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Top-level MET gene copy number gain defines a subtype of poorly 
differentiated pulmonary adenocarcinomas with poor prognosis
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Background: MET amplifications occur in human tumors, including non-small cell lung cancer (NSCLC). 
MET inhibitors have demonstrated some clinical activity in MET amplified NSCLC, presumably with a 
gene dose effect. However, the definition of MET positivity or MET amplification as a potential oncogenic 
driver is still under debate. In this study, we aimed to establish the molecular subgroup of NSCLC with the 
highest unequivocal MET amplification level and to describe the prevalence, and histologic and clinical 
phenotype of this subgroup.
Methods: A total of 373 unselected patients with NSCLC were consecutively tested for MET gene copy 
number (GCN) by FISH. Mean GCN, MET/CEN7 ratio and other FISH parameters were identified and 
correlated with morphological and molecular pathological characteristics of the tumors as well as with 
clinical data.
Results: Based on the variability of obtained data a top-level category of MET amplification was newly 
defined (>90th percentile of average GCN; ≥10 MET gene copies per tumor cell). This criterion was fulfilled 
in 2% of analyzed tumors. These tumors were exclusively poorly differentiated adenocarcinomas with a 
predominant solid subtype and pleomorphic features. Rarely, co-alterations were detected (KRAS mutation 
or MET exon 14 skipping mutation). In this top-level group, there were no EGFR mutations or ALK or 
ROS1 alterations. The most important clinical feature was a significantly shortened overall survival (HR 3.61; 
median OS 8.2 vs. 23.6 months). Worse prognosis did not depend on initial stage or treatment.
Conclusions: The newly defined top-level category of MET amplification in NSCLC defines a specific 
subgroup of pulmonary adenocarcinoma with adverse prognosis and characteristic morphological features. 
Lower levels of MET gene copy number seem to have probably no specific value as a prognostic or predictive 
biomarker.
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Introduction

Lung cancer is still the main cause for cancer related deaths 
worldwide. Understanding the mechanisms of molecular 
carcinogenesis of non-small cell lung cancer (NSCLC) is 
crucial to discover specific therapeutic targets and has led 
to improved outcome (1). However, although an increasing 
number of targeted therapies and immuno-oncology related 
treatments is available nowadays, NSCLC still remains a 
deadly disease since only a minority of patients can be cured (2). 
One of the biologically and therapeutically relevant targets in 
NSCLC and many other human cancers is the mesenchymal-
epithelial transition receptor (MET) and its ligand, hepatocyte 
growth factor (HGF) (3,4). The MET proto-oncogene was 
initially described by Cooper et al. in an osteosarcoma derived 
cell line in 1984 (5). The MET gene is located on chromosome 
7q and its product, a heterodimeric transmembrane 
receptor tyrosine kinase, consists of an extracellular α- and a 
transmembrane β-chain (1,3). 

MET as a receptor tyrosine kinase can be activated 
by a multitude of biologic mechanisms, such as gene 
fusions, activating mutations, gene amplification and also 
simply by overexpression of the receptor protein or by 
ligand dependent activation. MET activation itself leads 
to dimerization and transphosphorylation followed by 
activation of downstream signaling via PI3K/AKT, RAS-
RAC/RHO, MAPK and phospholipase C pathways (6). The 
effects are manifold: the MET/HGF pathway has an impact 
on multiple cellular functions, such as differentiation, cell 
cycle progression, proliferation and angiogenesis (7). Its 
dysregulation occurs in many different types of cancer (4)  
and leads to several effects in tumorigenesis, such as cancer 
cell proliferation, invasion, survival, motility and the 
development of metastases (8).

