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Background: Intracranial progression is considered an important cause of treatment failure in anaplastic 
lymphoma kinase (ALK)-positive non-small cell lung cancer (NSCLC) patients. Recent advances in targeted 
therapy and radiomics have generated considerable interest for the exploration of prognostic imaging 
biomarkers to predict the clinical course. Here, we developed a magnetic resonance imaging (MRI) radiomic 
signature that can stratify survival and intracranial progression.
Methods: We analyzed 87 brain metastatic lesions in 24 ALK-positive NSCLC patients undergoing ALK-
inhibitor ensartinib therapy and divided them into training (n=61) and validation (n=26) sets. Radiomic features 
were extracted and screened from contrast-enhanced MR images. Combined with these selected features, the 
Rad-score was calculated with multivariate logistic regression. The predictive model and Rad-score performance 
were assessed in the training set and validated in the validation set; decision curve analysis was performed with the 
combined training and validation sets to estimate Rad-score’s patient-stratification ability.
Results: The prediction model constructed with nine selected radiomic features could predict intracranial 
progression within 51 weeks (AUC =0.84 and 0.85 in the training and validation sets, respectively), while 
clinical and regular MRI characteristics were independent of progression (P>0.05). The decision-curve 
analysis showed that the radiomic prediction model was clinically useful. The Kaplan-Meier analysis showed 
that the progression-free survival (PFS) difference between the high- and low-risk groups distinguished by 
the Rad-score was significant (P=0.017).
Conclusions: Radiomics may provide prognostic information and improve pretreatment risk stratification 
in ALK-positive NSCLC patients with brain metastases undergoing ensartinib treatment, allowing follow-
up and treatment to be tailored to the patient’s individual risk profile.
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Introduction

Lung cancer remains the leading cause of cancer-related 
mortality, with non-small cell lung cancer (NSCLC) 
accounting for 85–90% of cases (1). Anaplastic lymphoma 
kinase (ALK) gene rearrangement has been identified as a 
distinct molecular subtype (3–13%) of NSCLC; the most 
common alteration is fusion of the ALK and echinoderm 
microtubule-associated protein-like 4 (EML4) genes (2,3). 
With the understanding of tumor gene mutations and 
mechanisms, targeted therapy has become an important 
treatment for ALK-positive NSCLC, and its efficacy 
is superior to that of traditional chemotherapy (2,4). 
Crizotinib is a first-generation ALK inhibitor that exhibits 
good antitumor properties (5). Despite its success, most 
patients develop resistance to crizotinib within 1 to 2 years 
from therapy initiation (6,7), with approximately 50% of 
patients experiencing progression in the central nervous 
system (CNS) (8,9), which is an important cause of poor 
prognosis (10,11). To improve the prognosis of patients 
with brain metastases and overcome the acquired resistance 
to crizotinib, several second- and third-generation ALK 
inhibitors have recently been developed and approved for 
use in clinical settings (12-14). Ensartinib (X-396, Betta 
Pharmaceuticals Co. Ltd., Hangzhou, China) is a potent 
second-generation ALK inhibitor with high activity against 
a broad range of known crizotinib-resistant ALK mutations 
and CNS metastases (15,16).

Despite its remarkable success, patients with ALK-
positive lung cancer have different responses to ensartinib, 
particularly those with brain metastases. Prognostic 
predictions before or early during treatment can potentially 
aid in patient-outcome assessment, enabling treatment-
response evaluation and dynamic therapy adaptation. 
Various biomarkers for lung cancer, such as circulating 
tumor cells, circulating tumor cell DNA, and exosome 
to detect gene mutations, tumor immune-related factors, 
and inflammatory cytokines (17,18), which to some extent 
assist in the detection and monitoring of lung cancer, 
have been determined. However, their concentration 

in circulating blood is relatively low and requires high 
detection techniques or the accuracy will be affected. 
Furthermore, there are few studies on the detection of ALK 
gene mutations, particularly those evaluating efficacy and 
prognosis. Clinical response assessment criteria, such as 
the response evaluation criteria in solid tumors (RECIST), 
mainly assess the lesion size changes compared to previous 
examinations (19). Because internal changes in the tumor 
are usually not considered, this assessment method tends 
to underestimate the efficacy and has limited prognostic 
value (20). Therefore, a better method for assessing and 
predicting the response is still needed. Heterogeneity is a 
major feature of tumors that varies with time, space, and 
drug therapy and can reflect tumor changes earlier and 
more accurately but may not be readily recognized by 
conventional visual inspection (21). 

