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Introduction

Oncogene activation is a critical step toward the development 
of non-small cell lung cancer (NSCLC), particularly lung 
adenocarcinoma (LADC); these activated genes are called 
driver oncogenes (1-3). Representative driver oncogenes 
include EGFR, KRAS, BRAF, and HER2/ERBB2, which are 
activated by missense and/or insertion/deletion mutations, 
and the ALK gene, which is activated by fusion to other 
genes (called partner genes) (Figure 1). Aberrations of 
these genes are mutually exclusively detected in LADC; 
therefore, they are believed to drive LADC development. 
Suppressing the activity of aberrant gene products inhibits 
the growth of LADC cells harboring oncogenic aberrations 
in the corresponding driver genes. Indeed, tyrosine kinase 
inhibitors (TKIs) have become the standard drug treatment 

for advanced cases of LADC harboring EGFR mutations and 
ALK fusions (1,4,5).

In 2012, two additional oncogenes, RET and ROS1, were 
added to the list of driver oncogenes that are targetable 
with existing TKIs (Figure 1A) (1,6-8) and clinical 
trials investigating the efficacy of such TKIs have been 
conducted. Furthermore, analysis of lung cancer genome 
and/or transcriptome has identified other gene fusions, 
including the NTRK1 (9), NRG1 (10,11), and FGFR1/2/3 
fusions (12-14), as novel targetable driver genes in a minor 
fraction of NSCLC cases. In vitro and in vivo experimental 
data show that existing TKIs are a promising therapy 
for lung cancer cases that are positive for these novel 
oncogenic fusions. Here, we review the oncogenic fusions 
associated with NSCLC and discuss the issues surrounding 
personalized therapy. 
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The RET fusion in LADC

The link between the oncogenic RET fusion and LADC 
was discovered by several groups (including our own) in 
2012. The RET gene was fused to the KIF5B and CCDC6 
genes in 1-2% of LADC cases (6-8,15,16); none of these 
positive cases harbored EGFR, KRAS, BRAF, or HER2/
ERBB2 mutations or ALK fusions. The RET fusion is mainly 
detected in young, female, and/or never/light-smoker 
patients (6,7,17-19). Also, it occurs in adenocarcinoma but 
not in squamous and small cell lung cancers (SQLC and 
SCLC) (2,7). LADCs harboring the RET fusion show well- 
or moderately-differentiated histological features, similar 
to those of LADCs harboring EGFR mutations; however, a 
subset of LADCs harboring the RET fusion show mucinous 
cribriform features, similar to those of ALK fusion-positive 
LADCs (6,17-19). 

Oncogenic RET variants fused to six partner genes have 
been identified in lung cancers (10,20,21) (Figure 2). In all 
of these variants, the coiled-coil domains of the partner 
proteins induce dimerization of the RET fusion proteins, 
resulting in constitutive activation of the RET kinase (as 
in the case of oncogenic ALK fusions). The tumorigenic 
activity of the RET  fusion gene was illustrated by 
transformation of NIH3T3 cells (6-8) and in a transgenic 
mouse model in which the KIF5B-RET gene was specifically 
expressed in lung epithelial cells (22); The tumorigenic 
activity was suppressed by RET TKIs, indicating its 
dependence on the kinase activity of the RET protein. 
Consistent with this, a human LADC cell line derived from 
a Japanese patient, which carries the CCDC6-RET fusion 

gene, is sensitive to RET TKIs (23,24). Therefore, LADC 
cells harboring the RET fusion are in a state of “oncogenic 
addiction” to constitutive RET kinase activation. This 
makes the RET fusion a promising therapeutic target.

The US Food and Drug Administration (FDA) has 
approved two multi-kinase inhibitors with RET TKI 
activity, vandetanib (ZD6474) and cabozantinib (XL184), 
for the treatment of advanced medullary thyroid cancer 
in which activating RET mutations are observed in >50% 
of cases (16). Five phase II clinical trials are currently 
examining the therapeutic effects of RET TKIs against RET 
fusion-positive NSCLCs (Table 1). These trials have single-
arm open-label designs, with response rate as the primary 
endpoint. Our own group is conducting one of these phase 
II clinical trial in Japan (UMIN00001009). This trial, 
designated “LURET (lung cancer with RET rearrangement 
study)”, is designed to investigate the therapeutic efficacy 
of vandetanib against NSCLC. We are using a RT-PCR-
based screening method to select patients with RET 
fusion-positive tumors. This process is being carried out 
in >170 hospitals via a consortium called “LC-SCRUM 
(lung cancer genomic screening project for individualized 
medicine in Japan)”, and >1,000 patients with advanced 
NSCLC without EGFR mutations have been screened as 
of Aug 31, 2014 (2). A trial conducted at Memorial Sloan-
Kettering Cancer Center (NCT01639508) reported 
promising responses in the first three patients treated with 
cabozantinib (20). In addition, another study reported that 
one patient with LADC harboring a KIF5B-RET fusion 
showed a positive response to vandetanib (25). Although the 
number of patients in these studies is small and follow-up is 

