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Introduction

Stereotactic body radiation therapy (SBRT) is standard of 
care therapy for medically inoperable early stage non-small 
cell lung carcinoma and is often utilized in cases where 

non-operable management is preferred (1). SBRT for lung 

cancer is typically a well-tolerated treatment, largely owing 

to the reduced lung volumes exposed to high dose radiation 

and the sharp dose gradient of stereotactic treatments (2).
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Radiation pneumonitis is the most common acute and 
long-term pulmonary toxicity (3). Its manifestation is a 
spectrum, from being radiographically detected changes 
to clinically apparent with symptoms of dyspnea, cough, 
and fever (3). The risk of clinical RP requiring medical 
intervention has been reported to be 9–28% after lung 
SBRT (4,5). Significant, i.e., grade 3 or higher, rates of RP 
have been reported typically in the low single digit range 
(6-11), but have been noted to be as high as 21% in a single 
series (12). Rare fatal cases of RP were reported in early 
experiences with SBRT for central and peripheral tumors 
alike (11,13).

Tumor motion during the respiratory cycle can affect 
the accuracy of treatment delivery; as a result, motion 
management is central to the safety and efficacy of 
lung SBRT. Respiratory gating, i.e., radiation delivery 
synchronized to a subset of the respiratory cycle, is 
one component of motion management. Restricting 
treatment to respiratory phases during which tumor 
motion is minimized can reduce the volume of normal 
lung parenchyma receiving ablative doses of radiation. 
Alternatively, patients can be treated using a free-breathing 
technique in which intra-fraction tumor motion is defined 
with the use of 4-dimensional computed tomography 
(4DCT).

The risk of radiation pneumonitis is thought to be 
related to the volume of irradiated lung. Various dosimetric 
and tumor-related factors have been explored as risk 
factors for radiation pneumonitis (4,8,14-16). Though 
no consensus exists on the most clinically appropriate 
dosimetric endpoint, mean lung dose has been the most 
commonly evaluated in numerous series (7-9,17,18). 
Similarly, the implementation of motion management 
techniques is heterogeneous (19). We aimed to explore 
techniques of motion management, in addition to patient 
and tumor-related characteristics, as predictors of radiation 
pneumonitis using a single institution multi-center 
approach.

Methods

Consecutive records for patients treated with lung SBRT 
at 4 clinical sites within a single academic institution were 
reviewed. An Institutional Review Board approved the 
retrospective collection of patient information and technical 
details of radiation therapy for patients treated with lung 
SBRT. For patients who had received more than a single 
lung SBRT course, only the first was included and analyzed 

for this study. Development of radiation pneumonitis was 
determined using all available records, which included 
multi-specialty follow-up visits with radiation oncologists, 
pulmonologists, medical oncologists, or thoracic surgeons, 
and, if applicable, hospitalizations. The earliest date of 
pneumonitis onset was recorded, and events were graded 
using the Common Terminology Criteria for Adverse 
Events Version 4.0. Other relevant demographic, tumor, 
and treatment characteristics including radiotherapy dose 
and fractionation, histology, size, location and centrality of 
the primary tumor were captured and maintained in a single 
database.

All patients were simulated with a 4DCT, allowing an 
estimate of tumor displacement at time of simulation. 
Selection for the method of motion management was 
determined based on the degree of tumor motion. Patients 
with ≥1 cm of maximum tumor motion were selected for 
respiratory-gated planning and delivery. The Real-time 
Position Management system (Varian Medical Systems, 
Palo Alto, CA) was used for phase-based gating. Otherwise, 
patients with a tolerable degree of intra-fraction tumor 
displacement were planned and subsequently treated using 
a free-breathing approach. Patients were immobilized using 
custom-made devices designed for SBRT, including CIVCO 
with abdominal compression or abdominal belt, or Medical 
Intelligence setups.