Radiomics is an emerging field aiming to quantify this 
heterogeneity by applying a large set of feature extraction 
algorithms to characterize the tumor phenotype (22-24). It 
is based on the assumption that the radiographic phenotypes 
represent underlying pathophysiologies and could thus 
enable discriminating between disease forms, analyzing 
the tumor microenvironment, as well as predicting the 
prognosis and therapeutic response (22). Unlike traditional 
biopsy-based assays that represent only a sample of the 
tumor, whole-tumor images reflect the entire tumor burden, 
providing information on each cancer lesion with a single 
noninvasive examination. This is of particular importance in 
targeted therapy, where different lesions can have different 
microenvironments, potentially leading to heterogeneous 
response patterns. Previous exploratory studies have aided 
in tumor diagnosis and pathological typing, gene mutation 
discrimination, and efficacy and prognosis evaluation (25-29). 
 However, to the best of our knowledge, no studies have 
explored the relationship between MRI radiomics and risk 
stratification of intracranial progression in patients with 
lung cancer that has metastasized to the brain.

The aim of this study was to develop a radiomic signature 
for risk stratification in patients with crizotinib-resistant, 
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ALK-positive NSCLC treated with ensartinib to predict 
intracranial progression within 1 year.

We present the following article in accordance with the 
TRIPOD reporting checklist (available at http://dx.doi.
org/10.21037/tlcr-20-361).

Methods

Patients

This study was done in accordance with the principles 
of the Declaration of Helsinki (as revised in 2013). The 
data were collected from September 2017 to July 2019 in 
a prospective clinical trial (ClinicalTrials.gov identifier: 
NCT03215693) under approval of the local ethics review 
board at each participating site after obtaining written 
informed consent. 

One hundred and sixty patients with locally advanced 
or metastatic (stage IIIB/IV) ALK-positive NSCLC from 
27 centers across China were enrolled in the clinical trial 
and we included patients with brain metastases in this 
study. The inclusion criteria were: (I) age ≥18 years; (II) 
advanced ALK-positive NSCLC with brain metastases; (III) 
disease progression during crizotinib treatment, including 
the progress of brain metastases and the progress of other 
parts (with a minimum of 7-day washout period); (IV) no 
previous cranial radiation, and the CNS metastases did 
not require steroids therapy and were asymptomatic; (V) 
Eastern Cooperative Oncology Group performance status 
≤2; (VI) baseline contrast-enhanced MRI was performed 
within 4 weeks before ensartinib treatment commencement; 
and (VII) brain metastases could be measured and 
delineated. The exclusion criteria were: (I) prior treatment 
with any ALK inhibitor other than crizotinib; (II) MRI 
data of poor quality because of motion artifacts or poor 
contrast injection; and (III) withdrawal from the trial within 
51 weeks of follow-up for reasons other than intracranial 
progression (unacceptable toxicity, withdrawal of consent, 
tumor progression in other parts of the body). 

Tumor assessments were performed using MRI at 
baseline and every 6 weeks during the first 24 weeks 
after ensartinib treatment initiation, and every 9 weeks 
thereafter until occurrence of radiologically documented 
disease progression by investigators according to RECIST 
version 1.1. Patients were followed up for at least 51 weeks 
and divided into progression and non-progression groups 
according to intracranial progression occurrence within 
51 weeks after starting ensartinib treatment. Patients’ 

demographics were obtained by medical record review.

Image acquisition

Imaging was performed at different sites with different 
MRI vendors systems and various acquisition parameters, 
resulting in heterogeneous image data. Four patients were 
performed on General Electric systems (two at 1.5-T and 
two at 3.0 T), three, on Siemens systems (at 3.0 T); and 
17, on Philips systems (one at 1.5 T and 16 at 3.0 T). All 
patients underwent axial T1 weighted post-contrast (T1c) 
scan and T2 weighted (T2) scan; other imaging protocols 
included non-enhanced T1-weighted, T2-weighted, T2-
weighted fluid-attenuated inversion recovery, and diffusion-
weighted imaging. T1c images were retrieved for radiomic-
based image feature extraction. T1c and T2 images were 
retrieved for routine MRI feature analysis.