Figure 1 Pie charts showing the proportion of LADC harboring aberrations in driver oncogenes. Data from patients in East Asia (Japan, 
Korea, and China) and from those of European descent were generated by summarizing the results from previous reports (2-4). LADC, lung 
adenocarcinoma.
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Figure 2 Schematic diagram showing RET fusion proteins in LADC. The domains are highlighted in different colors: RET tyrosine kinase 
domain (orange), RET transmembrane domain (TM; green), and coiled-coil domain (blue) in fusion partners. LADC, lung adenocarcinoma.
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Table 1 Clinical trials of TKIs in patients with RET and ROS1 fusion-positive non-small cell lung cancer (NSCLC)

Gene fusion Trial number* Drug
Pharmaceutical 

company
Phase Location

Primary 

endpoint
Enrollment Start date

RET NCT01639508 Cabozantinib/XL184 Exelixis II USA Response rate 25 July 2012

ROS1, NTRK1, 

and others**
NCT01639508 Cabozantinib/XL184 Exelixis II USA Response rate 25 August 2014

RET UMIN000010095 Vandetanib/ZD6474 AstraZeneca II Japan Response rate 17 February 2013

RET NCT01823068 Vandetanib/ZD6474 AstraZeneca II Korea Response rate 17 April 2013

RET NCT01877083 Lenvatinib/E7080 Eisai II Global Response rate 20 or more April 2013

RET NCT01813734 Ponatinib/AP24534 ARIAD II USA Response rate 20 June 2013

ROS1 NCT01945021 Crizotinib Pfizer II Asia Response rate 110
September 

2013

ROS1 NCT01964157 Ceritinib/LDK378 Novartis II Korea Response rate 32 October 2013

ROS1 and ALK NCT01970865 PF-06463922 Pfizer I/II Global
Response rate 

(phase II)
200 October 2013

ROS1 NCT02183870 Crizotinib Pfizer II EU Response rate 30 June 2014

*, detailed information is available at http://clinicaltrials.gov/ or https://upload.umin.ac.jp; **, including MET (overexpression, 

amplification, or mutation) and AXL (overexpression, amplification, or mutation). TKI, tyrosine kinase inhibitor.
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limited, the results provide early proof-of-principle that the 
RET fusion is targetable by existing TKIs.

The ROS1 fusion in LADC

The oncogenic ROS1 fusion is present in 1-2% of LADC 
cases (6), and is likely to be specific for adenocarcinoma (26). 
The ROS1 gene fuses to several partner genes, although 
CD74 is the most common (Figure 3) (27-29). As is the case 
for the RET fusion, the ROS1 fusion occurs in a manner 
that is mutually exclusive with other known driver oncogene 
mutations and fusions. The ROS1 fusion is preferentially 
detected in young, female, and/or never/light-smoker 
patients (6,18,30-32). LADCs harboring the ROS1 fusion 
often show mucinous cribriform features (6,18,30,31), 
similar to those of ALK fusion-positive LADCs. The ROS1 
fusion is also likely to be specific for LADC (6,18,30,32).

The transforming activity of the ROS1 fusion gene has 

been demonstrated in vitro using NIH3T3 cells (6,33) 
and in vivo using a transgenic mouse model in which the 
EZR-ROS1 gene is specifically expressed in lung epithelial  
cells (33). Crizotinib, a TKI approved by the FDA for ALK 
fusion-positive lung cancer, also inhibits the ROS1 protein 
due to the structural similarity of the kinase domains of 
ROS1 and ALK proteins. In fact, the LADC cell line, 
HCC78, which harbors a SLC34A2-ROS1 fusion, is 
sensitive to crizotinib (26,32). Thus, LADC cells harboring 
the ROS1 fusion are in a state of “oncogenic addiction” to 
constitutive ROS1 kinase activation. In contrast to the RET 
and ALK fusions, constitutive activation of the ROS1 kinase 
protein is unlikely due to dimerization of ROS1 fusion 
proteins since the majority of ROS1 partner proteins lack 
dimerization domains (27) (Figure 3). 

