (Tables 2,3). TSMs have generally fallen out of 
favor due to time and labor-intensive procedures with long 
latency times and generation of primarily adenomas.

Adenocarcinoma

KRAS
KRAS mutations are the most common oncogenic driver 
alterations occurring in ~30% of LAD (54), are strongly 
associated with smoking (53,54), and confer a worse survival 
than tumors with wild-type KRAS (158,159). Activating 
KRAS mutations primarily occur in the glycine residues 

of codon 12 (G12, 91%) and 13 (G13, 6%), the glutamine 
of codon 61 (Q61, 2%) (160). Among the G12 mutations, 
substitution by cysteine (G12C, 44%) is most common, 
followed by valine (G12V, 23%) and aspartate (G12D, 
17%) (160). There are no direct inhibitors of RAS proteins 
in clinical trials although small molecule irreversible 
antagonists against KRAS-G12C mutants have been 
reported (161-163).

Adenocarcinoma CITMs
The vast majority of CITMs are mutant Kras adenocarcinoma 
models induced by single cigarette smoke carcinogens. 
Commonly used carcinogens are benzo(a)pyrene [B(a)P]  
(126,131), ethyl carbamate (urethane) (126-128), vinyl 
carbamate (129,130), 4-(methylnitrosamino)-1-(3-pyridyl)-
1butanone (NNK) and N’-nitrosonornicotine (NNN) (164). 
All of these compounds require cytochrome P450 enzymes 
found in lung epithelia for bioactivation (165), leading to 
formation of DNA adducts (132). The majority of induced 
lung nodules are adenomas with some adenocarcinoma 
formation within a year (68,126,133,164,166). B(a)P (126) and 
urethane induce C>A transversions and T>A transversions, 
respectively, in the Kras gene leading to G12 and Q61 
mutations, respectively (68,126)—modeling the mutations 
seen in human LAD. NNK (133,166) and methylnitrosourea 
(MNU) (126) induce C>T transitions leading to KrasG12 
mutations.

The frequency and latency of lung cancer incidence 
strongly depend on the inbred strain. A/J and SWR 
strains are the most susceptible, BALB/c and FVB have 
intermediate susceptibility and C57Bl/6, DBA, and AKR 
strains are relatively resistant (167,168).

Kras GEMMs
Collectively, mutant Kras GEMMs are currently one of  
the most commonly used autochthonous models. The first 5 
models were reported in 2001: KrasLA1/+ (134), KrasLA2/+ (134),  
KrasLSL-G12D/+ (135), CCSP-rtTA; TetO-KrasG12D (93) and 
Actb-LGFPL-KrasG12V where LGFPL encodes for a loxp-
GFP-polyA-loxp cassette (136). These models evolve from 
epithelial hyperplasia to lung adenomas and eventually 
adenocarcinomas. The KrasLA models spontaneously 
activate a latent KrasG12D allele (134); the LA1 mice activate 
the KrasG12D allele in half of the genetic recombinations 
whereas the LA2 mice activate the mutant Kras allele in 
all recombinations. Thus, the LA2 mice develop more 
tumors with shorter latency and survival times. The mice 
also develop thymic lymphomas and skin papillomas but 
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Table 2 Smoking-associated lung cancer models: adenocarcinoma

Mouse (Ref.) Mutation Induction method Phenotype Metastasis

Ethyl-carbamate (Urethane) 
(68,126-128)

KrasQ61 Carcinogen Adenomas with rare adenocarcinomas. Long latency 
times

None

Vinyl-carbamate (129,130) KrasQ61 Carcinogen Adenomas with late adenocarcinomas. Long latency 
times

None

Benzo(a)pyrene [B(a)P] 
(126,131)

KrasG12 Carcinogen Adenomas. Long latency times None 

4-(methylnitros-amino)-1 
-(3-pyridyl)-1-butanone (NNK) 
(131-133)

KrasG12 Carcinogen Adenomas with late adenocarcinomas. Long latency 
times

None 

Methyl-nitrosourea (MNU) 
(68,126)

KrasG12 Carcinogen Adenomas with late adenocarcinomas. Long latency 
times

None 

KrasLA1/+, KrasLA2/+ (134) KrasG12D Spontaneous  
recombination to  
express KrasG12D

Adenomas with late adenocarcinomas. KRASG12D is  
expressed at physiologic levels. Late metastases.  
Thymic lymphomas and skin papillomas in 30% of mice

Yes

KrasLSL-G12D/+ (135) KrasG12D Adeno-cre or Lenti-cre Adenomas with late adenocarcinomas. KRASG12D is 
expressed at physiologic levels

