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Introduction 

Since many cytotoxic or cytostatic drugs that were used in 
the treatment of acute lymphoblastic leukemia (ALL) did not 
adequately cross the blood-brain barrier, prophylactic cranial 
irradiation (PCI) was introduced in the 1960s to target the 
subclinical leukemic residuals in the central nervous system (1). 
PCI led to a substantial improvement of disease-free survival 
(DFS) and overall survival (OS), yet has on the long run 
become nearly fully replaced by (long-term) intrathecal 
chemotherapy (ICT) without affecting DFS and OS (2). The 
rationale behind the change of modalities was not established 
quickly, but has rather evolved on the basis of long-term 
follow-ups, in which late radiation-induced toxicities 
including neurological and neurocognitive impairments, 
hormone deregulation, and secondary cancers appeared in 
high frequencies especially in pediatric patients (3-7). 

To date, only few indications for PCI in adult and 
childhood leukemia exist. It is still applied in childhood 
AML (8) as well as in childhood ALL if the risk for 
relapse is high or if patients do not adequately respond to 
chemotherapy (9). In adults, PCI is performed in highly 
aggressive (Philadelphia-chromosome positive) ALL, 
for example in the GMALL PH-01 study as part of the 
induction therapy (EudraCT 2010-022854-18). 

For small-cell lung cancer (SCLC), PCI was included in 
standard regimens for limited disease (LD) patients in the 
early 1980s, where it was clearly shown that it efficiently 
reduced the 2-year occurrence rate of brain metastases 
(BM) from 58% to 11% (10) . PCI also showed to improve 
OS of patients in complete remission (CR), as impressively 
demonstrated in a meta-analysis of seven individual 
trials from 1977-1994 by Aupérin and colleagues (11). 
Furthermore, the EORTC multicentre randomized phase 
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III trial showed that even patients with extensive disease 
(ED)-SCLC will benefit from PCI with respect to DFS and 
OS if they showed any response to chemotherapy (12).

In contrast to the beneficiary effects in SCLC, PCI has 
failed to improve OS rates in non-small-cell lung cancer 
(NSCLC) in multiple randomized clinical studies (13-16). 
Additionally, since the relapse rates with brain as first site 
have not changed after application of PCI (17,18), it is 
currently omitted in NSCLC treatment regimens. 

There is controversy about how precisely one may 
delineate PCI toxicity from disease- or treatment specific 
toxicities that are present a priori or that will (co-)elicit side 
effects of the irradiation. We will briefly introduce current 
dose regimens and review toxicities that, from our clinical 
experience, are the commonly experienced ones during and 
after PCI. 

Technical implementation and doses

To date, PCI is commonly initiated within 4-6 weeks after 
chemotherapy using bilateral, parallel opposing fields with 
high energy (megavoltage) photons (doses are commonly 
specified to the midline), whereas each field is treated 
daily on a 4-5 times per week schedule. Depending on the 

underlying disease, the total doses range from 12 to 36 Gy. 
As a part of the treatment for childhood ALL, early PCI 

regimens consisted of doses of 12-24 Gy and long-term 
studies found that the dose can be safely reduced without 
any loss of effectivity (19). The DFCI Consortium protocol 
includes PCI with 12 Gy in two daily fractions of 0.9 Gy 
concomitant with double ICT for standard-risk patients (20). 
For patients with high risk ALL, the AALL0232 study 
protocol foresees PCI with 12 Gy in 8 fractions only for slow 
early responders without manifest CNS involvement (9). 

