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Introduction

Tumor immunosurveillance

Cancer is caused by an accumulation of genetic alterations 
in cells which drive activation or overexpression of proteins 
that promote cell cycle arrest and cell survival, while other 
proteins that promote cell cycle arrest or cell death are 
inactivated or downregulated (1). In normal circumstances, 

most of these lesions are repaired or the mutated cells are 
eliminated by control mechanisms such as DNA repair 
enzymes, tumor suppressor genes (2) and the immune 
system (3). Thus growth of tumor cells is prevented and 
innate immunity constitutes a first line of defense. Stress 
induces upregulation of ligands that activate natural killer 
(NK) cell receptors (4) and other immune stimulatory 
surface molecules that recognize and eliminate tumor cells. 
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This response can activate an adaptive immune response 
against antigens specifically expressed by lysed tumor cells 
and lead to T cell-dependent tumor control. Key molecules 
for tumor immunosurveillance are interferon-gamma (5),  
interleukin-12 (IL-12) (6), perforin (7), TRAIL (8), DR4 
and DR5 (9) and the recombination activating genes  
RAG1 (10), and RAG-2 (5). RAG1 and RAG-2 are required 
for cell development, as is the T cell receptor (11,12). Loss 
of any of these molecules results in more frequent or faster 
spontaneous or carcinogen-induced tumorigenesis. The 
ability of cells to evade destruction by the immune system is 
thus recognized as a hallmark of cancer (2).

Cell immune surveillance evasion

The immune system is able to maintain tumor growth in a 
dormant state for decades without completely eradicating all 
the malignant cells. Certain factors may reduce the ability 
of the anti-tumor immune system to detect and eliminate 
malignant cells: pre-established tolerance resulting from 
non-recognition of tumor antigens (13), generation of less 
immunogenic tumor cell subclones and immunosupressor 
molecules such as cytokines or hormones that cause NK 
and T cell suppression in the tumor microenvironment (14). 
Lower levels of activatory and/or higher levels of inhibitory 
NK cell receptor ligands may allow some malignant cells to 
survive (15). Aggressive tumors are often characterized by 
low levels of classical human leukocyte antigen (HLA) class 
I molecules. People with immune system deficiencies such 
as human immunodeficiency virus (HIV) (16), or who have 
undergone an organ transplant (17), and the very elderly 
run an increased risk of developing cancer (18).

Cancer stem cells (CSCs) hypothesis

Tumors are composed of heterogeneous cell subpopulations, 
defined by two different theories: the stochastic or clonal 
evolution model, and the hierarchical or CSC model. 
These theories appear to be mutually exclusive but new 
data suggest that neither should be discounted (19). In 
the stochastic model, all tumor cells are biologically 
equivalent, with a similar capacity for self-renewal and 
formation of new tumor cells. Cell heterogeneity arises 
from subclonal differences resulting from genetic and/
or epigenetic changes during cancer development. In 
the hierarchical model, only a cell subpopulation—also 
known as tumor initiating cells (TICs) (20)—is able to 
initiate tumor growth. The hierarchical hypothesis defines 

CSCs as a minority cell tumor subpopulation endowed 
with properties such as self-renewal, differentiation 
and multi-potency. CSC-like properties may also be a 
function of cell type origin, signals from the stromal 
microenvironment, accumulated somatic mutations and 
stage of malignant progression (21). These cells display 
resistance to chemotherapy (22), radiotherapy (23)  
and immunotherapy (24) and are TICs (4).

Several mechanisms, such as quiescence, are involved 
in chemoresistance (22). Certain drug-resistant proteins 
also make stem cells more resistant to toxins that kill their 
terminally differentiated counterparts (25). For example, 
resistance is dependent on IL-4 signaling, since up-
regulation of IL-4 may result in resistance to apoptosis (26). 
In addition, CSCs/TICs that have undergone an epithelial-
mesenchymal transition (EMT) appear to be more 
resistant to chemotherapy (27). An increase in aldehyde 
dehydrogenase (ALDH) activity in these cells seems able to 
mediate resistance to some chemotherapic agents (28). B-cell 
lymphoma-2 (BCL-2) protein and its family members (29) 
also constitute another mechanism of chemoresistance. 
Therefore, CSCs/TICs possess different mechanisms of 
resistance to several therapies.

Exact characterization of markers that allow identification 
of CSCs/TICs in different tumors is still not possible, 
since no markers have been reported as being unique to  
CSCs/TICs. Markers such as CD166 have been defined 
for several tumors. For example, CD166 is a marker of  
CSCs/TICs in non-small cell lung cancer (NSCLC) (30). 
The diversity of markers associated with CSCs/TICs may 
be due to the existence within the tumor tissue of different 
subpopulations endowed with stem cell features but also with 
distinct biological properties (31) reflecting differences in 
patients’ genetic backgrounds and intra-and/or inter-cancer 
heterogeneity of the primary tumor (32).