Not noted

CCSP-rtTA; TetO-KrasG12D (93) KrasG12D Tetracycline or  
doxycycline

Adenomas with late adenocarcinomas. KRASG12D is 
over-expressed. Tumors regress after tetracycline  
withdrawal

Not noted

Actb-LGFPL-KrasG12V (136) KrasG12V Adeno-cre or  
Lenti-cre

Adenomas with late adenocarcinomas and metastases. 
KRASG12V is over-expressed with a β-galactosidase 
reporter

Yes

CMVCre; KrasLSL-G12V-geo/+,  
RERTnCreERT; KrasLSL-G12V-geo/+ 
(137)

KrasG12V Ubiquitous expression  
with CMVCre or with 
tamoxifen under  
RERTnCreERT

Adenomas with late adenocarcinomas. KRASG12D is 
expressed at physiologic levels with a β-galactosidase 
reporter

Not noted

KrasFSF-G12D/+ (138,139) KrasG12D Adeno-FlpO, or  
Lenti-FlpO

Adenomas with late adenocarcinomas. KRASG12D is 
expressed at physiologic levels

Not noted

KrasLSL-G12D/+; Trp53fl/fl (140) KrasG12D,  
Trp53−/−

Adeno-cre or Lenti-cre Accelerated development of adenocarcinomas with 
higher grade and increased metastases

Yes

CCSP-rtTA; TetO-KrasG12D; 
Trp53fl/fl, CCSP-rtTA;  
TetO-KrasG12D; Ink4afl/fl (93)

KrasG12D,  
Trp53−/− or  
Ink4a−/−

Tetracycline or  
doxycycline

Accelerated adenocarcinoma development Not noted

KrasLSL-G12D/+; Trp53LSL-R270H/+, 
KrasLSL-G12D/+; Trp53LSL-R172H/+ 
(140)

KrasG12D,  
Trp53R270H/+ or 
Trp53R172H/+ 

Adeno-cre or Lenti-cre R270H mutant shows higher grade adenocarcinomas 
whereas R172H mutant is equivalent to Trp53fl/+ mice

Yes

KrasLA1/+; Trp53R172H∆g/+ (141) KrasG12D;  
Trp53R172H∆g/+

Germline Trp53R172H∆g 
mutation

Adenocarcinomas with increased metastases. Mice 
also develop other cancers

Yes

KrasLSL-G12D/+; Lkb1fl/fl (142) KrasG12D,  
Lkb1−/−

Adeno-cre or Lenti-cre Mixture of adenocarcinoma, adenosquamous  
carcinoma, and SCC. More aggressive growth and 
metastases than KrasLSL-G12D/+; Trp53fl/fl model

Yes

CCSP-Cre; KrasLSL-G12D/+;  
Ptenfl/fl (143)

KrasG12D,  
Pten−/−

Cre expression under 
CCSP promoter

Adenocarcinoma with accelerated tumor growth and 
worse survival than mice with wild type Pten

Not noted

Braf V600E (144) BrafV600E Adeno-cre or Lenti-cre Adenomas. Sensitive to MEK1/2 inhibition Not noted

“Not noted” designates that metastases were not discussed by the authors.
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Table 3 Smoking-associated lung cancer models: squamous cell carcinoma and small cell lung cancer

Mouse (Ref.) Mutation Induction method Phenotype Metastasis

Squamous cell carcinoma

Benzo(a)pyrene/charcoal or 
methylcholanthrene (145-147)

Unknown Carcinogen Mostly SCC but mixed with  
adenocarcinoma and adenosquamous 
carcinoma. Multiple carcinogen  
applications with long latency period

None

N-nitroso-bis-chloroethylurea  
or N-nitroso-tris-chloroethylurea 
(NTCU) (148,149)

Unknown Carcinogen SCC. Multiple carcinogen applications 
with long latency period

None

KrasLSL-G12D/+; Lkb1fl/fl (142) KrasG12D,  
Lkb1−/−

Adeno-cre or Lenti-cre Mixture of adenocarcinoma,  
adenosquamous carcinoma, and  
SCC. More aggressive growth and 
metastases than KrasLSL-G12D/+; Trp53fl/fl 
model. Metastases are adenocarcinoma

Yes  
(adenocarcino-
ma histology)

Ptenfl/fl; Lkb1fl/fl (150) Pten−/−, Lkb1−/− Adeno-cre or Lenti-cre SCC. Very long latency time.  
Metastases to bone

Yes (rare)

Lori-IKKa; IKKaKA/KA (151) IKKaK44A Ubiquitous expression 
of IKKaK44A with IKKawt in 
skin

Spontaneous SCC in lungs,  
forestomach, and esophagus. IKKawt 
expression in skin prevents skin SCC

