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Background: Non-small cell lung cancer (NSCLC) is the most common cause of cancer-death due to early 
metastatic spread, in many cases primarily to the brain. Organ-specific pattern of spread of disease might 
be driven by the activity of a specific signaling pathway within the primary tumors. We aimed to identify an 
expression signature of genes and the relevant signaling associated with the development of brain metastasis 
(BM) after surgical resection of NSCLC. 
Methods: Rapidly frozen NSCLC surgical specimens were procured from tumor banks. RNA was extracted 
and analyzed by RNA-sequencing (Illumina HiSeq 2500). Clinical parameters and gene expression were 
examined for differentiating between patients with BM, patients with metastases to sites other than brain, 
and patients who did not develop metastatic disease at a clinically significant follow up. Principal component 
analysis and pathway enrichments studies were done. 
Results: A total of 91 patients were included in this study, 32 of which developed BM. Stage of disease 
at diagnosis (P=0.004) and level of differentiation (P=0.007) were significantly different between BM and 
control group. We identified a set of 22 genes which correlated specifically with BM, and not with metastasis 
to other sites. This set achieved 93.4% accuracy (95% CI: 86.2–97.5%), 96.6% specificity and 87.5% 
sensitivity of correctly identifying BM patients in a leave-one-out internal validation analysis. The oxidative 
phosphorylation pathway was strongly correlated with BM risk.
Conclusions: Expression level of a small set of genes from primary tumors was found to predict 
BM development, distinctly from metastasis to other organs. These genes and the correlated oxidative 
phosphorylation pathway require further validation as potentially clinically useful predictors of BM and 
possibly as novel therapeutic targets for BM prevention. 
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Introduction

Lung cancer is the most common cause of cancer-death 
worldwide (1). Non-small cell lung cancer (NSCLC) 
comprised around 80% of the cases. Among NSCLC, 
adenocarcinoma is the most prevalent subtype, followed 
by squamous cell carcinoma. Lung cancer is notorious 
for dissemination to brain, occurring in up to 44% of 
non-resectable lung adenocarcinoma patients (2), or in 
up to 55% in patients with locally advanced NSCLC 
(3,4). A higher frequency is seen as patients’ survival 
increases (2). Among patients with brain metastases (BM), 
the most common origin of disease is the lungs (5,6). 
Adenocarcinoma histology and young age are correlated 
with higher risk of brain spread (4,7). Metastatic NSCLC 
patients with driver mutations commonly develop BM, 
possibly simply a reflection of the long-term control of 
systemic spread of disease accomplished by novel targeted 
agents. For example, more than 40% of patients harboring 
a driver rearrangement in the ALK gene develop BM 
within a year when treated with crizotinib, an ALK tyrosine 
kinase inhibitor (8). However, this rate drops to less than 
10% if treated by alectinib, an inhibitor with better brain 
penetration. Identification of patients with a high risk of 
BM could allow closer monitoring and conceivably earlier 
detection of BM and more effective treatments. 

The metastatic process is not a simple random spread 
of cells in the circulation with stochastic results. Rather, 
multiple complex molecular process are involved and can 
determine the pattern of spread to specific organs (9).  
Expression of relevant genes or activation of specific 
signaling pathways may endow cancer cells with properties 
that will facilitate metastatic seeding and growth in specific 
microenvironments. The concept of pre-metastatic niche 
has evolved to describe signaling originating from the 
primary tumor and impacting distant organs. Such signaling 
modifies the microenvironment at the distant site and 
promotes future attachment and growth of metastasis 
spread at that site (10). Identification of genes or molecular 
signaling correlated with early BM would provide insight 
into involved mechanisms and point to potential therapeutic 
targets.

