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Introduction

The use of small molecule inhibitors directed at specific 
oncogene targets, including epidermal growth factor 
receptor (EGFR) mutations, has improved outcomes and 
defined precision medicine for non-small cell lung cancers 
(NSCLC). However, despite the impressive responses and 
improvements in survival seen with these agents, they are 
rarely curative, and even in patients who initially achieve 
complete responses to therapy, resistance inevitably 
develops, and disease progression occurs.

For EGFR mutant NSCLC, targeting the T790M 
resistance mutation defined the role of osimertinib (1), 
an agent with substantial efficacy but limited toxicities, 
and resulted in increasing efforts to define resistance 
mechanisms in the hope that these too could be targeted 
with further gains in survival.

While initially clonal heterogeneity may be limited 
early, selection pressures induced by treatments enables 
the growth of preexisting or new tumor cell clones that 
are resistant to therapy (2). The varied mechanisms by 
which resistance can occur, coupled with the co-occurrence 
of multiple resistance mechanisms within one patient, 
constitute a major challenge in developing an efficient 
treatment strategy to counteract tumor progression. 
The clonal evolution of oncogene-addicted NSCLC can 
give rise to different molecular aberrations both spatially 

(between primary and metastasis) and temporally (after 
treatment failure), further contributing to the complexity of 
the molecular resistance.

Resistance to EGFR TKIs

Resistance to EGFR TKIs broadly falls into ‘EGFR-
dependent’ and ‘EGFR-independent’ mechanisms. The 
first group results in EGFR alterations, such as the T790M 
and C797S mutations; the latter addresses other methods 
that divert signaling dependence, such as activation of 
other downstream pathways such as RAS, gene fusions, 
BRAF, or even histologic transformation. Resistance to 
first and second generation EGFR TKIs are most often 
EGFR-dependent, with the commonest mechanism being 
the EGFR T790M occurring in 50–60% (3,4). Other 
EGFR-dependent mutations such as EFGR D761Y have 
been described but occur much less frequently (5). EGFR-
independent mechanisms most frequently involve MET 
(5% to 20%) and HER2 amplification (8%) (3,4). Histologic 
transformation to small cell is another cause of resistance 
(5–14%) (3,4) and de novo RB1/TP53 mutations enrich for 
tumors likely to develop such transformation (6).

The spectrum of resistance to osimertinib is distinct to 
that seen with first or second generation EGFR TKIs and 
varies according to whether the drug is used in the first-line 
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or later-line context. When used to treat acquired T790M 
mutation, between 20% and 30% develop resistance via an 
EGFR-dependent tertiary EGFR change, most commonly in 
the specific binding site of osimertinib, EGFR C797 (7,8). 
Mutations at other sites of the EGFR such as G724, L718, 
G719 and L792, and EGFR amplification have also been 
described (7-10). Resistance due loss of T790M develops 
in around half the cases, but remarkably in most of these 
cases is also associated with the emergence of other bypass 
mutations such as KRAS mutations, MET amplification, 
gene fusions or small-cell transformation, thus EGFR-
independent (7,8). Therefore, in contrast with earlier 
generation TKIs, around 60% of Osimertinib treated 
T790M positive cases develop resistance in an EGFR-
independent fashion, namely amplification of MET (6% to 
26%) and HER2 (up to 8%). Other less frequent, but still 
EGFR-independent and potentially targetable mutations 
have been described: HER2 insertions, KRAS and BRAF 
V600E mutations, NTRK, RET, ALK and FGFR fusions, and 
MET exon 14 alterations (7,9,10). Similarly to resistance 
to earlier-generation TKIs, histologic transformation (to 
small-cell or squamous) is recognized to occur in between 
4% and 15% of osimertinib-resistant cases in the later-line 
setting (7,10).