Descriptive statistics such as frequencies were generated 
for categorical variables; means and standard deviations 
were generated for numeric variables. Categorical patient 
and treatment characteristics were compared across motion 
management techniques using chi-squared tests or Fisher’s 
exact tests; numeric patient characteristics such as age were 
compared using ANOVA. Pneumonitis-free survival (PNFS) 
was defined as time from the date of first visit to earliest 
onset of radiation pneumonitis or last clinical follow-up, 
where those alive without pneumonitis were censored at 
last clinical follow-up date. The first pre-treatment visit 
typically precedes to the first fraction date by approximately 
2 weeks.

Overall survival was defined as time from first visit date 
to date of death or last clinical follow-up. Local failure-
free survival, regional failure-free survival, and distant 
metastasis-free survival were defined as time from first visit 
date to either date of local failure, regional failure, distant 
failure, or last clinical follow-up. For each endpoint, those 
not meeting the applicable endpoint were censored at last 
clinical follow-up date. Survival distributions were estimated 
using the Kaplan-Meier method and were compared using 
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log-rank tests. 
Univariate Cox proportional hazards models were fit 

for each covariate with each of the above endpoints. A 
multivariable Cox model was fit for PNFS as a function 
of motion management, gender, race, numeric age, T 
classification, number of fractions, dose, histology, smoking 
status, tumor centrality, and primary lobe of lung. Variables 
were subject to backwards elimination using an alpha of 0.2 
for removal. Model assumptions were checked and verified. 
Firth’s penalized maximum likelihood estimation was used 
in the local control models due to a small number of local 
failures (n=12), in order to reduce bias in the parameter 
estimates and confidence intervals, and to handle empty 
cells (20,21). All analyses were performed using SAS 9.4 
(Cary, NC); significance was assessed at the 0.05 level.

Results

Included for analysis were 208 patients, with a median 
follow-up of 23 months. A total of 208 lung SBRT courses 
representing the first treatment were selected from a 
database of 241 treatment courses to minimize the effect of 
multiple lung SBRT courses on the development of radiation 
pneumonitis and other clinical endpoints. The median age 
at time of treatment was 71 years (range, 39–95 years); 191 
(91.8%) patients had early stage lung primaries (T1–2), with 
approximately half being T1a (45.6%). The majority of 
tumors were peripheral (62.6%), and the primary location 
was evenly distributed. 50 Gy in 5 fractions was the most 
commonly prescribed dose, followed by 48 Gy (12 Gy ×4, 
22.6% of cases) and 54 Gy (18 Gy ×3, 17.3% of cases). 
Relatively few patients were prescribed either greater than  
54 Gy or less than 48 Gy, most commonly 7.5 Gy ×8 and 
34 Gy in a single fraction. Fifty-five (26.4%) patients were 
treated using respiratory gating, and 153 (73.6%) patients 
were treated free-breathing. Other relevant patient, tumor, 
and treatment characteristics are summarized in Table 1.

RP of any grade developed in 31.7% of patients overall. 
Of patients who developed RP, the majority of events were 
grade 2 or higher (62.1%); 31.8% were grade 3 or higher. 
Of all patients, 23.0% developed grade 2 or higher RP, and 
10.1% developed grade 3 or higher radiation pneumonitis. 
Patients characteristics, with the exception of primary 
location and active smoking status, were balanced between 
motion management groups (Table 2). Patients being treated 
without respiratory gating were more likely to have upper 
lobe tumors compared to their gated counterparts (30.72% 
vs. 5.45% for left upper lobe; 37.25% vs. 12.73% for right 

upper lobe, P<0.001). A similar increase in the proportion 
of lower lobe tumors was seen in the gated group. Those 
treated free-breathing were more likely to be active smokers 
than those treated using respiratory gating (29.41% vs. 
12.73%, P=0.014).