Several  genes or signaling pathways have been 
implicated in the risk of metastatic spread of lung cancer 
to the brain. The mRNA expression of N-cadherin 
(CDH2), kinesin family member C1 (KIFC1) and Fetal 
Alzheimer Antigen (FALZ1) in primary lung cancer 
tissues were reported to be associated with lung cancer 

BM (11). Another study demonstrated that the mTOR 
pathway, known to have a role in cancer progression, 
was correlated with brain metastasis in NSCLC patients; 
specifically, protein expression of p-mTOR, p-S6 and 
Rictor were more common in brain metastases compared 
to the primary NSCLC, and more common in NSCLC 
cases that developed brain metastasis (12). The PI3K/AKT 
pathway as well as JAK/STAT and CHK1 signaling have 
been implicated in brain metastasis of adenocarcinoma 
NSCLC based on a next-generation sequencing study (13).  
Focusing on PIK3CA, PTEN, AKT1, AKT2, and 
FRAP1, an association between specific single nucleotide 
polymorphisms and BM of  NSCLC pat ients  was  
reported (14). A mouse-human model of brain metastasis 
of lung cancer identified TWIST2 and SPOKE1 as 
regulators of this process (15). A study focused on the 
expression of a metastasis related long non-coding RNA, 
Metastasis associated lung adenocarcinoma transcript 
1 (MALAT1), identified it as related to BM in NSCLC 
patients, possibly through epithelial-to-mesenchymal 
transition (16). Whole genome sequencing of a small 
set of primary NSCLC and their corresponding BM as 
well as circulating tumor cells identified mutations in the 
Keap1-Nrf2-ARE survival pathway as related to BM (17).  
We report here our results regarding identification of 
genes whose expression in primary resected NSCLC is 
associated with enhanced risk of early spread to the brain. 

Methods

Specimens

Inclusion criteria were the surgical resection of NSCLC and 
the availability of a fresh-frozen specimen from the surgical 
specimen. We focused on patients that either developed 
brain metastasis after a potentially curative surgery or those 
with brain-metastasis-free follow up after such surgery. 
Exclusion criteria were neo-adjuvant chemotherapy or 
radiotherapy prior to surgery, sub-lobar surgical resection 
or positive surgical margins. Consecutive patients and their 
samples were identified and their specimens collected, 
initially from our local institutional medical bio-repository 
bank of Sheba Medical Center, Israel. Aiming to analyze a 
set of 90–100 appropriate samples, tumor specimens were 
also provided by the Ontario Tumor Bank (OTB, which 
is supported by the Ontario Institute for Cancer Research 
through funding provided by the Government of Ontario, 
Canada), and the Alberta Cancer Research Biobank, 
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Canada. A consort diagram of the source of the samples 
included in this study is depicted in Figure S1. Tumor banks’ 
standard operating procedures (SOP) in all cases included 
securing informed consent from participating patients prior 
to surgery, and rapid procurement and freezing of resected 
specimen at the time of surgery. Specimen handling and 
clinical data collection performed was done according to 
tumor banks’ SOP. 

Clinical data was collected from patients’ charts 
regarding Sheba tumor bank, or reported by the other 
tumor banks based on their clinical data collection 
procedures. Sites of metastasis data relates to sites known 
at presentation of metastatic disease or sites found to be 
involved at initial diagnostic evaluation. Patients with brain 
metastasis could have also metastasis to other sites. Ontario 
tumor bank recorded age at surgery within 4-year ranges, 
the middle figure of each range was entered into the study 
database. Staging was recorded according to the American 
Joint Committee on Cancer (AJCC) scales. Alberta tumor 
bank data was based on the 5th version, the rest of the tumor 
banks used the AJCC 7th version. Histology was categorized 
as adenocarcinoma, squamous cell carcinoma, and all other 
types [poorly differentiated, large cell neuroendocrine, 
non-otherwise specified (NOS)] were defined as NSCLC. 
Grading was based on the highest grade reported on the 
pathology. Undifferentiated carcinoma designation or the 
presence of necrosis were regarded as indicating the highest 
pathologic grade. 

RNA extraction

Resected tumor specimens were snap-frozen and stored 
at −80 ℃ or liquid nitrogen. RNA was extracted using 
electric homogenizer and TRIzol reagent (Invitrogen, 
Life Technologies, Carlsbad, CA, USA) according to the 
manufacturer’s instructions. Total RNA quality and quantity 
were evaluated by Qubit fluorometric quantitation (Thermo 
Scientific, Wilmington, DE, USA) and by TapeStation 2200 
(Agilent Technologies, Palo Alto, CA, USA). 