Activating missense mutations in the tyrosine kinase 
domain have been described in papillary renal cancer (9). 
Another type of activating MET mutations affects the splice 
site donor and acceptor regions around exon 14. Alternative 
splicing with consecutive skipping of exon 14 causes a 
stabilization and accumulation of catalytically active MET 

protein on the cell surface due to reduced ubiquitinylation 
and proteasomal degradation. Originally discovered in small 
cell lung cancer, MET exon 14 skipping mutations have 
also been described in 3–6% of adenocarcinoma of the lung 
and about 1–2% of tumors with other NSCLC histologies 
(10-14). Moreover, MET exon 14 skipping mutations were 
identified as an independent prognostic factor that predict 
poor survival (15,16). MET amplification has been described 
in about 3-5% of newly diagnosed NSCLC (15,17,18) and 
increased MET gene copy number seems to be a negative 
prognostic factor (17,19-21). 

Many tyrosine kinase inhibitors with anti-MET 
activity are currently being explored in cancers with MET 
activation, among them MET amplified and mutated 
NSCLC. Early data from clinical trials is available mainly 
for crizotinib, capmatinib and tepotinib (22). Recently, 
Camidge et al. presented an update of the PROFILE 
1001 study reporting on MET targeting therapy with 
crizotinib in 40 NSCLC patients (23). Those with high 
MET amplification [defined by MET/centromere 7 (CEP7) 
ratio ≥4] showed clinically meaningful antitumor activity 
with rapid and durable responses. Objective response 
rates were lower in tumors with lower MET amplification 
levels. Thus, based on available data, MET amplification 
is probably both, a negative prognostic and a potential 
predictive biomarker for MET tyrosine kinase inhibitors. 
However, generally accepted criteria for MET positivity 
in NSCLC do not yet exist. Moreover, even methods to 
detect clinically meaningful MET alterations are still under 
discussion. MET mutations, i.e. those mutations which 
cause exon 14 skipping, and gene fusions can be detected by 
DNA-based next generation sequencing of the intron-exon 
borders around exon 14 of the MET gene. Additionally, 
RNA-based approaches are employed. Also, gene copy 
number gains can be detected by some sequencing assays. 
However, fluorescence in situ hybridization (FISH) has 
been used to select patients with MET amplification in 
clinical trials on MET inhibitors so far (23,24). Detections 
of MET protein expression by immunohistochemistry 
(IHC) was shown to be associated with amplification to 

Keywords: Mesenchymal-epithelial transition receptor (MET); amplification; non-small cell lung cancer 
(NSCLC); fluorescence in situ hybridization (FISH); lung cancer

Submitted Nov 05, 2019. Accepted for publication Mar 25, 2020.

doi: 10.21037/tlcr-19-339

View this article at: http://dx.doi.org/10.21037/tlcr-19-339



605Translational Lung Cancer Research, Vol 9, No 3 June 2020

© Translational Lung Cancer Research. All rights reserved.   Transl Lung Cancer Res 2020;9(3):603-616 | http://dx.doi.org/10.21037/tlcr-19-339

a certain extent (18). However, a clinical trial with the 
therapeutic monoclonal MET antibody onartuzumab failed 
to demonstrate a clinically meaningful predictive value of 
MET IHC (25,26). Based on currently available treatment 
approaches in NSCLC with MET inhibitors including 
clinical trials, two types of predictive biomarkers seem to be 
the most promising: (I) DNA or RNA sequencing for exon 
14 skipping mutations, and (II) FISH for amplification. 

However, various and different, sometimes even 
contradictory criteria for MET amplification or MET 
copy number gains have been proposed. Some authors 
have used a high MET/centromere 7 copy number ratio 
as a measurement for amplification (17,19,23). Since high 
level MET copy number gains can also occur against 
the background of simultaneously increased copies of 
centromeric regions (resulting in a “negative” ratio <2.0), 
we have previously suggested a more general approach to 
describe copy number changes of MET (18). This approach 
specifically emphasizes average gene copy number and has 
been adopted in current clinical trials (24). 

Data on the frequency of different amplification levels 
in NSCLC patients are still sparse. Moreover, MET 
gene copy number gains have not been comprehensively 
correlated with clinical data so far. In this study, we aimed 
at elucidating the frequencies of MET amplification levels 
in an unbiased series of consecutive clinical samples of 
NSCLC patients and correlating these levels with different 
histologies, molecular subtypes and outcome of patients. 
Since effects of MET inhibitors seem to be related to a 
gene-dose effect at least to a certain degree, we furthermore 
aimed to establish the molecular subgroup of NSCLC with 
the highest unequivocal MET amplification level and to 
describe the histologic and clinical phenotype of this newly 
defined subgroup.