Patient, disease and treatment characteristics were 
assessed in the univariate setting for predictors of PNFS 
(Table 3). Peripherally-located lung tumors were associated 
with a reduced risk of RP [hazard ratio (HR) =0.43, log-rank 
P<0.001). Dose (log-rank P=0.002) and number of fractions 
(log-rank P=0.001) were both relevant to the risk of PNFS. 
Treatment to a dose of 48 Gy was associated with a longer 
interval of PNFS when compared to treatment to less than 
48 Gy (HR =0.31, HR P=0.041); being treated to >54 Gy 
trended towards superior PNFS (HR =0.25, HR P=0.058). 
Treatment in 4 fractions was associated with superior 
PNFS (HR =0.21, HR P=0.021) compared to a course of 
fewer than 3 fractions. The 3- and >5-fraction courses both 
trended towards significantly longer PNFS intervals (HR 
=0.30, HR P=0.071 and HR =0.26, HR P=0.101 for 3- and 
>5-fractions, respectively). PNFS outcomes did not differ 
by motion management technique (log-rank P=0.383) 
(Figure 1). Neither primary tumor size, as approximated by 
T classification, nor lung lobe were significant for PNFS 
outcomes. Additionally, advanced age (>65 years), race, 
sex, or being an active smoker did not appear to impact the 
length of RP-free survival.

In the multivariable setting, peripheral tumor location 
was associated with superior PNFS over centrally-located 
tumors (HR =0.50, HR P=0.014, Table 4). Number of 
fractions remained significant for predicting PNFS. 
Receiving either a lung SBRT course in 4 or >5 fractions 
were associated with a longer RP-free survival interval (HR 
=0.19, HR P=0.019, and HR =0.14, HR P=0.034 for 4 and 
>5 fractions, respectively). A 3-fraction course trended 
towards longer PNFS (HR =0.29, HR P=0.069). Motion 
management technique did not appear to impact PNFS 
in the multivariable model (HR =0.88, HR P=0.707). No 
examined characteristic appeared to impact the length 
of local or regional failure-free survival. Characteristics 
associated with distant metastasis-free survival included 
age >65 years (HR =0.45, HR P=0.004) and histology 
(adenocarcinoma HR =1.49, squamous cell carcinoma  
HR =0.52, log-rank P=0.031).

Discussion

SBRT is a highly conformal form of ablative radiotherapy 
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Table 1  Basel ine demographic ,  disease ,  and treatment 
characteristics for entire cohort

Characteristic Value

Age at treatment

Mean (standard dev.) 71.13 (10.61)

Median (range) 71 [39–95]

Sex, n (%)

Male 99 (47.6)

Female 109 (52.4)

Race, n (%)

White 143 (68.8)

Non-white 65 (31.3)

T classification, n (%)

T1a 87 (41.8)

T1b 56 (26.9)

T2a 39 (18.8)

T2b 9 (4.3)

T3 12 (5.8)

T4 4 (1.9)

Tx 1 (0.5)

Tumor location, n (%)

Peripheral 122 (62.6)

Central 73 (37.4)

Lobe of lung, n (%)

LLL 42 (20.2)

LUL 50 (24.0)

RLL 37 (17.8)

RUL 64 (30.8)

Other 15 (7.2)

Histology, n (%)

Adenocarcinoma 92 (44.2)

SCC 67 (32.2)

NSCLC 9 (4.3)

Other 8 (3.8)

Unknown 32 (15.4)

Table 1 (continued)

Table 1 (continued)

Characteristic Value

Dose (Gy), n (%)

>54 21 (10.1)

54 36 (17.3)

50 91 (43.8)

48 47 (22.6)

<48 13 (6.3)

Number of fractions, n (%)

>5 14 (6.7)

5 97 (46.6)

4 49 (23.6)

3 42 (20.2)

<3 6 (2.9)

Motion management, n (%)

Gated 55 (26.4)

Free-breathing 153 (73.6)

Active smoker, n (%)

Yes 52 (25.0)

No 156 (75.0)

Table 2 Patient characteristics stratified by method of motion 
management

Covariate

Motion management, n (%)
Parametric 
P valueFree-breathing 

(N=153)
Gated (N=55)

Age at treatment 
(median)

71 70 0.646

Age (years) 0.458

>65 103 (67.32) 40 (72.73)