A phase I trial (NCT00585195) examining the efficacy of 
crizotinib against ROS1 fusion-positive NSCLC showed an 
objective response rate of 60% (27). Other studies (32,34-36) 

Figure 3 Schematic diagram showing ROS1 fusions in LADC. The domains are highlighted in different colors: ROS1 tyrosine 
kinase domain (orange), ROS1 transmembrane domain (TM; green), and coiled-coil domain (blue) in fusion partners. LADC, lung 
adenocarcinoma.
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report that patients with LADC harboring a ROS1 fusion 
show a near-complete or partial response to crizotinib. 
Therefore, molecular-targeted therapy using crizotinib 
(and other ROS1 TKIs) appears promising. Five phase II 
or I/II clinical trials have been conducted to examine the 
therapeutic effects of ROS1 TKIs against ROS1 fusion-
positive NSCLCs (Table 1). The LC-SCRUM consortium 
is currently screening ROS1 fusion-positive tumors in Japan 
and ROS1 fusion-positive patients are being enrolled in a 

crizotinib trial (NCT01945021). 

Other protein kinase fusions in LADC

Other oncogenic fusions of protein kinase genes have been 
detected in LADCs that are negative for known driver 
oncogene aberrations (Figure 4A). Oncogenic fusions of 
the NTRK1 gene (which encodes a nerve growth factor 
receptor, TRKA) with the CD74 and MPRIP genes were 

Figure 4 Schematic diagram of other fusion proteins in non-small cell lung cancer. (A) Fusion proteins in LADC. TM, transmembrane 
domain; (B) fusion proteins in IMAs. EGF, EGF-like domain; (C) FGFR fusion proteins in SQLC. The domains are highlighted in different 
colors: tyrosine kinase domain (orange), transmembrane domain (TM; green), immunoglobulin-like domain (dark green), coiled-coil 
domains (blue). LADC, lung adenocarcinoma.
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recently identified in 3% of patients within an American 
cohort (9). However, other LADC cohorts, including a 
TCGA-USA cohort (n=230), a Korean cohort (n=87), and 
our own NCC-Japan cohort (n=200, unpublished data), 
contained no NTRK1 fusion-positive cases (9). Thus, the 
prevalence of NTRK1 fusion remains unclear. A few TKIs 
(ARRY-470, CEP-701, and crizotinib) that suppress the 
activity of the TRKA protein kinase also suppress the 
NIH3T3-transforming activity of the NTRK fusion gene (9). 
Notably, a LADC patient harboring the MPRIP-NTRK1 
fusion showed a minor therapeutic response to crizotinib (9). 
An ongoing clinical trial (NCT01639508) includes not only 
patients positive for the RET and ROS1 fusions, but also 
patients positive for the NTRK1 fusion (Table 1). 

The AXL-MBIP and SCAF11-PDGFRA fusions, two 
more protein kinase gene fusions (Figure 4A), were each 
detected in a single case of LADC in a Korean cohort of 
200 patients (29). Since these fusions were not detected 
in either the TCGA-USA cohort (n=230) (28) or our own 
NCC-Japan cohort (n=200, unpublished data), they may 
only occur in a very small subset of LADC cases. 

Multiple oncogenic fusions in invasive mucinous 
LADC

Invasive mucinous adenocarcinoma (IMA) of the lungs, 
which accounts for 2-10% of all LADC cases in Japan, the 
USA, and Europe, is thought to be a distinct histological type 
of LADC that commonly (>50%) harbors KRAS mutations 
(37,38). We recently identified multiple oncogene fusions 
involving the NRG1 (neuregulin), ERBB4, BRAF, ALK, and 
RET genes as drivers for the development of IMA in the 
absence of KRAS mutations (10) (Figure 4B). Among these, 
the CD74-NRG1 fusion was the most common (5-15%). 
The CD74-NRG1 fusion has also been detected in another 
Japanese IMA cohort and in a Taiwanese IMA cohort (11,39). 
The fusion product acts as a ligand for HER2:HER3 and 
causes anchorage-independent growth of NIH3T3 cells 
(9,10,11). Its transforming activity is suppressed by HER2 
inhibitors that are approved for clinical use, including 
lapatinib and afatinib (10), suggesting that IMAs may be 
amenable to personalized therapy.