Methods

Patients

A total of 390 unselected consecutive NSCLC have been 
included in this study. Patients were tested for MET 
amplification between January 1st, 2015 and June 30th, 2017 
as part of the routine molecular diagnostics at the Institute 
of Pathology of the University Medical Center Göttingen, 
Germany. Seventeen patients were excluded due to missing 
clinical data, resulting in a series of 373 consecutive NSCLC 
patients. Tumor stage was determined based on the 8th 
edition of UICC TNM Staging System of lung cancer (27).  

Cases which were initially staged on the basis of the 7th 
edition were double-checked and re-staged if appropriate. 
For subsequent data analysis, stages IVA and IVB were 
aggregated to stage IV and compared with lower stages. 
All patients were treated at a dedicated lung tumor center 
(Lungentumorzentrum Universität Göttingen). Clinical and 
follow-up data were obtained from their medical records. 

All patients were treated according to local standards 
which are based on national and international guidelines, 
and if necessary, received systemic therapy. Treatment 
information was analyzed retrospectively in full detail for 
all patients with MET gene copy number gains (defined by 
MET level ≥1; see below; n=141). 70.2% (99/141) of these 
patients received systemic therapy at any time. First line 
therapy consisted of platinum-based combination treatments  
(n=90 patients, with pemetrexed, paclitaxel, docetaxel, 
gemcitabine, or etoposide). In 22 of these patients, a triple 
combination with bevacizumab was given. In patients 
who received definitive radio-chemotherapy, cisplatin was 
combined with vinorelbine or given as a monotherapy. 
In addition, single agent systemic therapies in stage IV 
disease included pemetrexed, and erlotinib or afatinib in 
EGFR mutant cancers. 48.5% (48/99) of patients were 
treated in a 2nd line setting who received docetaxel with 
or without nintedanib, platinum-based combinations with 
paclitaxel, vinorelbine, or etoposide, triple combinations 
with bevacizumab, or a monotherapy with pemetrexed, 
afatinib, erlotinib, or gefitinib. 11 patients were treated 
with PD-L1 or PD-1 inhibitors (atezolizumab, nivolumab 
or pembrolizumab in 1, 7 and 3 patients, respectively), and  
7 patients received an anti-MET tyrosine kinase inhibitor 
(TKI) as 2nd line treatment. 3rd line therapy was given in 
21/99 patients (21.2%; nivolumab: n=11; MET TKI: n=1, 
further therapies included erlotinib, pemetrexed, carboplatin 
plus paclitaxel, and docetaxel with or without ramucirumab). 

Only a small number of patients (9/99, 9.1%) was also 
treated in a 4th line setting. These therapies were based on 
atezolizumab in one patient and nivolumab in another two 
patients, furthermore docetaxel with or without ramucirumab, 
gemcitabine, vinorelbine, and erlotinib. Two patients were 
treated with docetaxel in a 5th line setting, one with further 
vinorelbine at 6th line and with nivolumab at 7th line.

This study was conducted after approval of the local 
Ethics committee (5/1/17).

Histology, subtyping and molecular profiling 

The majority of the specimens (60%) consisted of primary 
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tumor tissue, predominantly transbronchial biopsies 
followed by core needle biopsies and resection specimens, 
and one third were surgical resections and biopsies of 
distant metastases. Cytology specimens (i.e., smears or 
cytospin preparations) were excluded. Tumor diagnoses 
were established based on the current WHO and IASLC 
classification (28,29). In brief, tumors with strong and 
predominant expression of p40 were classified as squamous 
cell carcinomas; lesions with convincing expression of 
neuroendocrine markers, e.g., CD56, chromogranin 
A, synaptophysin, were regarded as neuroendocrine 
tumors; p40-negative non-neuroendocrine carcinomas, 
either gland forming or solid, with or without TTF-1 
expression were recognized as adenocarcinomas. Additional 
diagnostic biomarkers were applied if appropriate. For 
further statistical analyses tumors were grouped into 
four subgroups: (I) adenocarcinomas, (II) squamous cell 
carcinomas, (III) sarcomatoid carcinomas (comprising pure 
spindled or pleomorphic carcinomas), (IV) others (include 
large cell neuroendocrine carcinomas, typical/atypical 
carcinoids). Frequencies of tumor subtypes are summarized 
in Table 1.

