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Introduction

In the last few years, the use of molecular diagnostics has 
become widespread and integrated in the management 
of patients with advanced lung cancer. Nonetheless, 
genetic findings have not been formally incorporated 
into the pathologic classification of lung cancer, which 
presently relies solely on the assessment of its histologic 
and immunophenotypic features (1). Given the extensive 
published literature on both lung cancer and molecular 
diagnostics, each of which is a complex topic, we will 

not address these two topics in a comprehensive fashion. 
Instead, we focus on several salient aspects of lung cancer 
genetics in the framework of their impacts on lung cancer 
diagnosis and treatment. 

Molecular  c lass i f icat ion has  increas ingly been 
incorporated in the pathologic classification of human 
tumors. In fact, the molecular status of certain genes is 
required for the pathologic diagnosis for some tumors 
(particularly within the hematologic, glial, and bone/soft 
tissue malignancies) in the World Health Organization 
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(WHO) classification of tumors (2-4). Nonetheless, whether 
molecular classification should be adopted in lung cancer 
would depend on the diagnostic, prognostic, and predictive 
impacts of such classification—and whether these impacts 
confer significant values additive to those derived from the 
routine histologic and immunophenotypic assessment. We 
will discuss these considerations, as well as the conceptual 
and technical challenges of implementing a molecular 
classification in the clinical management of lung cancer.

Brief overview on our current understanding on 
the genetics of lung cancer

Histologically, lung tumors are classified into several 
categories: the most commonly encountered categories 
include adenocarcinoma and squamous cell carcinoma, 
rarely other non-small cell lung carcinomas (adenosquamous 
carc inoma,  sarcomatoid carc inoma,  and others) . 
Neuroendocrine tumors of the lung comprise a distinct 
group that includes small cell carcinoma, large cell 
neuroendocrine carcinoma, and carcinoid tumors. Here, 
we will primarily focus on some of the more common 
tumor types listed above, rather than other rare categories 
(salivary gland-type tumors, papillomas, adenomas, and 
mesenchymal and lymphohistiocytic tumors) (1). As 
expected, given the morphologic diversity, lung cancer 
shows tremendous genetic diversity with multiple distinct 
and overlapping molecular subgroups, some of which are 
associated with histologic categories and subtypes (Table 1).

Genetically, lung adenocarcinoma comprises a collection 
of diverse subgroups; approximately 60–70% of tumors 
are known to harbor oncogenic driver mutations (such 

as in KRAS, EGFR, BRAF, or ERBB2), rearrangements 
(such as in ALK, ROS1, RET, NRG1, or one of the NTRK 
genes), or structural alterations (such as in MET with 
exon 14 skipping) (5,6). Some of these alterations appear 
to show histologic correlates. For instance EGFR-mutant 
lung adenocarcinomas often show an acinar or papillary-
predominant pattern (so-called terminal respiratory unit 
phenotype) (7,8). ALK-rearranged lung adenocarcinomas 
typically show a solid-to-cribriform pattern with signet-
ring cell features (9,10). Adenocarcinoma with MET exon 
14 splice site mutation can be seen in up to ~30% of non-
small cell lung carcinomas with pleomorphic histology 
(11-13). NRG1-rearranged lung adenocarcinomas often 
show invasive mucinous histology (14,15). However, 
these molecular-histologic correlates are not absolute, 
with diverse and overlapping histologic patterns reported 
in adenocarcinomas with those alterations mentioned 
above, as well as those with oncogenic rearrangements 
in ROS1 (16,17), RET (18-20), or one of the NTRK 
genes (21). Identification of molecular subtypes in lung 
adenocarcinomas therefore relies primarily on molecular 
techniques, rather than histologic and immunophenotypic 
features alone (22,23). In the United States, according to 
the 2018 clinical testing guideline from the College of 
American Pathologists (CAP), International Association 
for the Study of Lung Cancer (IASLC), and Association 
for Molecular Pathology (AMP), the recommended “must-
test” molecular markers for patients with advanced lung 
adenocarcinoma include EGFR, ALK, and ROS1, with an 
expanded panel that includes KRAS, BRAF, MET, RET, and 
ERBB2 (22).