≤65 50 (32.68) 15 (27.27)

Sex 0.711

Male 74 (48.37) 25 (45.45)

Female 79 (51.63) 30 (54.55)

Race 0.458

White 103 (67.32) 40 (72.73)

Non-white 50 (32.68) 15 (27.27)

Table 2 (continued)
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Table 2 (continued)

Covariate

Motion management, n (%)
Parametric 
P valueFree-breathing 

(N=153)
Gated (N=55)

T classification 0.619

T3/4 13 (8.50) 3 (5.56)

T2 37 (24.18) 11 (20.37)

T1 103 (67.32) 40 (74.07)

Tumor location

Peripheral 84 (59.15) 38 (71.70) 0.107

Central 58 (40.85) 15 (28.30)

Lobe of lung <0.001

LLL 20 (13.07) 22 (40.00)

LUL 47 (30.72) 3 (5.45)

RLL 17 (11.11) 20 (36.36)

RUL 57 (37.25) 7 (12.73)

Other 12 (7.84) 3 (5.45)

Histology 0.416

Adenocarcinoma 67 (43.79) 25 (45.45)

SCC 48 (31.37) 19 (34.55)

NSCLC 9 (5.88) 0 (0)

Other 5 (3.27) 3 (5.45)

Unknown 24 (15.69) 8 (14.55)

Dose (Gy) 0.147

>54 12 (7.84) 9 (16.36)

54 26 (16.99) 10 (18.18)

50 65 (42.48) 26 (47.27)

48 38 (24.84) 9 (16.36)

<48 12 (7.84) 1 (1.82)

Number of fractions 0.236

>5 9 (5.88) 5 (9.09)

5 70 (45.75) 27 (49.09)

4 40 (26.14) 9 (16.36)

3 28 (18.30) 14 (25.45)

<3 6 (3.92) 0 (0)

Active smoker 0.014

Yes 45 (29.41) 7 (12.73)

No 108 (70.59) 48 (87.27)

Table 3 Univariate analysis of predictors of pneumonitis-free 
survival

Covariate N
Hazard ratio  
(95% CI)

HR  
P value

Log-rank 
P value

Age at treatment 208 1.00 (0.98–1.03) 0.725

Age (years), n (%) 0.349

>65 143 1.30 (0.75–2.26) 0.350

≤65 65 – –

Sex 0.580

Male 99 1.15 (0.71–1.86) 0.579

Female 109 – –

Race 0.944

White 143 1.02 (0.61–1.71) 0.944

Non-white 65 – –

T classification 0.453

T3/4 16 1.44 (0.61–3.39) 0.402

T2 48 1.35 (0.78–2.35) 0.282

T1 143 – –

Tumor location <0.001

Peripheral 122 0.43 (0.26–0.72) 0.001

Central 73 – –

Lobe of lung 0.249

Left lower lobe 42 2.43 (0.72–8.26) 0.154

Left upper lobe 50 1.71 (0.50–5.87) 0.395

Right lower lobe 37 2.10 (0.60–7.33) 0.247

Right upper lobe 64 1.23 (0.35–4.24) 0.747

Other 15 – –

Histology 0.112

Adenocarcinoma 92 0.73 (0.35–1.54) 0.410

Squamous cell 
carcinoma

67 1.29 (0.62–2.69) 0.494

Non-small cell lung 
carcinoma

9 2.08 (0.71–6.11) 0.182

Other 8 1.82 (0.50–6.68) 0.365

Unknown 32 – –

Dose (Gy) 0.002

>54 21 0.25 (0.06–1.05) 0.058

54 36 0.51 (0.18–1.52) 0.228

50 91 1.04 (0.41–2.64) 0.929

48 47 0.31 (0.10–0.95) 0.041

<48 13 – –

Table 3 (continued)
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that has seen a pronounced rise in utilization over the past 

decade. Accurate treatment delivery is central to the concept 

of stereotactic treatments. Interest in managing tumor 

motion has paralleled improvements in image guidance. The 

optimal implementation and selection process of patients for 
respiratory gating are open questions in motion management.