Due to the variety of different findings there is still 
uncertainty which dose might be optimal for SCLC. It is 
believed from dose-response analyses that at least 30-36 Gy, 
applied in 2 Gy-fractions are most likely needed to eliminate 
cranial metastasis (21) and that doses below 30 Gy have no 
effects (22). A meta-analysis in 1998 analyzed 7 different 
regimens for PCI and found the lowest hazard ratio for  
36 Gy in 18 fractions (23). The younger RTOG 02 12 trial 
also addressed this question and randomly assigned LD-
SCLC patients to PCI with the standard dose (arm 1) of  
25 Gy in 10 fractions or in an arm using higher doses (arm 2)  
of 36 Gy in 18 or 24 fractions (24). The study showed no 
difference in the incidence of BM when comparing high 
to low dose PCI but a significant increase in mortality when 
higher doses were given. For ED-SCLC, in contrast, the 
2007 EORTC trial showed comparable benefits and toxicities 
when using 20 Gy in 5-8 fractions, 24 Gy in 12 fractions,  
25 Gy in 10 fractions and 30 Gy in 10 or 12 fractions (12). 

A commonly applied dose for PCI in the past NSCLC studies 
was 30 Gy in 15 fractions (13,14,25). In the SWOG study, the first 
patients that were recruited were treated with 37.5 Gy in fractions 
of 2.5 Gy which led to an increased death rate, prompting the 
committee to reduce the dose 30 Gy in 2 Gy fractions for all 
further patients (26). 

Toxicity

Prophylactic and, even more, therapeutic irradiation of the 
brain may be accompanied by early and late side effects. 
Early side effects may be reversible and appear during 
PCI or slightly delayed within few weeks after the end of 
radiotherapy. A first classification of the temporal occurrence 
of radiation-related toxicities was done by Sheline and 
colleagues in the 1980s (27), in which acute and subacute 
radiation reactions of the brain at around four months were 
distinguished from delayed irreversible impairments months 
or years after completion of cranial radiotherapy (Table 1). 
In a prospective study on 44 patients with and without BM 

Table 1 Temporal classification of radiation-related nervous 
system injury [adapted from (Sheline et al. 1980)]

Acute (early) • Acute encephalopathy

Subacute

• Subacute (“early delayed”) 

encephalopathy

• Subacute (transient) myelopathy

• Transient brachial plexopathy

Late (chronic)

• Delayed cerebral radiation necrosis

• Diffuse late brain injury (atrophy and 

dementia)

• Neuroendocrine dysfunction

• Optic neuropathy

• Cranial neuropathy

• Chronic progressive (necrotic) 

myelopathy

• Motor neuronopathy

• Chronic brachial and lumbosacral 

plexopathy

• Peripheral neuropathy

• Cerebral vasculopathy

• Radiation-induced tumors
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our group evaluated very early effects (tests were performed 
before PCI, during PCI and 6-8 weeks after PCI) of PCI 
on neurocognition. Our analysis has shown that in contrast 
to therapeutic cranial irradiation (TCI), PCI does not 
considerably impair cognitive functions after 1-3 fractions 
of irradiation (28). In contrast, 6-8 weeks after PCI, patients 
scored significantly lower on verbal memory as compared to 
a control group receiving radiotherapy to the breast (28). Of 
note, 44% of patients that received PCI showed a decline of 
at least one verbal memory subtest and, at this time point, 
patients that received PCI scored similarly to patients that 
received TCI. However, there is still uncertainty about 
how this rate correlates to a much higher rate of CNS 
demyelination (60-100%) that can be seen months to years 
after PCI (Figure 1) (29). 

The incidence of toxicities are likely dependent on 
certain a priori risk factors, including age, preceding or 
concomitant chemotherapy and other putative risk factors 
that are to date not exactly defined as such (i.e. smoking 
and/or atherosclerosis). The most evident risk factor 
for developing side effects is age: since the developing 
brain is much more sensitive to irradiation than the adult 