RNA-sequencing (RNA-seq)

Oligo-dT enrichment was utilized prior to library 
preparation.  Library preparation was done using 
TruSeq RNA v2 sample prep kit (Illumina) according to 
manufacturer’s instructions using random hexamer reverse 
transcription. RNA-sequencing was performed by Illumina 

HiSeq 2500, by 50 base pair single read runs, with a raw 
data Q-score threshold of 33. Reads were aligned and 
mapped to the human reference genome build GRCh37 
(equivalent to hg19) using TopHat software, allowing for 
up to 3 mismatches per read. Gene counts were obtained 
by HTSeq-count package. Raw counts were normalized 
by DESeq2 package. RNA-seq and initial data analysis 
was performed by the Technion Genome Center (Haifa, 
Israel). 

Data statistical analysis

Clinical parameters of the study participants were compared 
among the BM and Control groups, by t-test, Chi square 
and Fisher’s exact test as appropriate. Corrections were 
performed for multiple comparisons in part of the analysis 
as described below. Regarding parameters missing for 
some of the cohort, statistical tests were calculated for the 
available data. 

Transcriptional differences between BM and Control 
groups were evaluated via one-way-anova. Selected genes 
were then used to discern between BM and Control 
patients, utilizing a Multivariate regularized logistic 
regression model. Sex, age, histology classification, stage 
and grade were used as covariates in all statistical tests. All 
computational analysis was conducted in R (version 3.4.0, 
www.r-project.org). 

For visualization purposes, the transcriptional profiles 
of the patients were reduced to two dimensions using 
either Principal Component Analysis (PCA) or the t-SNE 
algorithm (18). Genes related to the genes incorporated 
in the principal components (PC) were tested for pathway 
enrichment by Ingenuity Knowledge Base Pathway Analysis 
tool.

Ethics

Patients from Sheba Medical Center whose specimens 
were included in the study provided informed consent 
for donating samples and data to the Sheba medical bio-
repository bank (approval #2019-SMC). The study was 
approved by the local ethics committee at Sheba Medical 
Center (approval #9815-12-SMC). Similar procedures took 
place at the Ontario Tumor Bank and at the Alberta Cancer 
Research Biobank (i.e., informed consent from patients for 
donation of tissues and local ethics committee approval of 
the study). 
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Results

Study participants and samples

Samples were collected from 91 patients diagnosed with 
NSCLC, including BM patients (n=32) and control (n=59). 
RNA integrity for samples was very variable and ranged 
between 2 to 9. Only samples with RNA integrity number 
equivalent (RINe) values higher than 4.6 were used in 
the study. The average RINe for the cohort included in 
this study was 6.6. A mean of 18,940,269 sequences were 
obtained per sample (SD of 4,135,246), of those a mean 
of 87.3% were uniquely mapped per sample. A mean of 
13,657,357 (SD of 3,023,498) uniquely mapped reads were 
assigned each to a feature exon in the human genome from 
each sample (after exclusion of a single sample with less 
than 1,800,000 reads). 

The clinical characteristics of the included patients can 
be seen in Table 1. Median follow up was 40.4 months for 
the entire cohort, and median time to BM for the entire 
cohort was 92.5 months. For the control group, median 
follow up was 33.7 months (range, 6.4–149.0 months); 37 
patients had 2 years or longer follow up, 7 with 1.5–2 years 
follow up and 6 with less than one year of follow up. For 
the BM group, median time to BM was 12.2 months (range, 
0–73 months). Four of the included cases were diagnosed 
with BM at or earlier than the time of surgery. Of the study 
patients, 29 (32%) had metastatic disease at non-brain sites; 
this proportion and the distribution of metastatic sites did 
not differ significantly between the BM and the control 
group (Table 1). 