The dosimetric advantages of gated treatment delivery 
in lung SBRT were detailed in an early report (22). Using 
4DCT datasets, Underberg et al. found that the respiratory-
gated planning treatment volume (PTV) was 33% of a 
conventional PTV derived from adding a 10 mm isotropic 
margin to the gross tumor volume (GTV). The amount of 
normal tissues encompassed by the 80% isodose volume in 
gated PTVs was 39% that of conventional PTVs. Notably, 
the reduction in target volume size was related to the 
magnitude of the 3D mobility vector such that patients with 
the most mobile tumors were most suitable for respiratory 
gating. Other dosimetric studies have corroborated these 
findings of smaller target volumes as well as reduced dose 
to organs at risk (23-25). How these dosimetric advantages 
translate into clinical outcomes is unclear.

This is one of the largest experiences analyzing patient, 
tumor, and treatment factors for the risk of radiation 
pneumonitis. The rate of radiation pneumonitis seen 

Figure 1 Pneumonitis-free survival as a function of motion 
management, comparing free-breathing (FB) versus respiratory-
gated treatment for lung stereotactic body radiation therapy 
(SBRT).

Table 3 (continued)

Covariate N
Hazard ratio  
(95% CI)

HR  
P value

Log-rank 
P value

Number of fractions 0.001

>5 14 0.26 (0.05–1.30) 0.101

5 97 0.73 (0.23–2.36) 0.598

4 49 0.21 (0.05–0.79) 0.021

3 42 0.30 (0.08–1.11) 0.071

<3 6 – –

Motion management 0.383

Gated 55 0.77 (0.43–1.38) 0.385

Free-breathing 153 – –

Active smoker

Yes 52 1.44 (0.85–2.44) 0.175 0.173

No 156 – –

Table 4 Multivariable analysis of selected co-variates as predictors 
of pneumonitis-free survival

Covariate Hazard ratio (95% CI) HR P value

Tumor location

Peripheral 0.50 (0.29–0.87) 0.014

Central –

Number of fractions

>5 0.14 (0.02–0.86) 0.034

5 0.52 (0.15–1.78) 0.299

4 0.19 (0.05–0.76) 0.019

3 0.29 (0.29–1.10) 0.069

<3 – –

Motion management

Gated 0.88 (0.46–1.69) 0.707

Free-breathing – –

Race

White 1.61 (0.89–2.91) 0.112

Non-white – –

Active smoker

Yes 1.55 (0.85–2.81) 0.146

No – –

Pneumonitis-free survival by motion management

1.0

0.8

0.6

0.4

0.2

0.0

0 1 2 3

Motion management

Time to pneumonitis (years from 1st visit date)

FB
Gated

FB Gated

+Censored
Logrank P=0.383
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here is comparable to other reported SBRT series: 23.0% 
developed at least grade 2, and 10.1% grade 3 or higher RP. 
In the multivariate setting, both tumor location and number 
of fractions remained independent predictors for PNFS. 
We found patients who received 4-fraction and >5-fraction 
courses were associated with longer PNFS intervals. 
Interestingly, the subset of patients receiving 5-fraction 
SBRT did not appear to have superior PNFS (HR =0.52, 
P=0.299). A potential explanation is that 5-fraction courses 
are often used for centrally-located lesions. Treating tumors 
within 2 cm of the proximal bronchial tree can be associated 
with dramatically higher rates of toxicity, especially if 
no provisions are made to increase the total number of 
fractions (13,26,27).