FGFR1/2/3 fusions in SQLC

Amplification of the FGFR1 gene has been identified as a 
major oncogene aberration in approximately 10% of SQLC 
cases (40), whereas activating mutations in FGFR1, FGFR2, 

and FGFR3 are detected in a small subset of SQLC cases (41). 
Recent studies have detected fusions of the FGFR1, FGFR2, and 
FGFR3 genes to several partner genes in SQLC (Figure 4C)  
(13,14,28). In particular, the FGFR3-TACC3 fusion, which 
is detected in 3% of glioblastoma multiforme cases (42), 
was recurrently observed in a 2-3% of LSQC cases. The 
FGFR3-TACC3 fusion gene induces cell transformation and 
accelerated growth. Both cell growth and tumorigenicity are 
suppressed by FGFR TKIs (13). Importantly, several clinical 
trials examining the efficacy of FGFR TKIs against SQLC 
harboring mutation/amplification of the FGFR genes are 
ongoing, although broadening the inclusion criteria for such 
clinical trials would be beneficial.

Diagnosis of fusion-positive cases

The findings discussed to date provide a strong rationale for 
developing precision medicine approaches based on targeting 
oncogene fusions in LADC and LSQC. Since this form of 
therapy is applicable only to a subset of LADC and LSQC 
cases, it is important that we develop suitable diagnostic 
methods that are able to identify fusion-positive cases (43). 
The diagnosis of ALK fusion-positive lung cancer is based 
on fluorescence in situ hybridization (FISH) either with or 
without immunohistochemistry (IHC) (44). FISH and IHC 
are also suitable for the diagnosis of ROS1 fusion (45,46); 
however, IHC is not suitable for the diagnosis of RET  
fusion (7,8,19). 

Because only very small amounts of material can be 
obtained from biopsies, there is a need to develop diagnostic 
systems that enable simultaneous examination of multiple 
gene fusions in routine formalin-fixed and paraffin-
embedded (FFPE) clinical specimens. However, because 
the FFPE technique damages DNA, the robustness against 
DNA qualities is needed for the diagnostic systems. In 
addition, most of the samples that are subjected to testing 
are small biopsies; therefore, the system must also be able to 
deal with limited amounts of tissue and/or extracted DNA/
RNA. Accurate and sensitive profiling must be achieved, 
even when the proportion of tumor cells within the 
specimens is low. 

Representative systems are currently being developed 
that will enable multiple, robust, and sensitive diagnoses 
(Table 2). Some employ the method of target re-sequencing 
of tens to hundreds of genes using DNA or RNA extracted 
from tumor tissues (47,48), while others employ quantitative 
RT-PCR or RNA molecule counting (21,49,50). Optimizing 
these (or other equivalent) systems for use in the clinic will 
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greatly facilitate the progress toward precision medicine for 
lung cancer.

Perspective: issues still to be investigated 

In vitro/in vivo experiments and the responses of the few 
patients examined in trials suggest that the therapies 
described in this review hold promise. However, innate and 
acquired resistance to TKIs may become a problem, as is 
the case for TKIs targeting the ALK and EGFR proteins. 
The mechanisms underlying resistance are beginning 
to be unraveled and several next-generation TKIs have 
been developed to treat resistant ALK fusion and EGFR 
mutations (5,51). This is good news because some ROS1 
fusion-positive cases also have acquired resistance to 
crizotinib (52). Further studies should be done on the 
resistance of other fusions to TKIs so that lung cancers 
harboring novel fusions can be treated effectively.

Preventing the development of lung cancer via 
oncogenic fusions is another issue to be tackled by those 
involved in lung cancer medicine. LADCs harboring 
oncogene fusions are mainly observed in never/light 
smokers; therefore, preventive methods other than smoking 
cessation are necessary. We have been investigating the 
molecular mechanisms underlying chromosome inversions 
that generate oncogenic RET fusions in LADC by cloning 
genomic segments that contain breakpoint junctions (53). 
We found that inversions were most likely caused by the 
mis-repair of DNA strand breaks, which occurred in a 
region spanning a few Kb within the RET gene (the region 
in which DNA strand breaks leading to RET rearrangements 
in papillary thyroid tumors also frequently occur) (53). 
Thus, tobacco-independent DNA strand breaks are likely 
to trigger development of the RET fusion. To the best of 
our knowledge, no studies have elucidated the structure of 
the breakpoints in ALK, ROS1, and other fusions. Further 
examination of the molecular processes underlying gene 
fusion, as well as identifying the endogenous/exogenous 

factors that cause DNA breaks, will provide the key to 
preventing the development of lung cancers harboring 
oncogenic gene fusions.
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