Clinical parameters as predictors of BM

Initially we were interested in examining the difference 
in each of the clinical parameters in patients with and 
without BM (Table 1). The stage at surgery distribution 
was significantly different between BM and control group 
(Fisher’s exact test P=0.004), where samples in the control 
group tend to have an earlier stage at surgery. Further, 
the grade of the tumor was significantly higher (P=0.007) 
in the BM group where most of the patients had poorly 
differentiated or undifferentiated tumors. By study design, 
all tumor samples received from the Ontario tumor bank 
were from patients with BM, comprising unbalanced 
distribution between the three included tumor banks. 

Since both the stage and the grade were found to be 
significant in discerning between the control and BM 
patients, we used these parameters as well as sex, age and 

histological classification as covariates in a multivariate 
logistic regression model, in order to obtain the probability 
of developing BM for each individual. To explore the 
performance of our model, we performed Leave-One-Out-
Cross-Validation (LOOCV) such that our model was fitted 
to the full cohort, excluding a single sample in each run. 
The coefficients of the resulting model were then applied 
to predict the score of the excluded sample. Based on this 
list of scores, we were able to distinguish BM from Control 
patients with 64.8% accuracy (95% CI: 54.1–74.6%), 81.4% 
specificity and 34.4% sensitivity.

Global RNA-seq signature is dominated by primary tumor 
characteristics 

Broad transcriptional profile can reveal clinically relevant 
information and may enhance our ability to differentiate 
control from tumors that evolved BM. To that end, gene 
expression from primary tumor samples was analyzed. We 
then applied T-distributed stochastic neighbor embedding 
(t-SNE) to project the tumors on a two-dimensional map 
(Figure 1). By coloring the tumors BM vs. control, we could 
not observe a clear distinction (Figure 1A) but coloring 
based on histology revealed a clear-cut separation between 
adenocarcinoma and Squamous cell Carcinoma tumors 
(Figure 1B). Thus, the global gene expression profile 
predominantly represents the histological subtype of the 
primary tumor. 

Gene selection for BM prediction analysis

We next focused on identifying a specific set of genes 
that will distinguish between BM and control patients. 
To establish such a gene set, in which differences in gene 
expression measurements among the BM and control 
groups are significant, we performed a one-way-anova test. 
The test was applied on each gene separately, utilizing the 
clinical parameters found significant as covariates. The null 
model of the F-test contained the clinical parameters age, 
sex, histology classification, grade and stage, whereas the 
alternative model also included information regarding the 
metastasis. A total of 101 genes were selected based on the 
F-test P values (P value threshold chosen to include about a 
100-gene to prevent overfitting of the data). A multivariate 
regularized logistic regression model was then applied with 
the set of 101 genes and clinical parameters. We tested our 
performance as described above using LOOCV and were 
able to differentiate BM from control patients with 89.0% 
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Table 1 Clinical characteristics of study participants

Parameters Total BM Control P value

Number of patients 91 32 59  

Median age [range], years 67 [39–90] 64 [39–86] 68 [45–90] 0.065

Men [%] 54 47 58  

Stage at Surgery, n [%] 0.004

I 39 [43] 7 [22] 32 [54]  

II 20 [22] 9 [28] 11 [19]  

III 23 [25] 9 [28] 14 [24]  

IV 9 [10] 7 [22] 2 [3]  

Histology, n [%] 0.778

Adenocarcinoma 71 [78] 26 [76] 45 [81]  

Squamous cell carcinoma 20 [22] 6 [24] 14 [19]  

Differentiation, n [%] 0.007

Well/moderate 50 [55] 11 [34] 39 [66]  

Poor/undifferentiated 41 [45] 21 [66] 20 [34]  

Adjuvant chemotherapy, n [%]a 0.742

Yes 27 [30] 10 [31] 17 [29]  

No 43 [47] 13 [41] 30 [51]  

Smoking history, n [%]b 0.756

Yes 66 [73] 26 [81] 40 [68]  

No 13 [14] 4 [13] 9 [15]  