None

Lenti-Sox2; Lkb1fl/fl (152) Sox2wt  
overexpression, 
Lkb1−/−

Lentivirus-expressing 
SOX2 and Cre 

SCC in 41% of mice Not noted

Col1a1-Sox2LSL; Ptenfl/fl;  
Cdkn2abfl/fl (40)

Sox2  
overexpression, 
Pten−/−,  
Cdkn2ab−/−

Adenovirus with cre  
expression regulated by 
CK5- or CK14-promoters

Central SCC. Long latency time. Rare 
metastasis to heart

Yes (rare)

Small cell lung cancer

Rb1fl/fl; Trp53fl/fl (153,154) Rb1−/−, Trp53−/− Adeno-cre or Lenti-cre Classic SCLC with late metastases.  
Very long latency time

Yes

p130fl/fl; Rb1fl/fl;  
Trp53fl/fl (154,155)

Rb1−/−, Trp53−/−, 
p130−/−

Adeno-cre or Lenti-cre Accelerated tumor development and 
metastases. Mostly LCNEC but  
metastases were SCLC

Yes

Ptenfl/+ or Ptenfl/fl; Rb1fl/fl;  
Trp53fl/fl (154,156)

Rb1−/−, Trp53−/−, 
Pten−/+ or Pten−/−

Adeno-cre/Lenti-cre Accelerated tumor development.  
Ptenfl/+ mice had mostly SCLC with 
minor LAD tumors. Ptenfl/fl mice had 
mostly LCNEC tumors

Yes in Ptenfl/+ 
but not in Pten-
fl/fl mice 

Ptenfl/fl; Rb1fl/fl;  
Trp53fl/fl (70,154)

Rb1−/−, Trp53−/−, 
Pten−/−

Adeno-CGRP-cre Accelerated tumor development.  
LCNEC with some SCLC. Metastases 
were SCLC

Yes

CGRPCreER/+; Ptenfl/fl;  
Rb1fl/fl; Trp53fl/fl (157)

Rb1−/−, Trp53−/−, 
Pten−/−

Tamoxifen Accelerated neuroendocrine tumor  
development. All mice had thyroid  
tumors

No

Rb1fl/fl;Trp53fl/fl;MycLSL/LSL (71) Rb1−/−, Trp53−/−, 
MYCT58A

Adeno-cre or Lenti-cre Mixture of classic and variant SCLC 
with accelerated tumor development

Yes

“Not noted” designates that metastases were not discussed by the authors.
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not pancreatic or colon cancers despite the high frequency 
of Kras mutations in these cancers. The other models have 
greater lung specificity through use of CCSP-promoter or 
adeno-Cre or lentivirus-expressing Cre recombinase (lenti-
Cre) administration via intranasal (135) or intratracheal 
routes. The CCSP-rtTA;TetO-KrasG12D (93) and Actb-
LGFPL-KrasG12V (136) models express the mutant KRAS at 
supra-physiological levels that may account for their relative 
short latency of adenocarcinoma formation. The KrasLA (134) 
and KrasLSL-G12D/+ (135) mice express the mutant protein at 
physiologic levels as the mutations are positioned within 
the endogenous Kras locus. KrasLSL-G12V-geo/+ mice express 
KRAS-G12V at physiologic levels with a galactosidase 
reporter (137). The KrasLSL-G12D/+ is the most widely used 
model to generate mutant Kras LADs. Flp-FRT regulated 
KrasFSF-G12D/+ allele, where KrasG12D is induced by Flp 
recombinase, was developed to independently manipulate 
alleles controlled by other conditional systems in compound 
mutant mice (138,139).

Homology-directed repair (HDR) by CRISPR-Cas9 was 
used to induce tumors with twelve distinct KRAS-G12 and 
G13 mutations simultaneously in the same mouse (169) 
(Table 4). The adeno-associated viruses (AAVs) contained 
a sgRNA to target the KRAS region of interest, a Kras 
HDR template containing the mutation and a barcode, and 
Cre recombinase. Cell numbers of tumors derived from 
each Kras mutation were quantified using next generation 
sequencing (NGS) and Tuba-seq (170), a bioinformatics 
pipeline that tallies the barcode sequences as a surrogate 
for tumor size. KRAS-G12D, -G12R, and -G13R were the 
most potent oncogenes in the context of all three tested 
genotypes: Rosa26LSL-tdTomato/+;H11LSL-Cas9/+ (TC), TC;Trp53fl/fl, 
and TC;Lkb1fl/fl (169). 