All non-squamous NSCLC cases underwent further 
molecular characterization. ALK and ROS1 testing was 
done by FISH as previously described (30-32). For EGFR 
and KRAS sequencing, the EGFR and KRAS therascreen 
assays, (Qiagen, Hilden, Germany) were applied according 
to the manufacturer’s recommendations. Next generation 
sequencing was done as previously described (33). All cases 
were further tested for PD-L1 expression by using the 
clone 28-8 on a DAKO Omnis platform (staining protocol 
described in detail in Koppel et al. 2018 (34); evaluation and 
scoring is described in Schildhaus et al. 2015 (18).

MET FISH

FISH has been carried out as previously described (18,35). 
In brief, 4 µm thick sections have been hybridized by using 
the ZytoLight SPEC MET/CEN7 Dual Color Probe 
(ZytoVision, Bremerhaven, Germany). The numbers of 
MET and centromere 7 signals were counted in 60 nuclei 
obtained from three different areas with the highest gene 
count. Average gene copy number and ratio (MET/CEN7) 
as well as the percentages of tumor cells with ≥4, ≥5 and ≥15 
gene copies were calculated for each tumor. All FISH assays 
were evaluated by two pathologists with specific experience 
in this field (KS, HUS). Tumors were categorized into 
amplification levels, based on previously published criteria 

after modification (see below, Tables 1,2). 

Statistics

SPSS software (IBM Corp., IBM SPSS Statistics for 
Windows, Version 25.0. Armonk, NY USA) was used for 
statistical analysis. Categorial variables were tested by chi-
square or Fisher’s exact test. Survival times were analyzed 
with the Kaplan-Meier method and for comparing the 
survival times across different groups, the log rank test 
was applied. Survival data were available for 371 patients. 
Overall survival (OS) was calculated based on the date 
of first diagnosis to the date of last follow up or death 
of patient. Patients who were still alive or were lost to 
follow-up were censored at the time of the last contact. 
Cox regression was used to assess univariate tests and 
multivariate models. Parameters with P values <0.1 at Cox 
regression in univariate analysis were tested in multivariate 
models. Wald test was performed testing different subtypes 
of categorical variables. Forest plot graph was performed 
using GraphPad Prism software (GraphPad Software, 
GraphPad Prism for Windows, version 8.0.1, La Jolla, 
California USA). All tests were two-sided and statistical 
significance was defined as P<0.05. 

Results

Frequencies of MET gene copy number alterations and 
definition of a top-level amplification category

Two hundred thirty-two samples (62.2%) were MET 
amplification negative and 141 showed MET gene copy 
number gains at various levels. Distribution of MET copy 
number changes across clinical, morphologic and molecular 
subgroups together with baseline characteristics of the 
entire cohort are shown in Table 1. Five out of six pure 
sarcomatoid carcinomas showed MET gene copy number 
(GCN) gains (Table 1). 