Image analysis

Routine MRI features
Two radiologists with 15- and 4-year’ experience, 
respectively, in an academic full-service cancer hospital 
reviewed the MR images for the following parameters: 
(I) lesion size, defined as the average of the long and the 
vertical short diameters of the largest cross-sectional 
area of the lesion on the axial T1c image; (II) location 
(frontal, parietal, occipital, and temporal lobes; cerebellum, 
ventricles, brainstem, limbic system, basal ganglia, and 
others); (III) extent of edema, which was evaluated on 
T2 images, defined as significant edema (score 2) if the 
maximum edema thickness was greater than or equal 
to the lesion diameter, mild (score 1) if the maximum 
edema thickness was less than the lesion diameter, and no 
significant edema (score 0); and (IV) range of enhancement, 
defined as whole (uniform or under-uniform) strengthening 
or peripheral strengthening. Any disagreement was resolved 
by consultation.

Region of interest segmentation and radiomic feature 
extraction
The radiomic workflow is presented in Figure 1. To reduce 
the effect of slice thickness variation, all images were 
resampled to voxels of 1×1×1 mm3 (initial dimensions: 1–5 mm  
in the Z direction) and further intensity standardized by 
using the Artificial Intelligence Kit software (AK software; 
GE Healthcare, China). Tumor regions of interest (ROIs) 
were semi-automatically segmented on the processed axial 
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enhanced MR images using the ITK-SNAP 3.6 software 
(http://www.iksnap.ong). Brain metastases were first 
segmented by a radiologist with 4-year’ experience and 
then reviewed by a radiologist with 15-year’ experience in 
oncologic imaging. All disagreements were to be resolved 
by consensus. When consensus could not be reached, the 
final decision was deferred to a radiologist with more than 
30-year’ experience in oncologic imaging. Overall, 396 
radiomic features, including the first order histogram (n=42), 
second order texture (gray level co-occurrence matrix, 
GLCM, n=144), gray level run-length matrix (n=180), 
Haralick (n=10), morphological (n=9), and gray level zone 
size matrix (GLZSM; n=11) features, were extracted from 
the ROIs using the AK software (Figure S1).

Radiomic feature selection and predictive model 
construction
All evaluable brain metastases (87 in total) were randomly 
divided into training and validation datasets at a 7:3 ratio. 
Multiple metastases in a single patient were assigned either 
to the training set or to the validation set to prevent bias 
from cluster correlation.

We used two feature selection methods, the minimum 
redundancy maximum relevance (mRMR) and least absolute 

shrinkage and selection operator (LASSO). mRMR was 
first performed to simultaneously select highly predictive 
but uncorrelated features based on their ranking by the 
relevance-redundancy index (30). Next, LASSO was used 
to select the optimized subset of features and evaluate the 
corresponding coefficients (31). The predictive model and 
Rad-score were obtained using 10-fold cross-validation to 
perform logistic linear regression of the selected features 
in a linear combination weighted by their respective 
coefficients and repeated 10 times. Rad-scores were 
compared between the progression and non-progression 
groups in both the training and validation datasets 
using Wilcoxon’s rank-sum test. The prediction model’s 
performance was assessed by the area under the receiver 
operator characteristic curve (AUC) in both datasets. The 
threshold point calculated by maximizing the Youden Index 
was used to predict each patient’s classification and to 
construct a confusion matrix, based on which the model’s 
accuracy, specificity, and sensitivity were calculated. The 
calibration and Hosmer–Lemeshow tests were performed 
to assess the goodness of fit of the prediction model. To 
estimate the clinical utility of the radiomic signature, 
decision curve analysis was performed by calculating the net 
benefits for a range of threshold probabilities.
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Figure 1 Radiomic workflow and study flowchart. ROI, region of interest; mRMR, minimum redundancy maximum relevance; LASSO, 
least absolute shrinkage and selection operator.
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Patient risk stratification
The relationship between the radiomic signature and the 
measured time to progression was further assessed using 
Kaplan–Meier analysis. Average Rad-scores for all included 
brain metastases were calculated for each patient. Patients 
were divided into high-risk and low-risk groups according to 
their average Rad-scores and the X-tile-derived threshold (32).  
Kaplan–Meier curves were constructed for patients in both 
groups to determine the proportion of patients without 
disease progression at any given time. The difference in the 
survival curves was evaluated using the log-rank test.