Mutant Kras strains have been the most common 
platforms to study TS loss. Conditional loss of p53 in 
KrasLSL-G12D/+;Trp53fl/f mice caused accelerated tumor 
development with higher grade (93,140) and increased 
metastases (140). Mice expressing the p53 contact 
mutant ,  Trp 53LSL-R270H/f l,  or  the  s tructura l  mutant ,  
TrpLSL-R172H/fl, developed lung tumors with similar phenotypes 
to Trp53fl/fl (140). However, only the Trp53LSL-R270H/+ mutant, 
and not the TrpLSL-R172H/+ mutant, developed higher grade 
tumors than Trp53fll+, suggesting that the R270H mutant 
has greater oncogenic potential than the R172H mutant 
in KrasG12D LAD (140). KrasLA1/+;Trp53R270H∆g/+ mice have 
a germline TrpR270H mutation with loss of one intronic 
nucleotide (174). They develop LAD with metastases in 
37% of mice but also develop mesotheliomas, sarcomas, 
carcinomas, and lymphomas (141). KrasLSL-G12D/+;Lkb1fl/fl mice 
with Lkb1 deletions (human STK11) developed a mixture of 
adenocarcinoma, adenosquamous carcinoma and SCC with 
greater tumor multiplicity and metastases than KrasLSL-G12D/+; 
Trp53fl/fl mice (142). Regional lymph node metastases 
occurred in 61% of mice but were all adenocarcinomas. 
CCSPCre;KrasLSL-G12D/+;Ptenfl/fl mice also showed increased 
tumor multiplicity and poorer survival compared to Pten+/+ 
mice (143).

BRAF
BRAF mutations occur in 7% of human LAD (54). BRAF 
acts downstream of KRAS as part of the MAPK signaling 
pathway (175). Conditional expression of mutant BRAFV600E 
after intranasal instillation of adeno-cre developed SPC(+), 
CCSP(−) adenomas suggestive of alveolar origin (144).  
In contrast to KrasLSL-G12D/+ mice, BrafLSL-V600E mice 
rarely progressed beyond adenomas. Treatment with  

Table 4 Lung cancer models generated with CRISPR-Cas9

Mouse (Ref.) Mutation Induction method Phenotype Metastasis

CRISPR-EML4-ALK 
(113,114)

EML4-ALK fusion CRISPR/Cas9 via  
adenovirus or lentivirus

Adenocarcinoma within 8 weeks Not noted 

Rosa26LSL-tdTomato/+;  
H11LSL-Cas9/+ (169,170)

Various KrasG12 or  
KrasG13 mutations

CRISPR-Cas9 via AAVs Adenomas with various Kras mutations 
induced by CRISPR-Cas9 mediated HDR

Not noted

KrasLSL-G12D/+, KrasLSL-G12D/+; 
Trp53fl/fl, KrasLSL-G12D/+;  
Lkb1fl/fl (171,172)

KrasG12D, KrasG12D; 
p53−/−, KrasG12D;  
Lkb1−/− with other TS loss

CRISPR-Cas9 via  
lentivirus

Adenocarcinomas with loss of a single  
TS induced by CRISPR-Cas9 mediated 
indels

Not noted 

KrasLSL-G12D/+;  
Rosa26LSL-tdTomato/+;  
H11LSL-Cas9/+ (170,173)

KrasG12D with other TS loss CRISPR-Cas9 via  
lentivirus

Adenocarcinomas with multiplexed loss of 
TSs induced by CRISPR-Cas9 mediated 
indels

Not noted

“Not noted” designates that metastases were not discussed by the authors. “TS” designates “tumor suppressor”.
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PD0325901 (176), a MEK1/2 antagonist downstream of 
BRAF, inhibited adenoma formation.

CRISPR-mediated loss of TSs
Generation of GEMMs with loss of multiple TSs is 
time consuming and costly due to the requisite germline 
modifications and the number of crosses required to 
generate the desired genotype. To circumvent these 
problems, CRISPR/Cas9 technology has been utilized in 
GEMMs to generate lung cancers with TS loss (171,172), 
primarily in mutant Kras  LAD GEMMs (Table 4) .  
DNA constructs that encode for Cre recombinase to 
induce recombination of Loxp sites, a Cas9 nuclease and 
sgRNA to enable CRISPR-mediated gene editing have 
been packaged in lentiviruses for in vivo use. pSECC, 
the first generation construct, was utilized to induce 
loss of NKX2-1, APC, and PTEN proteins in LADs 
of KrasLSL-G12D/+ and KrasLSL-G12D/+;Trp53fl/fl mice (171). A 
second generation construct that improved lentiviral 
titers, LentiCRISPRv2Cre, was utilized to verify the TS 
properties of SETD2 in KrasLSL-G12D/+;Trp53fl/fl mice (172).  
Extending this concept further, lentiviral constructs 
encoding Cre recombinase, sgRNA against TSs of interest, 
a sgRNA-identifier, and a barcode unique to the construct 
were used to induce multiplexed TS loss simultaneously 
in the same mouse (170,173). Precise quantification of 
tumor cell number was performed using NGS and Tuba-
seq bioinformatic analyses (170). Lentiviruses encoding 
sgRNAs against 11 putative TS genes were delivered 
simultaneously to KrasLSL-G12D/+;Rosa26LSL-tdTomato/+;H11LSL-Cas9/+ 
(KTC), KTC;Trp53fl/fl (KTCP), and KTC;Lkb1fl/fl (KTCL) 
mice. Lkb1, Setd2, and Rb1 were identified as the most 
potent TSs in KTC mice (170,173), Smada4, Arid1a, and 
Atm were TSs only in KTCP mice, and Rb1 and Apc were 
the only potent TSs in all three mouse genotypes (173). 
These results suggest that the tumor suppressive ability of 
genes is not universal but rather dependent on the context 
of other genetic alterations.