Average MET gene copy numbers per nucleus ranged 
from 2.4 to a maximum of 25.2 (median 4.4). MET/CEN 
7 ratios were found between 0.8 and 10.1 (median: 1.4). 
To determine the patients’ subgroup with the highest 
unequivocal MET amplification level, we determined that 
parameter with the broadest numerical range (i.e., average 
gene copy number) and calculated the 90th percentile 
which was found at 10.8 MET gene copies per tumor cell. 
Therefore, a top-level MET amplification category (level 4) 
was defined by an average gene copy number of ≥10 MET 
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signals per nucleus (Table 2). MET positivity was found in 
84, 22, 27 and 8 patients at levels 1, 2, 3 and 4, respectively 
(Tables 1,2). Among level 4 samples, MET/CEN 7 ratio 
ranged from 1.4 to 10.1. Four out of eight MET top-level 
patients had a MET/CEN7 ratio ≥4.0; the remaining cases 
showed co-amplification of centromeric sequences (CEN7). 
However, a high ratio ≥4.0 was also found in two patients 
with less MET gene copies at lower amplification levels. 
MET GCN gain—at any level—and ALK or ROS1 gene 
fusions did not co-occur. Eighteen patients (50%) with an 
activating EGFR mutation showed a simultaneous MET 
amplification which was detectable prior to EGFR TKI 
treatment. Three (2.1%) patients were tested positive for 
MET exon 14 skipping mutation and were classified with a 
level 1, 3 and 4 MET GCN gain. Two of those patients were 
initially diagnosed with stage IV and one with stage III. 

Clinical and morphologic phenotype of patients with top-
level MET amplification (level 4)

We identified eight MET top-level patients, seven of 
them were male (87.5%). Predominance of male gender 
was the highest among these patients if compared with 
all other MET status.  Median age was 65.2 years (range,  
48.7–90.5 years). Most of the patients were diagnosed with 
multiple metastases; five patients were initially with stage IV, 
two with stage III and one with stage I at the time of initial 
diagnosis. Many level 4 patients had metastatic lesions at 
uncommon locations, such as skin, muscle or pararectal soft 

tissue. We obtained information about the smoking status 
for 6 out of 8 patients. All of them were heavy smokers with 
a history of at least 40 pack years. 

Patients with MET top-level amplifications survived 
significantly shorter than all other patients in our series 
[median overall survival (mOS) 8.2 vs. 23.6 months; 
P=0.002, Log Rank test; Figure 1]. Uni- and multivariate 
analys is  demonstrated stage,  histotype and MET 
amplification level as the only independent parameters 
for outcome. It is noteworthy that adenocarcinomas per 
se are significantly associated with better outcome than 
all other NSCLC histologies. This effect, however, is 
overcompensated by top-level MET amplification which 
occurred exclusively in adenocarcinomas. Level 4 is 
associated with a more than threefold increase of the 
likelihood to die of the cancer (hazard ratio: 3.61; Table 3)  
which is independent of the clinical stage at initial 
presentation. Survival of patients with top-level MET 
amplification (level 4) was shorter even if compared with 
high level amplified tumors (level 3) and even if systemic 
treatment was administered in a multitude of therapy lines. 
Figure 2 demonstrates the treatments applied to MET 
level 3 and 4 patients, and visualizes the individual progress 
of disease at different levels of MET amplification. Off 
label treatment with a MET tyrosine kinase inhibitor was 
beneficial in one level 4 patient and led to a partial response. 

Also, in terms of morphology, we observed a peculiar 
phenotype: All MET level 4 patients were basically classified 
as adenocarcinoma. No squamous cell carcinoma was found 

Table 2 FISH criteria for levels of MET gene copy number gains and their frequencies among NSCLC patients

Level Description Criteria
Percentage of patients in 

this series (n=373)
Percentage of patients from 

Schildhaus et al., 2015 (n=693)

4 Top level Average MET gene copy number per cell:  ≥10 2.1% 0.9%

3 High level Criterion of level 4 not fulfilled AND 7.2% 2.3%

• MET/CEN7 ratio ≥2.0 OR 
• Average MET GCN per cell ≥6 but <10 OR 
• ≥10% of tumor cells containing ≥15 MET signals

2 Intermediate 
level

Criteria for levels 3 and 4 not fulfilled; ≥50% of cells 
containing ≥5 MET signals 