brain, PCI in children leads to high rates of acute and 
late toxicities (30-32). An early effect after PCI in children 
has been observed in an ancient report of Freeman and 
colleagues, who noted abnormal behavioural patterns in 
patients with ALL. In detail, more than two thirds of the 
children showed somnolence, anorexia, and lethargy at 
around 6 weeks after PCI (33). Interestingly, all symptoms 
were transient and completely resolved spontaneously, 
fully consistent with later investigations which showed 
that a transient demyelination of CNS nerve fibres is the 
underlying cause (34). The complex mixture of symptoms 
with somnolence being the chief complaint lead the 
community to dub this early PCI toxicity “somnolence 
syndrome” (35). The syndrome does not seem to be dose-
dependent and has to date appeared at fairly any dose 
between 18 and 24 Gy (36). It was even described to occur 
6 weeks after total body irradiation (TBI) with 12 Gy before 
bone marrow transplantation (37). Although the somnolence 
syndrome was also described to transiently occur in adults (38), 
neurotoxicity after TBI remains extremely rare. In a 
prospective study by our group, we followed 58 patients that 
underwent hyperfractionated TBI (14.4 Gy in 12 fractions) 

Figure 1 Radiation-induced leukoencephalopathy. Shown is a T2-weighted MRI scan 8 weeks and 7 months after irradiation showing an 
increased symmetric hyperintensity of the cerebral white matter

8 weeks 7 months
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before bone marrow transplantation and saw no impairment 
in any of the applied neuropsychological tests (the median 
follow up was 27 months) (39). 

An important aspect of PCI toxicity in children is 
temporary or permanent hormone dysfunction. It is to date 
not clear whether the pituitary gland, the hypothalamus 
or both are affected by irradiation. However, early studies 
showed that hypopituitarism is dose depended, whereas 
lower doses (in the range of 12-24 Gy) seem to solely induce 
growth hormone (GH) dysfunction (40,41). The GH axis 
is the most vulnerable axis and impairment represents 
a major concern when prescribing PCI for (pubertal) 
children. Of note, adult patients easily compensate GH 
deficiency (42). At higher doses (including those used for 
PCI, e.g., 30-36 Gy) TSH secretion is found impaired 
in nearly 30% and may remain disturbed long-term in 
up to 9 % of patients (43,44). It is well known that (in 
this case secondary) hypothyroidism will not only result in 
somatic disorders but also cause neuropsychiatric symptoms 
such as mood changes or depression. If left untreated (or 
undetected long time after PCI) cognitive functions will be 
affected and patients will show impaired executive functions 
and poor learning capabilities (45). 

Caution is advised when diagnosing PCI toxicity in 
adults, as many of the “classical” PCI toxicity data is derived 
from studies on SCLC, where patients primarily undergo 
chemotherapy which is followed by PCI. The influence 
of chemotherapy on cognitive functions of many cancer 
patients, often referred to as “chemo-brain” or “chemo 
fog” remained underestimated for a long time (46). Largely 
similar to the side effects evoked by cranial irradiation, 
it is not surprising that the effects were rather attributed 
to the radiation than to chemotherapy (47). However, 
already more than a decade ago, it has been noted that 
patients receiving adjuvant (standard-dose) chemotherapy 
for breast cancer exhibit decreased cognitive functions 
(memory and language) as compared to matched control 
groups (48). In a prospective study by Komaki et al., 
SCLC patients that finished initial therapy were asked to 
perform neuropsychological tests before and after PCI (49). 
Although the authors saw a slightly significant decline of 
executive function and language after 1 year (which turned 
insignificant in later tests), they noted that roughly half 
of patients have neurocognitive deficits before PCI (49). 
Logically, highest toxicity rates were observed in studies 
where chemotherapy was concomitantly applied with PCI: 
a simultaneous low dose concurrent chemotherapy during 
PCI will result in abnormal neuropsychological tests in 

nearly one half of all treated patients with SCLC (median 
follow-up ~6 years) (50). Nowadays it is accepted that 
chemotherapy alone induces white matter changes especially 
in the frontal, parietal and occipital lobes, consistent with 
the notion of chemotherapy-related axonal degeneration 
and demyelination (51,52). Of note, there is evidence that 
associated cognitive deficits persist for more than 10 years, 
which can overlay most (if not all) PCI-induced toxicities (51). 