Squamous cell carcinoma

Lung SCC models have been the most difficult to establish 
among the major histological subtypes and consequently, 
the least studied. 

Carcinogen-induced models
Repeated intratracheal instillation of high dose benzo(a)
pyrene/charcoal (145,146) or 3-methylcolanthrene (147),  

up to 16 weeks, generated a mixture of adenomas, 
adenocarcinomas and SCC with SCC being the dominant 
histology. These experiments were technically difficult and 
not easily replicated. A third model used repeated cutaneous 
applications of N-nitroso-bis-chloroethylurea (148) or 
N-nitroso-tris-chloroethylurea (NTCU) given twice per 
week from 23 to 43 weeks (148,149). Mice developed 
early hyperplasia of bronchiole epithelia with transitions 
to metaplasia and SCC and adenosquamous carcinoma. 
The tumors expressed CCSP (148) and cytokeratin 5/6 
[CK5/6, (149)], but not chromogranin (a neuroendocrine 
marker) nor surfactant apoprotein (an alveolar cell marker), 
consistent with SCC (148). RNA-seq transcriptome analysis 
of early preneoplastic airway epithelia after 24 weeks of 
NTCU treatment revealed upregulation of PI3K and Myc 
pathways (177).

GEMMs
The f i r s t  GEMM of  lung  SCC was  repor ted  in  
KrasLSL-G12D/+;Lkb1fl/fl mice (142). However, two issues have 
prevented widespread use of this model for studying lung 
SCC. First, a mixture of adenocarcinoma, adenosquamous, 
and SCC were generated with 56% of mice developing 
SCC or mixed adenosquamous histology. Metastases were 
noted although they were adenocarcinomas rather than 
SCC. Second, KRAS mutations are rare in human lung 
SCC (55). 

Ptenfl/fl;Lkb1fl/fl strain (150) was developed as LOF 
PTEN mutations are frequent in human SCC (55). All 
Ptenfl/fl;Lkb1fl/fl mice developed SCC within 40–50 weeks 
and strongly expressed the SCC markers p63, KRT5, and 
SOX2. A low frequency (4%) of axial skeletal metastasis was 
observed.  

In a third model, ~20% of mice homozygous for the 
kinase dead IKKα-K44A mutant (IKKaKA/KA) developed 
spontaneous lung SCC but also developed significant 
skin papillomas and SCC (151). Expression of wt IKKα 
regulated by the skin-specific loricrin promoter (Lori-IKKα) 
rescued the skin phenotype of the IKKaKA/KA mice while 
lung SCC developed in all of the mice within 4–6 months 
of age. Interestingly, LKB1 expression was downregulated 
in the lung SCCs.  The model also developed SCC in the 
forestomach and esophagus, and lacked both lymph nodes 
and metastases. The absence of lymph nodes may possibly 
account for lack of metastases. 

SOX2 is often amplified in lung SCC (55,178) and 
several corresponding GEMMs have been developed. Lkbfl/fl  
mice treated with lentiviruses expressing SOX2 and Cre 
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recombinase by intranasal inhalation developed multifocal 
SCC in 41% of mice within 6–10 months (152) whereas 
Trp53fl/fl mice developed adenocarcinoma. The tumors 
expressed the typical SCC markers and high levels of 
FGFR and pSTAT3. Another model used adenoviruses 
with promoter-specific expression of Cre recombinase 
in Sox2LSL;Ptenfl/fl;Cdkn2abfl/fl mice (40). Induced SOX2 
expression in type 2 pneumocytes (SPC promoter), club 
cells (CC10 promoter), and tracheal-bronchial basal cells 
(CK5 or CK14 promoter) develop SCC in 100%, 100% and 
73% of mice, respectively, within 7–8 months. Metastasis 
(to the heart) was noted in only one of six mice treated 
with adeno-CK5-Cre. The basal cell targeted adenoviruses 
generated central SCC similar to human lung SCC. 
Adenoviruses targeting club cells or type 2 pneumocytes 
generated peripheral lung SCC. As discussed previously, 
type 2 pneumocytes and a subset of club cells have been 
described as cells of origin for adenocarcinoma. These 
results suggest that SOX2 is a determinative oncogene for 
SCC in the context of Pten and Cdkn2ab loss regardless of 
the cell of origin. Further studies are needed to elucidate 
the mechanisms for SCC development when SOX2 is 
expressed in the context of Lkb1 or Pten/Cdkn2ab loss in 
contrast to adenocarcinoma development in the context of 
Trp53 loss. 