5.9% 6.2%

1 Low level Criteria for levels 2 to 4 not fulfilled; ≥40% of tumor cells 
with ≥4 MET signals

22.5% 23.4%

0 Negative Criteria for levels 1 to 4 not fulfilled 62.2% 67.0%

Definition of the top-level MET amplification in the context of pre-existing FISH criteria [levels 0 to 3, according to Schildhaus et al. 2015 
(15)]. Data from the previous report have been retrospectively re-calculated. The top-level category has not been described before. 
Therefore, cases from earlier reports have not been specifically tested for this feature.
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Figure 1 Overall survival analysis. (A) Comparing NSCLC patients of all stages at the time of initial diagnosis, top-level MET copy number 
gain (level 4, n=8) was associated with a significantly shorter overall survival (HR 3.61; median OS 8.2 vs. 23.6 months for MET Level 0–3, 
n=363). (B) Notably, this difference was also significant if MET levels are split up. There was no significant survival difference between level 
3 (n=27) and lower MET amplification levels (level 1, n=84; level 2, n=22) or MET negative patients (level 0, n=230). This underlines the 
specific prognostic value of MET level 4 (top-level gain; defined by ≥10 gene copies per cell) over former definitions of high-level MET 
amplification which are included in level 3. (C) Comparison of OS for the subgroup of stage IV patients who did not receive anti-MET 
tyrosine kinase inhibitors (TKI) (n=182); median OS of MET level 4 patients (n=4) was significantly shorter than for level 0–3 patients (n=178; 
3.5 vs. 14.1 months). (D) This statistical significance disappears if patients are included who were treated with anti-MET-TKI (see Figure 2 
for details). Median OS of level 4 patients (n=5) was 5.1 months vs. 14.1 for level 0–3 (n=182).

among these patients (excluded by lack of p40 expression in 
all samples). All of these cancers were poorly differentiated, 
predominantly solid adenocarcinomas with pleomorphic 
features in terms of interspersed pleomorphic giant cells. 
A pure or predominant pleomorphic or sarcomatoid 
differentiation, however, was not seen. Interestingly, five 
out of eight lesions showed TTF1-positivity which was, 
however, heterogeneous and moderate (Figure 3). Regarding 
molecular subgroups, neither EGFR mutation nor ALK/
ROS1 fusions were found among MET level 4 patients, 
but one KRAS mutation and one MET exon 14 skipping 
mutation were found. High PD-L1 expression (TPS ≥50%) 
could not be demonstrated in these tumors. 

Discussion

In this study we describe a novel subgroup of NSCLC 
patients which is defined by the highest unequivocal level 
of MET amplification. We examined a prospective series of 
unselected consecutive NSCLC samples by FISH. Based 
on a comprehensive descriptive approach, we defined the 
cut-off numerically at the 90th percentile of the average 
MET gene copy number per tumor cell. Among all tested 
parameters, i.e., MET/CEN 7 ratio, average gene copy 
number and percentages of tumor cells with ≥4, ≥5 and ≥15 
MET gene copies per tumor cell, average MET gene copy 
number showed the broadest numerical range. Therefore, 
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Table 3 Univariate and multivariate analysis of overall survival

Parameter

Cox regression

HR 95% CIUnivariate Multivariate

HR 95% CI P value HR 95% CI P value

Gender (female vs. male) 0.844 0.641–1.113 0.229 NT NT NT

0.1 1 10

Age (≥65 vs. <65 years) 1.291 0.985–1.690 0.064 1.242 0.931–1.659 0.141

Histology (AC vs. non-AC) 0.765 0.558–1.050 0.097a 0.564 0.397–0.800 0.001

Stage (IV vs. I–III) 2.443 1.815–3.289 <0.001 2.714 1.988–3.705 <0.001

MET GCN gain (level 4 vs. level 0–3) 3.152 1.479–6.719 0.003 3.610 1.674–7.786 0.001