Lung squamous cell carcinoma is characterized by 

Table 1 Brief overview of molecular alterations of lung tumors in this review

Tumor type Recurrent clinically/diagnostically-relevant genes Select references

Adenocarcinoma Oncogenic kinase drivers including EGFR, KRAS, ALK, ROS1, RET, BRAF, 
ERBB2, NRG1, MET, and genes in the NTRK family; tumor suppressors  
including TP53, STK11, KEAP1; SMARCA4

(5-23)

Squamous cell carcinoma Tumor suppressors including TP53, PI3K pathway, and genes in the FGF 
receptor family

(24-27)

Adenosquamous carcinoma (similar to those in adenocarcinoma) (26-28)

Pleomorphic carcinoma MET (11-13)

Small cell carcinoma Tumor suppressors including TP53, RB1 (29-31)

Large cell neuroendocrine carcinoma TP53, RB1, STK11, KEAP1, KRAS (32-34)

Carcinoid tumors Epigenetic regulators including MEN1 (35-37)
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frequent mutations in the PI3K growth factor signaling 
pathway and in tumor suppressor genes such as TP53 
(24,25). Unlike adenocarcinoma, squamous cell carcinoma 
typically lacks oncogenic driver mutations (such as KRAS, 
EGFR, and BRAF) or rearrangements (such as ALK and 
ROS1) as discussed above. Lung adenosquamous carcinoma, 
which contains both adenocarcinoma and squamous cell 
carcinoma with each comprising at least 10% of the tumor, 
has been shown to harbor mutations in EGFR, KRAS, 
and rarely BRAF (26-28) or RET rearrangement (20). 
Genetically, lung adenosquamous carcinoma thus resembles 
lung adenocarcinoma rather than lung squamous cell 
carcinoma.

Among primary neuroendocrine tumors of the lung, 
small cell carcinoma harbors inactivating mutations in 
both TP53 and RB1 in >90% of tumors (29-31), a subset 
showing MYC gene amplification (31). On the other 
hand, genetically, large cell neuroendocrine carcinoma is 
heterogeneous and comprises multiple subgroups that are 
small cell carcinoma-like, non-small cell carcinoma-like, and 
carcinoid-like (32,33). Mutations in NTRK family members 
have also been described in large cell neuroendocrine 
carcinoma but not in carcinoid tumors or small cell 
carcinoma (34). While carcinoid tumors are considered 
with small cell carcinoma and large cell neuroendocrine 
carcinoma within the group of pulmonary neuroendocrine 
tumors, carcinoids lack mutations in tumor suppressors and 
are genetically distinct from small cell carcinoma and large 
cell neuroendocrine carcinoma; instead, carcinoid tumors 
are characterized by a relatively low tumor mutational 
burden, with a subset of tumors harboring mutations in 
MEN1 and epigenetic regulators such as ARID1A and 
PSIP1 (35-37).

Diagnostic, prognostic, and predictive values of 
using molecular classification in lung cancer

Molecular diagnostics can be helpful in some instances 
in which the histologic and immunophenotypic features 
may be incomplete or inconclusive for the diagnosis. For 
instance, for a patient (particularly with light or never 
smoking history) diagnosed with squamous cell carcinoma 
by a biopsy, identification of mutations such as EGFR 
characteristic of lung adenocarcinoma would imply that 
the tumor is likely an adenosquamous carcinoma, with the 
adenocarcinoma component not been sampled (26,27). 
Another example involves a sarcomatoid tumor of the 
chest wall, in which distinction between pleomorphic/

spindle cell carcinoma and sarcomatoid mesothelioma 
can be difficult (38). Identification of MET exon 14 splice 
site mutation (characteristic of a subset of pleomorphic/
spindle cell carcinomas), if present, would strongly favor 
the diagnosis of pleomorphic/spindle cell carcinoma 
rather than mesothelioma. Furthermore, targeted next-
generation sequencing can provide us the mutation status 
of dozens to hundreds of genes; with sufficient number 
of genes interrogated, mutational patterns can be derived 
(39,40) and potentially provide clues for the primary site in 
challenging cases. For instance, an ultraviolet mutational 
signature may suggest a tumor with a cutaneous origin (such 
as melanoma, squamous cell carcinoma); while a smoking-
related mutational signature in a tumor from a smoker may 
suggest a primary lung malignancy (23) or other tumors 
that frequently harbor tobacco mutational signature such as 
head and neck squamous cell carcinoma (40).