SCLC

While transplant models of SCLC exist, GEMMs are 
the only available models of autochthonous SCLC. All 
current models are based on Rb1 and Trp53 loss analogous 
to human SCLC (66,67). Rb1fl/fl;Trp53fl/fl strain was the first 
reported SCLC GEMM by intratracheal administration of 
adeno-cre (153). Neuroendocrine hyperplasia and dysplasia 
developed between 4 and 6 months and SCLC developed 
between 7 and 12 months after infection. The tumors 
expressed high levels of ASCL1 (153) and L-MYC (179),  
consistent with human SCLC. Heterozygous loss of either 
Rb1 or Trp53 resulted in mixtures of neuroendocrine 
tumors and adenocarcinomas. Metastases to adrenal 
glands, bone, brain, liver and ovaries occurred in 42% of 
the mice. Additional loss of p130, a member of the RB 
family, to Rb1 and Trp53 led to accelerated development 
of neuroendocrine tumors within 3 months and liver 
metastases by 6 months (155). Triple knockout mice had 
more metastases than double knockout mice at 6 and  
9 months (155).

Three models of SCLC in Ptenfl/fl;Rbfl/fl;Trp53fl/fl mice 

reported accelerated tumor formation: (I) induction via 
adeno-cre infection (156), (II) in PNECs via infection with 
adenovirus-expressing Cre under a CGRP-promoter specific 
(CGRP-Cre) (70) and (III) via tamoxifen administration to 
CGRPCreER/+;Ptenfl/fl;Rb1fl/fl;Trp53fl/fl (157). 

Comparison of the various models revealed biases toward 
different histologies (154). Rb1fl/fl;Trp53fl/fl mice developed 
tumors that predominantly resemble human SCLC with a 
minor component of large cell neuroendocrine carcinoma 
(LCNEC). Rb1fl/fl;Trp53fl/fl;p130fl/fl mice developed mostly 
LCNEC early but then became dominated by SCLC at 
later time points. Metastases in this model were SCLC 
suggesting that SCLC may be a more aggressive tumor 
type despite a longer latency period. Ptenfl/fl;Rb1fl/fl;Trp53fl/fl  
and Ptenfl/+;Rb1fl/fl;Trp53fl/fl mice developed mixed SCLC 
and adenocarcinoma tumors with predominantly SCLC 
in Ptenfl/+ mice but not in Ptenfl/fl mice. Unlike the  
Rb1fl/fl;Trp53fl/fl or Ptenfl/+;Rb1fl/fl;Trp53fl/f models, metastases 
were not observed in the Ptenfl/fl;Rb1fl/fl;Trp53fl/fl after 
infection with adeno-cre (156). In Rb1fl/fl;Trp53fl/fl;Ptenfl/fl  
models using CGRP-cre adenovirus, LCNEC was the 
dominant histology with minor components of SCLC and 
adenocarcinoma but the metastases were SCLC (154). 

Recently, a model of variant SCLC has been reported 
with the expression of constitutively active MYC-
T58A combined with Rb1 and Trp53 loss (71). The mice 
developed tumors more quickly than those with Pten loss; 
they had shorter survival (average ~6 weeks) and a higher 
incidence of metastases. In contrast to previous models, 
tumors from Rb1fl/fl;Trp53fl/fl;MycLSL/LSL mice expressed high 
levels of NEUROD1, low levels of ASCL1 and had no Mycl 
amplifications, consistent with human variant SCLC.