Tumor bank, n [%] <0.001

Sheba 58 [64] 18 [56] 40 [68]  

Ontario 10 [11] 10 [31] 0 [0]  

Alberta 23 [25] 4 [13] 19 [32]  

Metastatic pattern, n [%]c

Non-brain metastasis 29 [32] 9 [28] 20 [34] 0.61

Liver 6 [6.5] 2 [6] 4 [7]

Bones 13 [14] 5 [16] 8 [14]

Adrenal 5 [5] 2 [6] 3 [5]

Lymph nodes 6 [6.5] 1 [3] 5 [8]

Fisher’s exact test P value of the comparison of brain metastasis (BM) to control NSCLC patients is presented. Missing data: a, for 9 patients 
with BM and 12 control patients; b, for 2 patients with BM and 10 control patients. c, the total non-brain metastasis does not necessarily 
equal the sum of the subgroups of this classification, since some patients had more than one site of metastatic disease. 
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Figure 1 Visualization of global transcriptional profile across patients. t-SNE plots of all patients included in this study color-coded by (A) 
brain metastasis development, where black/red denotes Control/BM patients respectively; (B) histology classification, where white/light-
grey denotes adenocarcinoma/squamous cell carcinoma respectively.

Figure 2 Performance evaluations of clinical and transcriptional based models. (A) Simulation of 1,000 logistic regression models, each 
includes a random selection of 101 genes combined with clinical parameters, was performed to assess the performance of the clinical and 
transcriptional based model. Boxplots for different quality measures are shown for these random models, whereas our model is marked 
with a blue asterisk. (B) False- (x-axis) and true-positive (y-axis) rates of the clinical parameters based (black) and clinical combined with 
22-signature genes (blue) logistic regression model predictions. These rates are calculated based on the comparison between predicted BM 
and known BM. 
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accuracy (95% CI: 80.7–94.6%), 94.9% specificity and 
78.1% sensitivity. For comparison, using the same model 
with a random selection of 101 genes would provide poor 
results (Figure 2A).

We next aimed to reduce the number of genes employed 
in our model to provide a robust set that could be used in 
the future for clinical diagnostics. As described above, we 
fitted the multivariate regularized logistic regression model 
91 times, where each time one sample was omitted. Thus, 

for each of these models we obtained a vector of coefficients 
(one for each gene) that can be used as indications for 
the importance of the genes in correctly classifying the 
sample. Since a regularized model was applied, this vector 
was sparse, thus providing a more interpretable model and 
minimizing the risk of overfitting the model.

To minimize our set of genes, we explored the matrix 
of coefficients and observed that only 32 of the genes had 
a non-zero coefficient in at least one of the 91 models. 
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Moreover, only 22 genes had a non-zero coefficient 
in 80% of the patients (Table 2). We evaluated the 
performance of using this set of 22 genes along with the 
clinical parameters in the same manner, and achieved 
93.4% accuracy (95% CI: 86.2–97.5), 96.6% specificity 
and 87.5% sensitivity. Figure 2B  demonstrates the 
superiority of a model with these 22 genes compared to a 
model which contained only clinical parameters. 

Gene signature specificity to BM prediction

We next asked whether the signature is specific for 
developing BM rather than metastasis in other sites. To 
that end, we compared the probabilities of individuals to 
develop brain metastasis, based on the expression of our set 

of 22 genes, between patients without metastasis, patients 
with metastasis in other sites, and patients who developed 
BM. No difference was found between the group of 
patients without metastasis and the patients who developed 
metastasis in other sites (Wilcoxon rank-sum test, P=0.97, 
Figure 3), while a significant difference in the distribution 
was found between patients that developed brain metastasis 
and the rest of the patients (Wilcoxon rank-sum test, 
P=4E-14, Figure 3). Similar results were achieved when 
considering the signature specificity for developing BM 
as oppose to recurrence of the disease (data not shown). 
Together, this indicates the specificity of the signature for 
the development of BM.