Studies on the prognostic impacts of molecular subtype 
in lung cancer are ongoing, however with no definitive 
consensus currently. The association between EGFR mutation 
status and patient survival has both been reported and 
disputed in several studies including meta-analysis (41-43).  
Similarly, the published literature on the association 
between ALK rearrangement status and patient survival are 
not entirely consistent, with association reported in some 
studies but disputed in others (43,44). These inconsistencies 
may be due to the types of patient cohort and statistical 
methodology, since molecular characteristics (such as EGFR 
or ALK mutation status) can vary with clinicopathologic 
factors such as ethnicity, age, gender, smoking history 
(10,45-48), and histologic types (7-9,49), some of which 
correlate with survival and confound the association 
between molecular subtype and patient outcome. The 
effect on outcome also appears to vary depending on the 
particular EGFR or ALK alterations; for instance, among 
patients with EGFR-mutant lung adenocarcinomas, the best 
outcome was noted in those with EGFR exon 19 deletion 
mutations (50-52). Collectively, in a recent clinicogenomic 
study involving >28,000 non-small cell lung cancer patients 
(including >3,500 patients with advanced disease) in the 
United States, alterations in a National Comprehensive 
Cancer Network (NCCN)-listed driver gene (which 
includes EGFR, ALK, ROS1, MET, BRAF, RET, and ERBB2) 
are associated with longer survival in advanced disease (53).  
In a retrospective study on >2,100 non-small cell lung 
carcinoma patients with newly diagnosed brain metastases, 
the addition of EGFR and ALK mutation status information 
to previously known prognostic factors (such as age, 
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performance status, and number of cranial and extracranial 
metastases) improved the performance of the prognostic 
assessment (54), suggesting the values of incorporating 
molecular information in predicting outcome for this group 
of patients. Whether this can be generalized to patients 
in other settings or those with uncommon EGFR or ALK 
mutations remains unclear, however.

Molecular diagnostics has become incorporated in 
the treatment planning for many advanced lung cancer 
patients. For patients with advanced non-small cell lung 
carcinomas that harbor oncogenic sensitizing EGFR 
mutations, EGFR-targeted tyrosine kinase inhibitors have 
been shown to be superior to standard chemotherapy 
in both first-line and non-first-line settings (55,56). For 
patients with advanced non-small cell lung carcinomas that 
harbor ALK rearrangements, ALK-targeted inhibitors have 
emerged as the standard of care (57-60). Similarly, ROS1-
targeted therapy has demonstrated efficacy in patients with 
advanced non-small cell lung carcinomas that harbor ROS1 
rearrangements (59). Combined BRAF and MEK inhibition 
has been used to treat patients with advanced BRAF V600E-
mutant lung adenocarcinomas (61,62). Recently, TRK-
targeted therapy has been shown to be efficacious across a 
wide range of NTRK-rearranged tumors regardless of the 
tumor origins including lung (63); identification of this 
molecular subtype in lung cancer, albeit rare [~0.2%; (21)],  
imparts therapeutic significance.

Conceptual challenges of using molecular 
classification in lung cancer

In  addi t ion to  demonstrat ing  va lues  addi t ive  to 
histomorphology, molecular classification should be 
practical in its implementation. Molecular categories 
should be well-defined, each with consistent results derived 
irrespective of laboratories or techniques involved. While in 
theory simple, in practice there are several conceptual and 
technical challenges.