Statistical analysis

Demographic and regular MRI data were analyzed using 
the chi-square test or Fisher’s exact test for nominal variables 
and the Mann–Whitney U test for continuous variables with 
abnormal distribution. The statistical methods used for radiomic 
feature extraction and selection, prediction model construction 
and testing, and patient risk stratification were described in 
detail in the subsection Image Analysis. All statistical analyses 
were performed using R (version 3.5.1, http://www.R-project.
org). Two-tailed P values <0.05 indicated statistical significance. 

Results

Patients and routine MRI Features

From September 2017 to July 2019, 97 patients with brain 
metastases were enrolled, 40 of whom had measurable 
intracranial target lesions assessed by the Independent 
Review Committee based on RECIST 1.1. Of these,  
15 were excluded [no enhancement imaging (n=1), tumor 
progression in other parts of the body within 1 year (n=14)], 
leaving the data of 24 patients (11 men, 13 women; mean age, 
51.25 years; age range, 32–69 years) with 87 brain metastases for 
analysis (Figure S2). Among the 24 patients, 8 had intracranial 
progression (1 at 12 weeks after ensartinib treatment, 1 at  
18 weeks, 1 at 24 weeks, 2 at 33 weeks, 3 at 42 weeks), and  
16 had no intracranial progression within one year.

The patients’ demographics and the tumors’ characteristics 
are presented in Table 1. No significant difference was found 
between the progression and non-progression groups in 
demographics or routine MRI features (P=0.06–0.95).

Predictive model

A total of 396 radiomic features were extracted from 

each ROI. The most predictive radiomic features with 
a nonzero coefficient in the LASSO logistic regression 
model were: Percentile5, Correlation_angle90_offset4, 
Correlation_angle45_offset4, HaralickCorrelation_
AllDirection_offset7, InverseDifferenceMoment_angle90_
offset4, LargeAreaEmphasis, ClusterShade_angle90_offset4, 
Correlation_AllDirection_offset7, and GLCMEntropy_
AllDirection_offset1_SD (Figure S3A,B).

The radiomic signature was constructed with a Rad-
score calculated using the following formula:

Rad-score = –0.196*Correlation_angle90_offset4 
+ –1.095*Percentile5 + –0.447*Correlation_angle45_
offset4 + –0.23*HaralickCorrelation_AllDirection_
offset7 + –0.642*InverseDifferenceMoment_angle90_
offset4 + 0.14*LargeAreaEmphasis + 0.54*ClusterShade_
angle90_offset4 + –0.37*Correlation_AllDirection_
offset7 + –0.147*GLCMEntropy_AllDirection_offset1_SD 
+ –0.516.
The Rad-scores were significantly higher in the progression 
than in the non-progression group both in the training and 
validation datasets (P=5.5e-06 and P=0.00094, respectively; 
Wilcoxon’s rank-sum test; Figure 2). The contribution of 
the selected parameters with their regression coefficients 
for signature construction is presented in the form of a 
histogram in Figure S4.

The radiomic prediction model showed favorable 
predictive efficacy, with AUCs of 0.84 [95% confidence 
interval (CI): 0.73–0.96; Figure 3A] and 0.85 (95% 
CI: 0.69–1.00; Figure 3B), accuracies of 0.87 (95% CI:  
0.76–0.94) and 0.80 (95% CI: 0.59–0.93), sensitivities 
of 0.87 and 0.67, and specificities of 0.87 and 0.87 in 
the training and validation datasets, respectively. The 
calibration curve and non-significant Hosmer-Lemeshow 
test showed good calibration both in the training (P=0.50; 
Figure 3C) and validation (P=0.38; Figure 3D) datasets.

The decision curves in the validation set showed that 
when the threshold probability was between 0.13 and 0.97, 
using the radiomic signature added greater net benefit than 
the assumption of “all patients progress” or “all do not 
progress” (Figure 4).