PD-L1 (TPS) (≥50% vs. <50%) 0.844 0.551–1.294 0.437 NT NT NT

a, Wald-Test, testing for histology (4 strata: adenocarcinoma, squamous, sarcomatoid, other), revealed a significant survival difference 
(P=0.001). Therefore histology (adenocarcinoma vs. non-adenocarcinoma) was included in multivariate Cox regression as well. HR, hazard 
ratio; CI, confidence interval; NT, not tested; AC, adenocarcinoma; non-AC, other NSCLC histologies excluding adenocarcinomas (include 26 
patients with squamous cell carcinoma and 6 patients with sarcomatoid carcinomas); GCN, gene copy number; TPS, tumor proportion score.
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Figure 2 Individual swimmer plots for NSCLC patients with MET amplification levels 3 and 4 (high and top-level copy number gain). 
Maximum survival for level 4 patients was 13.3 months from initial diagnosis, compared to 73.8 months in the group of level 3 patients. 
MET TKI treatment contributed to a prolonged survival in one patient with top-level gain (31.5 months). Each bar represents one patient 
with individual progress of disease since initial diagnosis; the color of the bars indicates the therapy applied; for description of colors and 
symbols used in this figure see legend; Level 4 patients listed in red; 1, patients with MET mutation. OS, overall survival. 



612 Overbeck et al. Top-level MET amplification in NSCLC

© Translational Lung Cancer Research. All rights reserved.   Transl Lung Cancer Res 2020;9(3):603-616 | http://dx.doi.org/10.21037/tlcr-19-339

B

D E

CA

Figure 3 Morphologic phenotype of MET top-level amplified lung cancers. (A,B,C) All tumors were adenocarcinomas with minor features 
of pleomorphic carcinomas (descriptively referred to as adenocarcinomas with pleomorphic features) (A: HE, ×400; B: HE, ×400; C: 
HE, ×200). Histologically, solid growth pattern predominates. However, also gland forming structures were seen (arrows). Cases showed 
interspersed enlarged “pleomorphic” tumor cells (B, C, arrowheads) which were aggregated in focal tumor areas in some cases (C, bottom). 
(D) TTF1 was absent or weakly and unevenly expressed. All samples expressed strongly cytokeratin 7 but were negative for p40 and 
neuroendocrine markers (not shown) (D, TTF1 immunohistochemistry, ×400). (E) Fluorescence in situ hybridization reveals more than 10 
MET gene copies on average per tumor cell (orange: centromere 7) (MET FISH, ×630).

the MET top-level amplification category was defined by 
≥10 MET gene copies per tumor cell on average.

Furthermore, we correlated cases fulfilling our newly 
described criteria with clinical and morphologic data 
and demonstrate a peculiar phenotype of these patients. 

A major finding is related to clinical outcome: Among 
all characteristics tested—including stage, histotype 
and molecular subtypes—patients with MET top-level 
amplification suffer from the shortest survival and the 
highest likelihood to die from their cancer. Thus, MET 
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top-level amplification is an independent prognostic factor 
which is even unrelated to clinical stage at initial diagnosis. 
In our series the prevalence of MET top-level amplification 
which was 2.1%. This is basically in line with a previous 
report (18). In a retrospective re-calculation of data from 
our former publication the prevalence of this subgroup was 
0.9%. Combined data (based on 1,066 prospectively and 
comparably tested patients from that publication and from 
this study), therefore, indicate that the prevalence of MET 
top-level amplification is in the range of 1% to 2% among 
Caucasian patients from Western countries. Furthermore, 
we could demonstrate that MET top-level amplification 
is mutually exclusive with EGFR mutations as well as with 
ALK and ROS1 gene fusions. However, activating KRAS 
mutations and MET exon 14 skipping mutations can co-
occur whereas high PD-L1 expression has not been found 
in this subgroup.

MET top-level amplified lung cancers seem to show also 
a specific morphologic phenotype which we describe as 
poorly differentiated adenocarcinomas with pleomorphic 
features. We acknowledge that MET top-level samples show 
some similarities with pleomorphic and/or sarcomatoid 
carcinomas where MET alterations, including MET 
mutations and lower levels of amplification, have been 
already described. However, adenocarcinoma-typic 
features such as gland formation TTF1 expression and/or 
KRAS mutation could be demonstrated in our cases which 
fulfilled the criteria for top-level amplification. Therefore, 
we feel encouraged to describe our cases as examples of 
a specific subtype of pulmonary adenocarcinomas rather 
than sarcomatoid carcinomas. In addition and supporting 
our recent finding, all patients with top-level amplification 
from that previous report turned out retrospectively as 
adenocarcinomas (18).