Modeling the immune microenvironment in 
mouse models of lung cancer

Within the last 5 years, T cell immune checkpoint blockade 
(ICB) has transformed the therapeutic landscape of 
lung cancer. Immune checkpoints represent a myriad of 
molecules that regulate the activity of cytotoxic T cells (180).  
The two most intensely studied immune checkpoints are the 
inhibitory receptors programmed cell death 1 (PD-1), that 
binds to the programmed cell death 1 and 2 ligands (PD-L1; 
PD-L2), and cytotoxic T-lymphocyte antigen 4 (CTLA4), 
that binds to CD80 and CD86 ligands and competes with 
the activating receptor CD28 (180). Current immune 
checkpoint therapies are antibodies directed against PD-1 
(nivolumab, pembrolizumab), PD-L1 (atezolizumab, 
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durvalumab) or CTLA4 (ipilimumab, tremelimumab) 
that relieve the inhibitory activity of the checkpoints 
on cytotoxic T cell activation. Anti-CTLA4 antibodies 
also deplete regulatory T cells (181). Anti-PD-1/PD-L1 
agents showed significantly improved progression-free 
survival (PFS) and overall survival (OS) rates in treatment-
naïve (182,183) and previously-treated (184-187) patients 
with metastatic NSCLC and locally advanced NSCLC 
after chemoradiotherapy (188). Early phase1/2 trials with 
combination nivolumab (anti-PD-1) and ipilimumab (anti-
CTLA-4) in treatment-naïve NSCLC (189) and pretreated-
SCLC (190) patients showed promise although the toxicities 
were greater than nivolumab alone.

Despite these advances, identification of predictive 
biomarkers for ICB has been difficult. PD-L1 expression 
has not been a reliable biomarker for anti-PD-1/
PDL-1 agents. Pembrolizumab has superior responses 
against NSCLC tumors with >50% PD-L1(+) cells by 
immunohistochemistry (IHC) (182,191). Nivolumab 
efficacy, however, had little correlation with PD-L1 staining 
(185,186). Although distinct PD-L1 tests were utilized 
for the two drugs, the assays are highly concordant (192). 
Thus, the cause for the divergent efficacies based on PD-L1 
expression is still unknown.

Melanoma and NSCLC, two malignancies sensitive to 
ICB, have high total mutation burdens (TMBs) (193,194). 
Somatic mutations are thought to form “neoantigens” that 
may serve as epitopes that are recognized by T cells (195).  
NSCLC samples with high TMBs (> median value) 
had higher neoantigen levels and, when treated with 
pembrolizumab, correlated with PFS and durable clinical 
benefit (DCB), defined as partial or stable response  
>6 months (196). Consistent with these data, high TMB 
correlated with improved PFS in NSCLC patients treated 
with nivolumab compared to chemotherapy (197). No 
correlations between TMB and PD-L1 expression have 
been identified (198).

A striking distinction between human and GEMM lung 
cancers is the large discrepancy in the number of somatic 
mutations. Human never-smoker and smoking-associated 
lung cancers have 28- and 110-fold more nonsynonymous 
mutations, respectively, than GEMM lung cancers (69,70). 
The lack of mutations in GEMM lung cancers may present 
hurdles to study ICB in mice although some studies 
suggest that the transgenic sequences may be presented 
as antigens to T cells (199,200). Despite these limitations, 
mouse models have been valuable to elucidate the immune 
microenvironment with implications for human therapy. 

We will focus on GEMMs although syngeneic Lewis lung 
carcinoma transplant models have also been used. CITMs 
have not been used routinely for immune microenvironment 
studies although they may be attractive models given their 
greater number of somatic mutations than GEMMs (68). 

Never-smoker models 

In humans and GEMMs, mutant EGFR LAD exhibited 
reduced cytotoxic lymphocyte infiltration as compared to 
mutant Kras-driven tumors (201). In another study, EGFR 
pathway activation by EGFR Del19, L858R-T790M, and 
Del19-T790M mutants led to increased PD-L1 expression 
with corresponding decrease when treated with EGFR 
antagonists (202). Subsequent studies revealed similar 
correlations with human mutant EGFR, KRAS, EML4-
ALK fusions and PD-L1 (203-206). The immune-triggering 
antigenic peptides in GEMMs still await identification. 

The murine results are in contrast to human studies 
where EGFR-mutant tumors responded less favorably to 
ICB than wild type EGFR tumors (207,208). There may 
be several reasons for the differences. The murine tumors 
were treatment naïve whereas the human EGFR-mutant 
tumors had prior exposure to therapies such as EGFR 
TKIs or chemotherapy. Distinct mechanisms of resistance 
to those prior therapies may alter the microenvironment 
through changes in chemokine or cytokine expression 
in tumor cells (209,210). Lower mutational loads of 
EGFR-mutant tumors (69) may also account for the poor 
responses with ICB.

A DNA vaccine against cytoplasmic domain of ALK in 
EML4-ALK GEMMs delayed tumor growth through a 
cytotoxic T cell dependent mechanism and synergized with 
anti-PD-1 ICB (200). These studies led to the discovery of 
autoantibodies against ALK in patients with ALK positive 
tumors (211). 