Another confounder that has to be considered when 
diagnosing PCI toxicity is the broad variety of possible 
paraneoplastic syndromes, which may even be manifesting 
prior to the underlying lung cancer, or its recurrence, 
respectively (53). Especially patients with SCLC may 
present with CNS-involving paraneoplasias, such as 
subacute sensory neuropathy, mononeuritis multiplex, 
Lambert-Eaton myasthenic syndrome, encephalomyelitis 
or necrotizing myelopathy (54). Although the etiologies are 
currently not clear, it is discussed whether paraneoplasias 
may resemble a classical autoimmune disease with the 
presence of “onconeural” antibodies (55). CNS-involving 
paraneoplasia leads to impaired neurocognitive functions, 
including memory loss, distractibility, fatigue or mood 
disturbances (56), which are symptoms that are highly 
similar to those induced by PCI. 

Beside residuals of the preceding chemotherapy and 
paraneoplasia, other factors have to be mentioned that 
may elicit PCI toxicities. “Baseline” pathologies such 
as undetected micrometastases, long-term smoking 
effects or other age-related abnormalities may flare up 
in patients during treatment. It is even possible that one 
condition or therapy may increase the toxicity of another: 
more than two decades ago Johnson et al. studied long-
term survivors of SCLC and saw that CT-morphological 
(ventricular dilatation and cerebral atrophy) abnormalities 
and impaired neurocognitive effects are more frequent 
when chemotherapy was concurrently applied (50). Similar 
conclusions were drawn later by other groups (57-59). 
Another example might be that age per se can display a risk 
factor for late effects after PCI since the irradiated brain 
ages faster and is at risk for early onset dementia (60). In 
line with this, the RTOG 02-12 study (see above) detected 
higher age to be the most predictive risk factor for PCI 
toxicities (61). Of note, it is known since the early 70s that a 
pre-existing vascular damage is accelerated by radiation (62) 
and assuming that more than 95% of all SCLC/NSCLC 
patients are smokers, a possible underlying cause of this 
age-related PCI toxicity may be the higher incidence of 
hypertension and/or (cerebral) arthrosclerosis in these 
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patients. 
As many of the patients receiving PCI have a more or less 

reduced life expectancy, the remaining quality of life (QoL) 
probably displays one of the most important measures for 
clinical decision making. For SCLC, QoL after PCI has 
been assessed in three randomized controlled trials, whereas 
two of which showed no significant differences between 
patients receiving PCI and controls (22,61). In the EORTC 
trial, Slotman and colleagues defined six QoL end points: 
global health status, hair loss, fatigue, and role, cognitive 
and emotional functioning. Although baseline scores were 
similar in both arms, a significant decline of QoL due to 
hair loss and fatigue (at 6 weeks and 3 months) was observed 
in patients receiving PCI (63). It has to be noted for 
completeness that there was no evidence for reduced QoL 
after PCI in patients with advanced-stage NSCLC (16). 

Novel concepts avoiding PCI toxicities and 
putatively new indications

More work will be necessary to further delineate the 
influencing factors that may contribute to PCI toxicities. 
To start with, the optimal dose and fractionation schedule 
for PCI should soon be clearly defined as this question is a 
part of ongoing studies (e.g., for SCLC in RTOG 02-12). 
Novel techniques to avoid known adverse effects at any 
dose will also be required as part of a new concept aiming 
at improving the therapeutic ratio of PCI. With the advent 
of highly-conformal intensity-modulated radiotherapy 
(IMRT), organs at risk such as the hippocampus and scalp 
may be better spared. 