The oxidative phosphorylation pathway is associated with 
metastatic spread to the brain

Finally, to gain more insight into the signaling pathways 
involved in the metastatic spread to the brain, we wished 
to identify the canonical pathways most enriched for genes 
that were highly correlated to the signature of 22 genes we 
have found. In order to reduce dimensionality and visualize 
the similarity between the patients’ samples based on 
these genes we performed PCA using our signature gene 
list (Figure 4A). As expected, this PCA plot can be used to 
discern control from BM patients. Then, we investigated 
the enrichment of top 0.5% genes that are correlated 
to each of these PCs via the Ingenuity Knowledge Base 
Pathway Analysis tool (QIAGEN).

Interestingly, the oxidative phosphorylation pathway, 
and more specifically, the respiratory chain complex I, 
was highly significant (Hyper-Geometric test, P=8.74E-7) 
showing upregulation in primary NSCLC tumors that 
spread to the brain (Figure 4B). 

Discussion

In this study, we have introduced a bioinformatics approach 
which utilizes a gene expression signature found in 
primary tumors, in combination with clinical parameters, 
to predict a development of BM. This signature was 
linked specifically to BM, and was not associated with 
the development of metastasis to other sites or simply to 
recurrence of disease. Leave-one-out validation procedure 
demonstrated a promising predictive value. If validated 
further, identifying patients at a higher risk for BM 
development may allow personalized follow-up focused on 
the brain and better treatment options for these patients. 

Table 2 Set of 22 genes in the final model

Ensemble ID Symbol

ENSG00000233368 NA

ENSG00000149187 CELF1

ENSG00000124257 NEURL2

ENSG00000239776 NA

ENSG00000172216 CEBPB

ENSG00000129673 AANAT

ENSG00000184986 TMEM121

ENSG00000233608 TWIST2

ENSG00000120332 TNN

ENSG00000261685 NA

ENSG00000144057 ST6GAL2

ENSG00000139209 SLC38A4

ENSG00000186188 FFAR4

ENSG00000139263 LRIG3

ENSG00000008283 CYB561

ENSG00000205790 DPP9-AS1

ENSG00000265414 NA

ENSG00000204661 C5orf60

ENSG00000176723 ZNF843

ENSG00000181626 ANKRD62

ENSG00000171291 ZNF439

ENSG00000242221 PSG2
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Figure 3 Specificity of the model' signature to develop BM. 
The distribution of probabilities to develop BM provided by the 
logistic regression model combining clinical and gene expression 
signatures of 22 genes in patients without metastasis, patients with 
metastasis in non-brain sites and patients that developed BM. P 
values for comparison between the groups by Wilcoxon rank-sum 
test are shown. 

Figure 4 Oxidative phosphorylation pathway genes are upregulated in BM patient specimens. (A) PCA plot of all patients included in 
this study color-coded by brain metastasis development (black/red Control/BM respectively). (B) Boxplots of genes from the Oxidative 
Phosphorylation pathway that were differentially expressed between BM and Control patients. *, P<0.05; **, P<0.005. n.s., non-significant. 

Importantly, from the genes in this signature, we found the 
oxidative phosphorylation pathway as strongly associated 
with the risk of BM. This result has a potential to direct 
novel approaches to understanding, and in the future 

possibly preventing, the molecular events at the basis of BM 
development. Interestingly, oxidative phosphorylation has 
recently been reported as a driver for various cancers (19,20), 
including lung cancer (21), and novel inhibitors of this 
pathway are currently being evaluated in early phase clinical 
studies (22-24).