Patient risk stratification

The average Rad-score of all metastatic tumors in each 
patient was calculated to represent the overall progression 
risk level of each patient. The Rad-score threshold for 
dividing patients into high- and low-risk groups was −0.90 
(Figure 5A). The Kaplan-Meier curves of the proportion 

https://cdn.amegroups.cn/static/public/TLCR-20-361-supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-20-361-supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-20-361-supplementary.pdf


373Translational Lung Cancer Research, Vol 10, No 1 January 2021

© Translational Lung Cancer Research. All rights reserved.   Transl Lung Cancer Res 2021;10(1):368-380 | http://dx.doi.org/10.21037/tlcr-20-361

of patients without disease progression were significantly 
different between the high- and low-risk groups (P=0.017; 
Figure 5B). Figure 6 shows the brain metastases and 
corresponding Rad-scores of two patients from different 
risk groups. Among them, the follow-up images of the 
patient with both high and low risk lesions are shown in 
Figure S5.

Discussion

In this study, we performed a retrospective radiomic analysis 
of clinical trial data (ClinicalTrials.gov, NCT03215693) to 
develop a noninvasive quantitative prognostic biomarker 
for risk stratification of intracranial progression based 

on standard MR images for patients with ALK-positive 
NSCLC with brain metastases treated with ensartinib. 
The radiomic model based on the pre-ensartinib treatment 
images could identify patients at high risk of progression 
within 51 weeks throughout the treatment course, with 
AUCs of 0.84 and 0.85 in the training and validation 
datasets, respectively. We used the Rad-score calculated by 
the predictive model to quantify the predictive performance 
of the radiomic features. The higher the Rad-score, the 
higher the risk of progression within 51 weeks. The Rad-
scores were significantly higher in the progression than in 
the non-progression group in both datasets. The decision 
curve analysis showed that the radiomic signature added 
greater net benefit than the assumption of “all patients 

Table 1 Patient and tumor characteristics

Variables Progression group Non-progression group P

No. of included patients 8 16

Mean age (years) 51.0 [32–66] 51.4 [34–69] 0.94

Sex 0.56

Female 5 (62.50%) 8 (50.00%)

Male 3 (37.50%) 8 (50.00%)

No. of metastases 28 59

Mean size (cm) 1.13 (0.54–2.76) 1.19 (0.46–3.38) 0.95

Location 0.69

Frontal lobes 10 (35.71%) 26 (44.07%)

Parietal lobes 2 (7.14%) 6 (10.17%)

Occipital lobes 4 (14.29%) 9 (15.25%)

Temporal lobes 3 (10.71%) 8 (13.56%)

Cerebella 4 (14.29%) 6 (10.17%)

Other parts 5 (17.86%) 4 (6.78%)

Enhancement 0.06

Whole 2 (7.14%) 14 (23.73%)

Peripheral 26 (92.86%) 45 (76.27%)

Extent of edema† 0.28

0 12 (42.86%) 34 (57.63%)

1 8 (28.57%) 16 (27.12%)

2 8 (28.57%) 9 (15.25%)

The table shows the number of patients and patient sex and age at the time of inclusion to the study; the number of patients and 
metastases included in the predictive models according to whether the patient progressed within 51 weeks after ensartinib treatment. †, 
according to the extent, the edema was defined as significant (score 2), if the maximum edema thickness was greater than or equal to the 
lesion diameter; mild (score 1), if the maximum edema thickness was less than the diameter of the lesion; and not significant (score 0). 
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progress” or “all do not progress” across the majority 
of reasonable threshold probabilities, indicating the 
incremental value of the radiomic signature for unified 
patient monitoring.

In patients with crizotinib-resistant ALK-positive 
NSCLC, despite the initial positive effect of ensartinib, 
progression-free survival (PFS) varies widely and is difficult 
to predict by conventional imaging features. Using the 
Rad-score, high- and low-risk patients were successfully 
distinguished, with significant differences in the 51-week 
PFS. In routine image evaluation and previous radiomic 
studies, greater attention had been paid to larger lesions; 
however, these were not always representative of the 
patient’s overall status. For example, in one case of multiple 
metastases (the bottom row of Figure 6), two large lesions 
had a Rad-score lower than −0.9, representing low risk, 
but the average Rad-score for all lesions was higher than 
0.9, and the patient was classified in the high-risk group. 
Follow-up data confirmed that this patient required early 
intervention (PFS =24 weeks), attesting for the need of a 
comprehensive analysis of the histological characteristics of 
multiple lesions in patients. It was reported that the median 
intracranial PFS of ALK-positive lung cancer treated with 
an ALK-inhibitor was 11.9 months (7), and according to 
the follow-up plan of this clinical trial, the closest follow-