We are aware that the small size of our MET top-
level cohort is a major limitation of our study. However, 
we provide here first evidence that a peculiar subgroup 
of NSCLC exists which is characterized by the highest 
unequivocal MET amplification and a specific morphologic 
and clinical phenotype. This observation may contribute to 
a more specific description of “MET amplification” which 
has been subject to rather vague definitions in the past.

One major finding of our study was the extremely poor 
prognosis of these MET top-level amplified cancers which 
constituted the worst prognostic subgroup of all NSCLC 
histologies in our cohort. This observation was not only 
unrelated to initial clinical stage but also nearly independent 
of any form of systemic treatment, including conventional 

chemotherapy and immune-checkpoint inhibitor treatment. 
Therefore, we conclude that MET blockade might become 
a reasonable systemic treatment option for these patients. 
Although we cannot provide systematic response data of 
MET inhibitors from our prevalence study, we believe that 
the newly defined MET top-level amplification may provide 
a reasonable inclusion criterion for ongoing clinical trials 
with MET inhibitors in NSCLC. Based on the extremely 
short survival of these patients, we suggest to give patients 
with MET top-level amplification early access to anti-MET 
treatment already in a first line approach. Otherwise, the 
aggressive biology of these tumors may overcompensate a 
potential benefit of MET blockade if patients are treated 
too late. Our limited clinical experience with MET 
inhibitors obtained in this study may support the hypothesis 
that early treatment of patients with top-level MET 
amplification may benefit from treatment with a MET 
TKI. This, however, needs to be proven by prospective 
clinical trials. Based on our data, we suggest (I) to establish 
prospective randomized trials enrolling patients with MET 
top-level amplified cancers in a first line setting, and (II) 
to re-analyze subgroups of top-level amplified NSCLC 
patients from ongoing or terminated trials.

The definition of “MET positivity” is still under 
debate. Whereas MET mutations are commonly accepted 
as an actionable target, it is still unclear whether MET 
amplification may also be actionable. Very recently, 
Camidge et al. presented an update of the PROFILE 
1001 study reporting on MET targeting therapy with 
crizotinib in 40 NSCLC patients. Patients with high MET 
amplification [in this study defined by MET/centromere 7 
(CEP7) ratio ≥4] showed clinically meaningful antitumor 
activity with rapid and durable responses. Objective 
response rates for low level MET/CEP7 ratio (1.8–2.1, 
n=1), medium level (2.2–3.9, n=14) and high level (≥4, 
n=20) were 33.3%, 14.3%, and 40.0%, respectively. Best 
median progression free survival was detected in the high 
level group (6.7 months), 1.8 and 1.9 months for low and 
medium level, respectively (23). This observation may 
point towards a gene dose effect which may be meaningful 
for a significant effect of these drugs. Moreover, we 
conclude that only patients with the highest unequivocal 
MET amplification level may be good candidates for anti-
MET treatment. In this context, we need to emphasize 
that low level MET copy number gains have probably no 
specific value as a prognostic or predictive biomarker. Many 
cancers do show slight or moderate increases of MET copy 
numbers which do not necessarily reflect a specific biologic 
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mechanism in terms of an oncogenic driver.
In summary, we describe a subtype of NSCLC which can 

be determined by very high MET gene copy number gains 
(i.e., top-level amplification as defined by ≥10 MET gene 
copies per tumor cell on average). We provide first evidence 
that tumors with this particular feature account for 1% to 
2% of NSCLC cases and share a common clinical, genetic 
and morphologic phenotype. Patients with MET top-level 
cancers suffer from a deadly and aggressive tumor with 
extremely short overall survival which does not adequately 
respond to conventional chemotherapy or immune-therapy. 
MET top-level amplification is mutually exclusive with 
actionable EGFR, ALK or ROS1 alterations, whereas KRAS 
and MET mutations may co-occur. These particular tumors 
show a characteristic morphologic phenotype describable as 
adenocarcinoma with pleomorphic features. 

Preliminary data from clinical trials with MET inhibitors 
point toward a gene dose effect. Therefore, we suggest 
including patients with MET top-level amplification 
specifically in clinical trials, also in first line settings.
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