Variations in metabolic patterns have been reported in 
the past to associate with brain tumors or brain metastasis. 
Primary brain malignancies as well as brain metastases 
of various cancers (including lung cancer) were found to 
utilize common metabolic pathways (25,26), possibly a 
reflection of the common unique microenvironment of 
the brain. In these tumors, glucose was found to be mostly 
oxidized in the citric acid cycle/oxidative phosphorylation, 
the more efficient metabolic pathway in comparison to 
glycolysis (25). Labeled glucose studies in mouse models 
of primary and metastatic brain tumors also indicate 
utilization of the citric acid cycle by such tumors, probably 
alongside the glycolytic pathway (27). The glycolytic 
pathway is known to be in general preferentially activated 
in tumors compared to oxidative phosphorylation, a 
phenomenon known as the Warburg effect. Glycolysis 
is an inefficient way to produce energy from glucose. Its 
use by cancer cells is presumed to reflect a requirement 
of these fast growing cells for precursors of nucleotides, 
amino acids and lipids genesis, available from glycolysis 
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intermediates (28). Enhanced glycolysis and reduced 
oxidative phosphorylation in tumors was correlated with 
worse outcome for brain cancer patients (29). However, 
the overarching scope of the Warburg effect in cancer has 
been questioned by more recent observations.

Lung cancer cells grown in culture demonstrate the 
Warburg effect of reduced oxidative phosphorylation; 
however, in mice models of lung cancer, glucose is utilized 
more in the citric acid cycle (30). Human NSCLC was 
demonstrated to harbor enhanced levels of oxidative 
phosphorylation relative to neighboring normal lungs (31). 
A higher fraction of non-proliferating cells in real tumors 
compared to culture studies might be one explanation for 
these differences, stressing the potential importance of 
oxidative phosphorylation in cancer. In addition, different 
utilization of oxidative phosphorylation vs. the glycolytic 
pathway might exist in different cell types within brain 
tumors and metastases. Insulin like growth factor 2 mRNA 
binding protein (IGF2BP2, also called IMP2) was found 
to enhance oxidative phosphorylation and be essential 
for the survival of brain tumor stem cell population (32). 
Correlation of the activation of oxidative phosphorylation 
with stem cell-like self-renewal properties (32) further 
strength the link of this signaling pathway to metastatic 
spread. However, insight into the correlation between 
oxidative phosphorylation and metastatic spread specifically 
to the brain requires further studies. 

Oxidative phosphorylation has been found as signaling 
pathway common to breast cancer metastasis to the brain 
and to primary brain tumors based on RNA expression array 
studies (33). Proteomic analysis of a mouse model for breast 
cancer metastasis to brain identified several components of 
the respiratory chain as correlated with brain metastasis, in 
addition to enhanced glycolytic pathway (34). Alterations in 
mitochondrial genes coding for oxidative phosphorylation 
proteins were found to correlate with brain metastasis of 
breast cancers (35). A more recent study identified oxidative 
phosphorylation as the most active metabolic pathway in 
brain metastasis of melanoma in several mice models, as 
well as in samples of human melanoma brain metastasis vs. 
patient-matched extra-cranial metastases (36). Importantly, 
an inhibitor of mitochondrial complex I reduced BM 
in a melanoma mouse model. Thus, the correlation we 
have found between enhanced oxidative phosphorylation 
and brain metastasis is in accordance with some of the 
previous studies despite not being in accordance with the 
Warburg hypothesis. Other, unknown as of yet genomic or 
microenvironmental factors may determine the metabolic 

pathway required for the development of BM from specific 
organs and cancers. 

A limitation of this study is the lack of a separate 
validation cohort. However, interval validation by a leave-
one-out procedure provides initial support of the potential 
value of our findings. Another limitation regarding any 
potential future clinical implementation of a gene signature 
as the one we have reported, is the requirement to overcome 
technical issues of quantifying these genes using clinical 
routine tumor samples. Recent advances in the field of 
mRNA quantifying from formalin-fixed paraffin-embedded 
samples are expected to facilitate clinical utilization of such 
gene expression signatures (37,38). Immunohistochemistry 
quantification of relevant proteins can constitute another 
approach for validation of our results, although entails 
additional technical challenges and has not been performed 
in this study. 

Conclusions

The size of the cohort included in our study may be 
regarded as small, but is the largest set to our knowledge 
of RNA-sequencing data associated with detailed 
metastatic site and timing data. Further validation studies 
and mechanistic evaluation of the role of oxidative 
phosphorylation in the process of metastatic spread to the 
brain are required. 
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Figure S1 Consort diagram of patients included in the study.
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