Since a classification system relies on the delineation 
of categories, what conceptually constitutes a molecular 
category? First, should each category be defined at the 
level of DNA (mutations, rearrangements, copy number 
alterations), RNA (expression status), or even epigenetic 
regulation? For instance, small cell lung carcinoma 
appears homogeneous genetically with frequent RB1 and 
TP53 mutations based on the mutation analysis (29-31) 
but transcriptionally comprises subgroups with distinct 
expression profiles, with one of the recent proposed 

nomenclature based on the expression of four factors: 
ASCL1, NeuroD1, POU2F3, and YAP1 (64). Currently, 
these four expression subtypes have no immediate prognostic 
or predictive impacts on the clinical management of small cell 
carcinoma. Although recent development to target ASCL1-
positive small cell carcinomas using an anti-DLL3 antibody-
drug conjugate have been discontinued due to toxicity and 
limited efficacy, clinical trials on other targeted therapies 
in small cell carcinoma are ongoing (65). Should small cell 
carcinoma be classified using one or several molecular 
categories then? 

Second, how granular should each molecular category 
be defined? For example, would EGFR-mutant or ALK-
rearranged lung cancer suffice—or should the exact 
mutations involved be specified? If latter, how many 
categories should there be, given the theoretically nearly 
infinite combinations of mutations in human tumors? 
While most ALK-rearranged or EGFR-mutant lung tumors 
respond to their respective targeted therapy, some of the 
alterations are resistant mutations rather than sensitizing 
mutations. Among ALK-rearranged lung adenocarcinomas, 
ALK fusion variants differ in outcome and resistance 
profile, with EML4-ALK variant 3 associated with increased 
incidence of secondary ALK resistance mutations including 
G1202R (66). Among EGFR-mutant lung adenocarcinomas, 
in addition to the activating and sensitizing mutations 
(most commonly EGFR L858R in exon 21 and in-frame 
deletion of the ELREA motif in exon 19), rare mutations 
that are resistant to most EGFR-targeted inhibitors (for 
instance EGFR exon 20 in-frame insertion) have been 
noted (67). Compound EGFR mutations, characterized 
by the presence of multiple mutations (some of which are 
uncommon) within a tumor, are also present in a subset of 
patients (68,69). Functional impacts of these mutations can 
be interrogated using high-throughput phenotyping (70); 
nonetheless, clinical significance of many uncommon EGFR 
variants remains poorly understood (71), posing substantial 
challenges on their classification.

Third, how should we handle the plasticity of the 
molecular category, especially given the increasing use 
of targeted therapy that provides selective pressure on 
the tumor? For instance, a subset of EGFR-mutant lung 
adenocarcinoma undergoes histologic transformation 
into small cell carcinoma as a mechanism of acquired 
resistance to EGFR-targeted therapy (72), with the risk 
of transformation increased by the presence of concurrent 
TP53 and RB1 mutations (72-74). Transdifferentiation 
of EGFR-mutant lung adenocarcinoma into squamous 
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cell carcinoma has also been reported as a mechanism of 
acquired resistance to EGFR-targeted therapy, including 
to first-line osimertinib (75); concurrent disappearance 
of EGFR T790M mutation in conjunction to squamous 
transformation has been reported in tumors resistant to 
second- or third-line EGFR-targeted therapy (76). Aside 
from EGFR-mutant tumors, histologic transformation 
of ALK-rearranged lung adenocarcinoma into small cell 
carcinoma (77,78) or squamous cell carcinoma (79) has 
been documented as a mechanism of acquired resistance to 
ALK-targeted therapy. In fact, histologic transformation is 
not unique to tumors treated by tyrosine kinase-targeted 
therapy and has been reported in KRAS-mutant lung 
adenocarcinomas resistant to immunotherapy (80). As 
targeted therapies evolve and become more widely adopted, 
transdifferentiation poses conceptual challenges on the 
molecular categories.

Fourth, can one tumor simultaneously belong to multiple 
molecular categories? While most driver mutations in lung 
adenocarcinoma (EGFR, KRAS, ALK, ROS1, and others) 
are generally considered to be mutually exclusive (81,82), 
rare tumors with concomitant driver mutations have been 
reported (83-85). These conceptual challenges outlined 
above would need to be addressed in the implementation of 
molecular classification in lung cancer.