Resistance patterns to first-line osimertinib, as observed 
in the FLAURA trial occurred via EGFR-independent 
mechanisms in 32%, but surprisingly only 8% developed 
EGFR C797S mutations (11). More frequent EGFR-
independent mechanisms included MET amplification 
(15%), cell cycle gene alterations (10%), PIK3CA mutations 
(7%), BRAF or KRAS mutations (3% each) and HER2 
amplifications (2%) (11). In later-line osimertinib trials, it 
is possible that addiction to the EGFR pathway through 
T790M development is predicated, which may explain why 
more EGFR-dependent resistance pathways are activated. 
Since the resistance data from FLAURA comes only from 
plasma genotyping, histologic transformation could not be 
identified; moreover, other resistance mechanisms could 
be higher, due to underestimation of gene amplification in 
plasma. This may explain why a large proportion (40–50%) 
have unknown resistance mechanisms (10); tissue biopsies 
may still be important to clarify osimertinib resistance 
mechanisms in the first-line context.

HER2D16: a potential novel resistance pathway

In this context, Hsu et al. (12) describe a patient who 
developed resistance to osimertinib after multiple other 

therapies. The resistance mechanism detected was complex; 
defined by T790M loss plus two EGFR-independent 
causes: a HER2 amplification and a novel HER2 ex 16 
skipping (HER2D16). The latter has been previously 
reported in breast cancer only and constitutes one of the 
three splice variants of HER2, but results in addiction to 
HER2 signaling (13). Its clinical significance warrants 
further clarification, but is thought to explain some of the 
variability in the response to HER2 blockade (13). In breast 
cancer, the oncogenic properties of HER2D16 are mediated 
through direct coupling with Src kinase (13,14).

Interestingly, in the article by Hsu et al. (12) the 
HER2D16 mutation was detected in the plasma prior to 
commencing Osimertinib, but the allelic fraction increased 
with disease progression, leading to the hypothesis that 
this novel mutation mediated resistance. To further this, 
the authors use an EGFR -T790M/L858R positive cell line 
(H1975), to stably express HER2D16 and demonstrate 
elegantly that this novel protein cooperates with the 
EGFR, in both wild-type (WT) and mutant cells to allow 
constitutive activation despite osimertinib inhibition. 
Remarkably, Src levels did not alter after treating cells with 
dasatinib (a known Src inhibitor), and therefore failed to 
suppress cellular proliferation, with or without the presence 
of osimertinib. However, in an attempt to better suppress 
HER2 signaling in vitro, the authors combined osimertinib 
with afatinib (a known pan-HER2 TKI). The combination 
of afatinib and osimertinib was indeed synergistic in vitro, 
but this was in a construct where both mutations are present 
in the one cell. Whether this is what actually occurs in vivo 
is difficult to know.

Discussion

HER2 alterations include amplifications and mutations, but 
are most commonly in-frame exon 20 insertions and occur 
de novo in about 1% to 5% of lung adenocarcinomas (15).  
They have been previously reported as osimertinib 
resistance mechanisms; in FLAURA, HER2 amplifications 
were detected in 2%, and HER2 mutations in 1% (11); in 
the later-line context, up to 5% of HER2 amplifications 
have been described, but no HER2 mutations (8,10,15). A 
recent publication described the in vitro use of trastuzumab-
emantisine (TDM-1) combined with osimertinib to 
overcome HER2 amplification-mediated resistance in 
EGFR-T790M-positive NSCLC cell lines, another example 
that combination strategies could be used to overcome 
resistance (16). A phase I–II trial is testing this combination 
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in patients with EGFR-mutant NSCLC, progressing after 
standard EGFR treatment who developed a HER2 bypass 
track mechanism of resistance (NCT03784599).