The RTOG 0933 trial aims to find out whether sparing 
of the hippocampus during cranial irradiation may lower the 
incidence of radiation-induced neurocognitive toxicity. The 
rationale behind this trial is that the hippocampus is rarely 
affected by BM but displays the major site of learning, 
memory and spatial information (64). In one of the initial 
feasibility studies exploring IMRT for PCI, the mean doses 
to the hippocampus could be reduced by 81-87% to doses 
of 0.49-0.73 Gy with preserved target volume coverage and 
homogeneity (65). 

Given that IMRT may also be used to prevent permanent 
hair loss, which significantly decreases QoL of both female 
and male cancer patients (66-69) and (as stated above) also 
decreases QoL after PCI (63). Roberge et al. were among 
the first to show the possibility to reduce doses on the 
scalp. They validated their alopecia-avoiding whole brain 
radiation therapy plans with thermoluminescent dosimetry 

and showed that the median dose to the scalp can be 
reduced by nearly 40% without affecting target volume 
doses (70). Although this does not prevent transient alopecia 
in most of the treated patients, it may be of benefit for those 
with a priori risk factor for increased alopecia (e.g., previous 
or concomitant chemotherapy). 

However, assuming that IMRT might not be available 
to every radiation oncologist, the use of neuroprotective 
drugs before and/or during PCI might be an option. Several 
drugs are currently studied that may protect the CNS from 
irradiation damage, whereas the most promising data were 
obtained for peroxisome proliferator-activated agonists, 
angiotensin-converting enzyme inhibitors and angiotensin 
type-1 receptor blockers, which have shown to ameliorate 
radiation-induced injuries in vivo (71). 

In the light of potentially reduced toxicities of future 
PCIs, one may now have to re-evaluate whether there are 
patient collectives that are at risk for BM but currently 
do not receive PCI due to toxicity. The key studies that 
evaluated PCI toxicity analyzed patients of stage IIIA/B, 
that resemble a collective of lymph node positive, non-
metastatic patients with diverse non-small-cell entities (13-
16). It is known from early studies in the late 1980s that 
especially nonsquamous-cell (NSq) carcinomas strongly 
tend to metastasize to the brain (72) and retrospective 
analyses and necropsies have revealed that roughly 50% of 
NSq patients will experience BM (73-75). On the way to 
find a subgroup in the NSq group that might benefit from 
PCI, it is important to mention that tumor size and lymph 
node status are the key determinants for assessing the risk 
of BM in NSCLC (76,77). In this regard, a very recent 
analysis by Ding and colleagues revealed that nearly 60% of 
patients with NSCLC stage IIIA-N2 developed BM within 
5 years if more than 30% of all excised lymph nodes were 
affected (78). If less than 30 % were affected, they saw that 
roughly 30% of patients had BM. Their data suggest that 
patients with NSq-NSCLC with N≥2 and >30% affected 
nodes might benefit from PCI. Consequently, it should 
now be tested if the (putatively) low toxicities of novel 
PCI-treatment modalities (such as IMRT) could provide a 
benefit to this subgroup. 

Conclusions and outlook

It is well documented that PCI reduces the incidence of BM 
and improves overall survival of patients with LD-SCLCL 
and of patients that showed any response to chemotherapy 
in ED-SCLC. With the advancement of novel anticancer-
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therapies, more and more patients that require PCI will 
survive long term, which will require new approaches to 
prevent toxicities. Concurrent or preceding chemotherapy 
as well as higher age are co-impairing cognition in 
patients receiving PCI, which should be considered in 
clinical decision making. In the future, novel concepts of 
prophylactic and therapeutic whole-brain irradiation have 
to be established for these patients. The techniques will 
include hippocampus-sparing and scalp-sparing highly 
conformal prophylactic cranial intensity-modulated 
radiotherapy (IMRT). Prospective studies will then have 
to prove similar efficiency as conventional PCI. Finally, 
assuming reduced rates of future PCI, new studies will have 
to be set up to re-evaluate whether patients with NSq-
NSCLC that are at high risk for BM may eventually benefit 
of PCI.
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