up time was 51 weeks; therefore, we selected PFS at  
51 weeks as the evaluation cut-off point. Compared 
with the long-term overall survival outcome, PFS is an 
endpoint that avoids extended follow-up and enables earlier 
adjustment of therapy (33). The radiomic signature has 
successfully identified high-risk patients with poor survival 
outcomes who need further intensive monitoring and timely 
improvement of treatment regimens, such as radiation.

Previous studies have shown that the average entropy 
and uniformity of multiple metastatic tumors in patients 
with renal cancer can predict targeted therapy efficacy and 
assess the PFS (20). In addition to the first-order histogram 
features, we comprehensively analyzed the high-order 
radiomic features. Multiple feature combinations can better 
reflect the complex heterogeneity of tumors, which will 
undoubtedly improve the accuracy of prediction.

Among the nine best performing radiomic features, 
Percentile5 is a histogram feature, Correlation_angle9 
0_offset4, Correlation_angle45_offset4, HaralickCorrelation_
AllDirection_offset7, InverseDifferenceMoment_angle90_
offset4, ClusterShade_angle90_offset4, Correlation_
AllDirection_offset7, and GLCMEntropy_AllDirection_
offset1_SD are GLCM features, and LargeAreaEmphasis 
is a GLZSM feature. The first-order histogram feature is 
mainly based on the statistics of the lesion area grayscale or 
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luminance information, followed by the overall distribution 
of the lesion area grayscale information. The GLCM and 
GLZSM features are texture parameters that describe the 
complexity, degree of change, and texture thickness of the 
lesion microstructure. Most of these radiomic features are 
high-order texture features that reflect image heterogeneity 
and were similar to those in other proposed signatures for 
NSCLC (34-36). According to the radiomic hypothesis, 
intratumoral heterogeneity assessed through imaging could 
reflect genomic heterogeneity, which would indicate worse 
prognosis, as tumors with greater genomic heterogeneity 
are more likely to develop resistance to treatment and 
to progress (22,37). As shown in the current study, the 
identified signature could predict the survival outcomes, 

supporting the idea that radiomic signatures have the ability 
to evaluate the intratumoral heterogeneity in a noninvasive 
manner and are thus associated with patient prognosis. 

The combination of clinical and radiomic features may 
have greater clinical significance (38,39). Unfortunately, in 
our study, the clinical and conventional imaging features 
were not found to be statistically significantly associated 
with intracranial progression at 51 weeks for patients with 
ALK-positive NSCLC, which may be largely attributed to 
the limited size of the study population.

The reason we analyzed the T1c MR images was that 
a previous study found that enhanced images contain 
the most useful information and enhanced scanning was 
routinely performed for patients with brain metastases 
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without contraindication (40).
The existing radiomic-based analyses have focused on 

molecular, histologic, and prognosis-related classifications 
using imaging biomarkers of primary tumors. To the best 
of our knowledge, this study was the first to use MR-
based radiomic features to predict the intracranial efficacy 
of ALK-targeted therapy in patients with ALK-positive 
NSCLC. Moreover, we used prospectively acquired high-
quality data from a clinical trial, which had predefined 
criteria for patient enrollment, treatment, and follow-
up. As this was a multicenter trial, the MRI protocols and 
equipment varied across institutions, further highlighting 
the potential generalizability of our proposed model. 
Another advantage of radiomic analysis is that it imposes 
no additional burden on patients because it is an additional 
postprocessing step of standard radiology images obtained 
for response assessment. 