Smoking-associated models

Adenocarcinoma
Mutant Kras GEMM cancers showed poor tumor T cell 
infiltration and were resistant to ICB therapy (202,212-215).  
Intratumoral expression of antigenic luciferase (212) or 
treatment with immunogenic oxaliplatin/cyclophosphamide 
chemotherapy (213) in KrasLSL-G12D/+;Trp53fl/f mice induced 
tumor T cell infiltration and conferred sensitivity to 
ICB (213). In KrasG12D mice with IL-17 driven chronic 
inflammation, increased neutrophil infiltration led to ICB 
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resistance (214). KrasG12D;Lkb1fl/fl adenosquamous tumors 
demonstrated a paucity of T cells, elevated pro-inflammatory 
cytokines and myeloid cells, reduced PD-L1 expression and 
were resistant to ICB (216) analogous to human cancers  with 
KRAS and LKB1 mutations (216-218). 

In KrasG12D/+ or KrasG12D;p53fl/fl mice, ICB in combination 
with immunogenic radiation (219) or chemotherapy (213) 
suppressed tumor growth. In the KrasLA2 model, mTOR 
inhibition was synergistic with ICB (215). Also, epigenetic 
modifiers HDAC6 inhibitor and JQ1 (bromodomain 
inhibitor) stimulated anti-tumor immunity in KrasG12D;p53 fl/fl  
adenocarcinoma (220).

Squamous cell lung cancer
Ptenfl/fl;Lkb1fl/fl SCCs have high levels of PD-L1 in the tumor 
propagating cells, increased tumor-associated neutrophils, 
and decreased tumor-associated macrophages. In the same 
study, increased density of neutrophils was also found in 
human SCCs as compared to adenocarcinomas (148).  
SCCs from Lori-IKKa;IKKaKA/KA mice had significantly 
increased CD4+ T cells and macrophages with mildly 
increased numbers of CD8+ T cells and neutrophils. Early 
depletion of macrophages inhibited SCC development (149). 

SCLC
Few immuno-oncology studies in SCLC have been 
reported. Rb1fl/fl;Trp53fl/fl murine tumors had reduced T cell 
infiltration as compared to murine adenocarcinoma (201).  
CD47, a “don’t eat me signal” (221), is overexpressed in 
SCLC (222). Antibody-mediated CD47 blockade was 
therapeutically effective in transplant and GEMM SCLC 
models through activating macrophages (222). 

Conclusions

GEMMs of never-smoker lung cancers may represent 
a fairly close approximation to human cancers. Never-
smoker lung cancers have much lower rates of mutations 
and are less responsive to ICB than smoking-associated-
lung cancers—analogous to the GEMMs. Furthermore, 
GEMMs of never-smokers have faithfully reproduced 
human sensitivity to TKIs or combination of TKIs (69) and 
provide a platform to test novel targeted therapies.

GEMMs of smoking-associated lung cancer have greater 
distinctions with their human counterparts. GEMM cancers 
are more resistant to ICB and have lower TMB than 
human cancers. Despite these discrepancies, the murine 
genetic aberrations lead to a phenotypic evolution from 

pre-cancerous lesions to carcinomas that are strikingly 
similar to human cancers. Examples, among many, 
include the gain of Mycl amplifications in Rb1fl/fl;Trp53fl/fl  
S C L C  ( 7 0 ) ,  h e t e r o g e n o u s  N E U R O D 1 ( + )  a n d 
NEUROD1(−)/ASCL1(−) variant SCLC in Rb1fl/fl;Trp53fl/fl; 
MycLSL/LSL mice (71) and the T cell non-inflamed phenotype 
KrasG12D/+;Lkb1fl/fl tumors (216) mirror their analogous 
human cancers (67,216,217).

However, the need for better models is still present. 
SCC models are needed that represent the greater diversity 
of human genetic alterations. Models that more faithfully 
mimic the engagement of human cancers with the immune 
microenvironment are still needed. CITMs, with its higher 
TMB, may engage T cells more than GEMMs, although 
tumor histology is presently limited to adenomas. Also, 
models are needed that faithfully mimic the serious immune 
toxicities of ICB experienced by patients. Current murine 
models don’t exhibit such toxicities. 

Despite these limitations, CITMs and GEMMs 
faithfully model human lung cancer pathogenesis and 
behavior from hyperplasia to metastases (for GEMMs). 
The development of de novo tumors in situ may also 
more closely model human lung cancers than transplant 
models of fully developed cancers placed into tumor-
naïve microenvironments. Careful selection of CITMs and 
GEMMs provides a rich platform to elucidate the biology 
of lung cancers and to test novel therapeutic strategies.
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