The real question from these data is whether this 
novel resistance mechanism and the in vitro targeting will 
translate in the in vivo context. Afatinib binds to Cys797, 
and preclinical evidence suggested effective inhibition in 
several EGFR activating mutations including T790M (17), 
but its clinical performance in patients with erlotinib-
resistant cancers harboring T790M was minimal (18). 
Afatinib is equally potent against WT EGFR and EGFR 
T790M, so the toxicity resulting from inhibiting WT 
EGFR precludes the use of doses that would be needed to 
effectively suppress T790M. This same caveat was reported 
by the authors (12), since the drug concentration of afatinib 
which is effective with osimertinib may not be deliverable 
due to toxicity. Moreover, there is very limited experience 
with the combination of afatinib-osimertinib in literature, 
with debatable benefit (19). Similarly, while there was clear 
preclinical evidence suggesting activity of afatinib on HER2 
mutant NSCLC, the largest prospective trial that attempted 
to test its efficacy was stopped due to futility (20).

In the same context, preclinical data in a T790M-
positive cell line suggested that the configuration of the 
T790M and C797S affected the response to therapy (21): 
if the two EGFR mutations were in cis (same DNA strand), 
the cells were refractory to combination first and third-
generation TKIs; on the contrary, when the two mutations 
were in trans (on different DNA strands), a combination 
of EGFR inhibitors showed clear evidence of in vitro  
response (21). While this combination has shown some 
efficacy, unfortunately it is limited, making routine C797S/
T790M testing less clinically meaningful (22).

The patient detailed by Hsu et al. (12) was heavily pre-
treated, with systemic treatment including chemotherapy, 
TKIs and even with radiofrequency ablation. The exposure 
to several treatments is likely to have imposed different 
selection pressures, leading to multiple different clones. 
The mixed response to osimertinib, is suggestive of tumoral 
heterogeneity and is known to be poorly prognostic (23). 
Since these mutations were found in separate blood samples 
and the response was heterogeneous, raises the question 
whether these mutations coexisted in the one site or is 
the result of spatial heterogeneity. This then draws into 
challenge whether targeting this resistance pathway would 
be likely to be broadly effective.

The importance of identifying resistance mechanisms is 

based on the principle that further specific targeting may 
evoke durable benefit and minimal toxicity. Considering 
that resistance to osimertinib usually involves combined 
mechanisms, such as the activation of alternative cellular 
pathways and/or aberrant downstream signal ing, 
osimertinib-based combination therapies are currently being 
investigated (10). Moreover, several case reports and small 
clinical series including novel combinations with other TKIs 
against EGFR, RET, ALK, ROS, MET and BRAF inhibitors 
have been reported (10,22,24-26). However, again, all 
this initial evidence requires further confirmation. An 
interesting approach is the recently launched ORCHARD 
Phase II trial (NCT03944772) which will explore treatment 
options after disease progression on first-line osimertinib 
according to the onset of acquired resistance mechanisms. 
In this innovative platform trial, patients will be allocated 
to a biomarker-matched study treatment: osimertinib 
plus gefitinib - osimertinib plus savolitinib (a novel MET 
inhibitor)—osimertinib plus necitumumab or platinum-
based doublet plus durvalumab—within each group based 
on tumour molecular profile.

Conclusions

Since no clear mechanism of resistance is identified 
in between 30–40% of patients treated with later-line 
osimertinib and up to 50% of patients treated with first-
line osimertinib (10), studies like Hsu et al. (12) are key 
to identify targetable alterations. The combination TKI 
approach is familiar and easy to implement although toxicity 
would need to be considered and needs confirmation of 
benefit. But more importantly, this study shows us that 
resistance is a complex process. It may incorporate both de 
novo clonal heterogeneity and clonal selection, but also may 
be the result of mutagenesis with single cells developing 
multiple resistance mechanisms.

The data from the cell line construct suggest that the 
HER2D16 mutation is targetable and the authors argue 
that it should be included as standard testing for reversible 
mechanisms of osimertinib resistance. However, it is 
important to acknowledge that while it is useful to identify 
potential mediators of resistance, the main impetus to 
implementing such testing is if this mutation is targetable 
in vivo with an effective yet non-toxic regimen. Until then, 
while these results are fascinating and important in better 
understanding the biology of this disease, they remain 
primarily of academic interest.
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