There were also limitations to this study. First, because 
of the low incidence of ALK rearrangements in NSCLC, 
although the study was a national multicenter study, only 
a small number of patients (and lesions) were included. 
Random noise in small datasets can often be mistakenly 
interpreted as meaningful (a problem known as overfitting); 
consequently, the model may not perform as well in 
independent datasets. Second, the non-progression group 
(and the low risk group) had twice the data samples of 

Figure 4 Decision curve analysis for the radiomic signature. 
The y-axis represents the net benefit. The irregular thick curve 
represents the radiomic signature. The thin curve represents the 
hypothesis that all patients progressed. The straight line represents 
the hypothesis that no patient progressed. The x-axis represents 
the threshold probability. The net benefit was calculated by 
summing the benefits (true-positive results) and subtracting the 
harms (false-positive results), weighting the latter by a factor 
related to the relative harm of an undetected cancer compared 
with the harm of unnecessary treatment. The radiomic model 
adds greater benefit than the simple strategies, such as follow-up 
of all patients (thin curve) or of no patient (straight line), across 
the majority of reasonable threshold probabilities (0.13–10.97) at 
which a patient would select to undergo imaging follow-up.
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the progression group (and the high-risk group) and the 
number of brain metastases varied among patients, which 
may have caused statistical analysis bias, affecting the 
predictive capability and accuracy of the model. Third, the 
overall tumor burden of the patients (primary lung cancer 
and extracranial metastases), was not considered, which may 
affect the prognosis. We are also studying the relationship 
between primary lung cancer and systemic metastases and 
patient prognosis, which may be reported in subsequent 
articles. Fourth, changes in radiomic characteristics from 
one time point to the next (delta radiomics), such as 
changes before and after treatment, could dynamically 
respond to changes in tumor heterogeneity and might have 
a higher predictive value than extracted from a single time 
point (41,42). However, due to the small number of cases, 
and some patients did not undergo enhanced scan during 
follow-up, we only analyzed the baseline radiomic features 
before treatment. We will further analyze the relationship 
between delta radiomic features and prognosis when more 
patients are included. Fifth, we did not include genomic 

characteristics and circulating tumor markers in the analysis, 
although this is undoubtedly a medical hotspot to promote 
the progress of tumor diagnosis.

Conclusions

This study showed that radiomics based on MRI had 
prognostic value for PFS and progression and allowed 
pretreatment risk stratification in patients with ALK-
positive NSCLC receiving ensartinib treatment, which 
allowed the choice of follow-up and treatment to be 
tailored to each patient’s individual risk profile. Prospective 
validation in a large and diverse population is needed to 
acquire high-level evidence for the radiomic signature’s 
clinical application. 
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Figure S1 Radiomic features extracted from the T1c MR images. CC, cu mm cubic millimeter; MM, millimeter; GLCM, Grey Level Co-
occurrence Matrix; GLZSM, gray level zone size matrix.

Figure S2 Flowchart of the study population and exclusion criteria.
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Figure S3 Radiomic feature selection using least absolute shrinkage and selection operator (LASSO) logistic regression. (A) Selection 
of the tuning parameter (λ) in the LASSO model via 10-fold cross-validation based on minimum criteria. Binomial deviances from the 
LASSO regression cross-validation procedure were plotted as a function of log(λ). The y-axis indicates binomial deviances. The lower x-axis 
indicates the log(λ). Numbers along the upper x-axis represent the average number of predictors. Red dots indicate average deviance values 
for each model with a given λ, and vertical bars through the red dots show the upper and lower values of the deviances. The vertical black 
lines define the optimal values of λ, where the model provides its best fit to the data. The optimal λ value of 0.019 with log(λ) =−3.92 was 
selected. (B) LASSO coefficient profiles of the 12 radiomic features. The dotted vertical line was plotted at the value selected using 10-fold 
cross-validation in (A). The nine resulting features with nonzero coefficients are indicated in the plot.
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Figure S4 A histogram showing the role of individual features that contributed to the developed signature. The features that contributed 
to the radiomic signature are plotted on the y-axis, with their coefficients in the least absolute shrinkage and selection operator Cox analysis 
plotted on the x-axis.
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Figure S5 Follow-up images of all enrolled lesions in one patient. Each row shows the follow-up image of a lesion. Lesion 4, with the 
highest Rad-score, started to progress at 18 weeks and continued to progress at 24 weeks. The remaining lesions with lower Rad-scores had 
shown no clear progress by 24 weeks. A new brain metastasis (lesion 6) appeared at 24 weeks, and the patient was defined as progressing 
according to the response evaluation criteria in solid tumors 1.1.
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