There are several limitations to this study. A number 
of patient factors within this heterogeneous population 
were not included in the current analysis. Some of these 
characteristics may influence an individual’s risk of developing 
radiation pneumonitis, such as severity of pulmonary disease, 
indication for lung SBRT (medically inoperable versus patient 
preference), prior radiotherapy and whether respiratory 
gating was attempted but ultimately unable to be completed. 
Moreover, patients in this analysis were treated over a 7-year 
span, during which time other technical aspects of SBRT 
treatment likely evolved. Factors such as immobilization, 
image-guidance and planning techniques, and user experience, 
all of which can impact the efficacy and toxicity of treatment, 
were not accounted for in our analysis. Additionally, given its 
retrospective nature, patient selection at time of simulation for 
the type of motion management is another source of potential 
bias, limiting overall generalizability.

The optimal approach to motion management is 
uncertain; its practice is often a function of institutional 
approach, available technology, and clinical necessity. 
Practice patterns on the technical aspects of treatment 
planning and ways to manage respiratory motion vary 
among providers. Of over 100 thoracic radiation oncologists 
surveyed in the United States, 51% of respondents used 
abdominal compression, 31% used respiratory gating, 13% 
breath hold, and 29% employed multiple techniques to 
mitigate tumor motion. Likewise, there is no consensus 
on the maximum tolerated amount of tumor motion for 
non-gated treatment delivery. The American Association 
of Physicists in Medicine (AAPM) Task Group 76 report 
recommends the use of motion management strategies 
for tumor motion greater than 5 mm (28). With regard to 
patient selection, Korreman et al. and Guckenberger et al. 
have proposed using cutoffs >13 mm and >15 mm of tumor 

motion for respiratory gating, and >8 mm tumor motion for 
routine image guidance (29,30). These recommendations 
were based on measurements of tumor motion using 4DCTs 
and cone beam CTs, respectively.

Our institutional practice of using >10 mm of tumor 
motion as a threshold for gated planning appears to 
result in similar radiation-pneumonitis survival rates. In 
other terms, free-breathing planning and delivery using a 
standard ITV approach can be appropriate in patients with 
up to 1 cm of target lesion motion. Using this approach, 
our treatment groups stratified by gating are expected to be 
comparable target volume sizes and hence similar normal 
tissue dose to the lung parenchyma. In this study, tumor size 
as approximated by T classification was balanced between 
groups treated with either gated versus free-breathing 
techniques; more than 90% were T1 or T2. Patients with 
lower lobe tumors more commonly underwent gated 
treatment delivery, as expected given the greater degree of 
motion near the diaphragm (P<0.001).

Respiratory gating is an attractive way to moderate 
tumor motion, reduce uncertainty in localization, and 
potentially improve the therapeutic ratio of focal ablative 
radiation therapy. It is a non-invasive technique that the 
majority of patients are able tolerate with some coaching 
at the time of 4DCT simulation. There are, however, 
concerns that using an external signal can introduce 
positional uncertainty which can impact the fidelity of 
treatment delivery (31). As most commercially available 
gating systems use an external surrogate marker, its 
relationship with actual tumor motion is subject to change 
over time and between fractions. Gated treatments can 
also increase overall treatment time due to a lower duty 
cycle. Additionally, it requires more frequent imaging and 
a corresponding increase in radiation exposure. Finally, its 
quality assurance measures are labor-intensive (31). 

Pulmonary disease is often a co-morbidity in SBRT 
lung patients who are medically inoperable, which provides 
a challenge to patient selection for motion management. 
Deep inspiratory breath hold is a another strategy to 
reduce intra-fraction motion; however as many as 50% 
of patients are unable to tolerate treatment with such  
setup (32). Irregular respiratory patterns can introduce 
delivery uncertainty, and up to 10% of patients may be 
excluded based on lack of reproducibility (30). There 
concerns were reflected in our series, as the free-breathing 
group had a significantly higher proportion of smokers 
compared to those who were treated with gating (29.41% 
vs. 12.73%, P=0.014).
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Conclusions

PNFS did not differ between the patients treated with 
respiratory-gated and free-breathing lung SBRT. Centrally-
located lesions and number of fractions were both 
independent predictors of radiation PNFS. As motion 
management techniques mature and are expected to become 
more sophisticated, careful patient selection and utilization 
of these strategies are necessary to optimize the therapeutic 
ratio.
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