Technical challenges of using molecular 
classification in lung cancer

Considering the technical challenges of molecular 
classification, one should be cognizant of the limitations 
from the molecular diagnostic tools, implementation 
logistics, and the tumor tissue involved.

What evidence does one need to classify a tumor within 
a molecular category? Currently, the most commonly 
utilized tools include single-gene sequencing assay, targeted 
next-generation sequencing (NGS), and fluorescence in 
situ hybridization (FISH). Immunohistochemistry for 
ALK and ROS1 has been used in the identification and 
confirmation of ALK-rearranged and ROS1-rearranged 
lung tumors, respectively (22). Also, multiplex transcript-
based systems (such as NanoString) have been used for 
fusion detection in lung cancer (86,87). Nevertheless, 
given different performance characteristics and technical 
limitations inherent in each assay, each tool will invariably 
be associated with false-positive and false-negative results. 
For instance, neither break-apart FISH, DNA-based hybrid 
capture with NGS, and RNA-based anchored multiplex 

PCR with NGS (88) alone was entirely sensitive for 
detecting ROS1 rearrangement in lung adenocarcinoma 
in one study (89); while another study reported that >20% 
of putative NTRK rearrangement in non-small cell lung 
carcinomas could not be confirmed by another molecular 
technique (21). Given that no single molecular detection 
tool is entirely sensitive and specific, a combination of tools 
using DNA-based NGS, RNA-based NGS, FISH, and/
or immunohistochemistry (if available) may be needed 
to ascertain the molecular characteristics, particularly in 
tumors with unusual clinicopathologic characteristics.

In addition to suboptimal sensitivity/specificity, there 
are issues in implementation logistics in using molecular 
classification. Molecular testing is often neither cost-
effective nor available in resource-limited settings. Since 
current reimbursement for molecular diagnostics is 
generally limited to patients with advanced disease, testing 
is rarely performed on early-staged tumors. One method to 
circumvent these limitations may be to use other surrogate 
tools to infer the molecular status. For instance, ALK 
immunohistochemistry has been optimized over the years 
and is currently considered to be equivalent to ALK FISH 
and NGS testing in identifying ALK rearrangements in lung 
cancer (22). Detection for most molecular alterations in 
lung cancer (such as EGFR, KRAS, ERBB2, RET, and MET) 
nonetheless relies primarily on molecular methods, with 
immunohistochemistry playing a minimal role currently (90).

Despite the importance of molecular status in therapy 
selection for many advanced lung cancer patients, the 
relevance of histologic analysis should again be emphasized. 
In addition to molecular testing, at least a portion of tumor 
tissue should always be preserved for histopathology; 
such practice can be challenging in cases with limited 
lesional tissue. Nonetheless, this allows one to ensure that 
there is sufficient lesional tissue for molecular testing, to 
exclude other etiologies for mass-forming lesions (such as 
infection), and to monitor for histologic transformation 
(such as small cell or squamous transformation) in patients 
treated by targeted therapy. Furthermore, lung is one of 
the most common sites for visceral metastases from diverse 
malignancies, and molecular testing results currently may 
not shed light on the tumor origin. While activating EGFR 
mutations are nearly exclusively found in non-small cell 
lung carcinomas, rearrangements of ALK, ROS1, RET, 
and NTRK have been reported in diverse tumor types (91).  
Mutations in KRAS or GNAS are present in a subset of 
carcinomas from diverse sites including lung, pancreas, 
and the gastrointestinal tracts, among others (92). Reliance 
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on molecular information alone devoid of clinical and 
histologic contexts can thus be misleading.

Conclusions

Large-scale genomic studies in the last two decades have 
transformed our understanding on lung cancer genetics. 
Molecular diagnostics has been integrated in many 
laboratories and general medical practice, transforming 
how we diagnose and manage patients with lung cancer. 
While there are conceptual and technical hurdles to tackle 
in implementing molecular classification in the pathologic 
classification of lung cancer, such integrated histologic-
molecular diagnosis may allow one to personalize and 
optimize therapy for patients with advanced lung cancer.
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