CSCs/TICs and the immune system

Immune system and elimination of CSCs/TICs

The process by which the immune system detects and 
interacts with tumor cells, both before and after clinical 
detection of the tumor, is known as tumor immunoediting. 
This process has three phases: elimination, equilibrium 
and escape (33). In the elimination phase, the innate and 
the adaptive immune system recognize and destroy most 
of the tumor cells. However, some malignant cells escape 
and a latency phase begins, consisting of equilibrium 
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between immunological elimination and growth of tumor 
cells that may persist for months, years or decades (34). 
During this period, the cells suffer genetic and epigenetic 
changes and some generate new immunogenic peptides, 
enabling the tumor to eliminate these cells. However, some 
of these changes generate a poorly immunogenic stem 
cell subpopulation that circumvents immune recognition 
and also these cells may manipulate the immune system 
to promote their own growth (35). However, the lack of a 
favorable microenvironment, and a low rate of cell division, 
still prevents the formation of a tumor mass (36). Finally, 
the less immunogenic CSCs/TICs, and the more aggressive 
clones, are able to form a clinically detectable tumor mass 
and initiate the escape phase. The reasons for this are as 
follows: (I) CSCs/TICs can produce immunosuppressive 
molecules that attenuate the immune system (34); (II) CSCs/
TICs recruit cells that suppress the immune system (37); 
(III) immunology tolerance due to loss of tumor antigen 
expression, loss of antigen processing and presentation 
machinery, down-regulation major histocompatibility 
complex (MHC) class-I (MHC I) expression, and inhibition 
of co-stimulatory or MHC II molecule expression on antigen 
presenting cells (APCs) due to genetic alterations (38).  
Also, the immune system may be weakened by illness, 
aging or therapeutic immunosuppression. Certain signaling 
pathways, such as Notch, Wnt and Hedgehog, are able to 
promote CSC/TIC escape (39).

Immunological characteristics of CSCs/TICs

The capacity of CSCs/TICs to present tumor antigens 
to T cells for immune recognition or to elicit immune 
response is  determined by express ion of  ant igen 
presentation molecules, such as MHC-I and MHC-II,  
as well as co-stimulatory (e.g., CD80, CD86) and co-
inhibitory molecules [e.g., cytotoxic T-lymphocyte 
antigen 4 (CTLA4), B7-H2, B7-H3, programmed death 
receptor 1 (PD-1)/-1L] (where co-stimulatory molecule 
expression is negative for these cells and expression of co-
inhibitory molecules is up-regulated) (40). CSCs/TICs 
subsequently show down-regulation of MHC-I and lack 
MHC-II molecule expression, resulting in downregulation 
of low molecular weight protein (LMP) antigen processing 
systems, a transporter associated with antigen processing 
(TAP), and beta macroglobulin which elicits escape from 
immune system attack (41).

CSCs/TICs have been shown to secrete cytokines such 
as transforming growth factor beta (TGF-β), IL-10 and 

IL-13 in vitro (42). In glioblastoma, CSC/TIC survival 
has been found to be dependent on secretion of associated 
angiogenic factors such as vascular endothelial growth factor 
(VEGF), macrophage-chemoattractant protein-1 (MCP-1),  
macrophage inhibitory factor (MIF), growth related 
oncogene alfa (GROα) and ecotaxin (43). Also, TGFβ, 
IL-6 and IL-8 expression are downregulated in CSCs/
TICs (43). In addition, stromal fibroblasts of the tumor 
microenvironment may be involved in regulating CSC/TIC 
generation by release of CCL-2 (44). Breast cancer and 
glioblastoma CSCs/TICs secrete more TGFβ than normal 
cancer cells (45). Colon CSCs/TICs secrete IL-4, which 
promotes drug resistance and inhibits anti-tumor immune 
responses (46). CD200 is also expressed in CSCs/TICs and 
plays an important role in immune escape (47).

Anti-apoptotic molecules like bcl-2, bcl-xL and survivin 
protect cells against chemotherapy as well as conferring 
increased resistance to apoptosis-inducing immune effectors 
like T or NK cells (48). In a similar manner, the PI3K/
Akt pathway mediates chemoresistance and tumor immune 
escape (49). HER2 interferes with antigen processing and 
presentation and is key to maintenance of CSCs in luminal 
breast cancer (50). In summary, CSCs/TICs express soluble 
and membrane-bound molecules that modulate immune 
responses and protect cells from immune system attack.

The STAT3 pathway plays an essential role in tumor-
mediated immunosuppression by inhibiting macrophage 
activation (51). STAT3 pathway also reduces the cellular 
cytotoxicity of NK cells and neutrophiles as well as 
expression of MHC II, CD80, CD86 and IL-12 in dendritic 
cells (DCs), rendering them unable to activate T cells and 
initiate antitumor immunity (52). In addition, STAT3 
regulates transcription of immunosuppressive factors such as 
IL-10, VEGF, PGE2 and TGF-β (53). It has been shown that 
STAT3 signaling is up-regulated in glioma CSC/TICs, and 
growth and self-renewal of this subpopulation is dependent 
on this pathway. CSCs/TICs also secrete some factors that 
induce STAT3 phosphorylation in immune cells (54).

Tumor-associated antigens (TAAs) expressed by CSCs/TICs

CSCs/TICs express TAAs, which characterize their 
condition of “stemness” and can be recognized by T cells. 
TAAs are classed as different subgroups of molecules (41,55) 
as follows:

(I) Differentiation antigens from which the tumor 
derives and which could also be expressed by 
normal cells, i.e., carcino-embryonic antigen (CEA) 
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in colon cancer, mucin-1 (MUC-1) in breast cancer, 
and gp100 and tyrosinase in melanoma (56);

(II) hTERT and surviving antigens,  and other 
apoptosis-inhibitory proteins expressed by non-
stem cancer cells in addition to subsets of normal 
cells (57);

(III) Cancet-testis (CT) antigens such as Melanoma-
associated-antigen-A3 (MAGE-A3) and A4 and 
NY-ESO1 expressed in normal cells, tumor cells 
and CSCs/TICs (57);

(IV) Mutated antigens deriving from somatic point 
mutations in tumor cells that can result in entirely 
new epitopes recognizable by the immune system (58).

In melanoma, the CSC/TIC subpopulation that express 
ATP-binding cassette sub-family B member 5 (ABCB5) 
elicits tumor cell dissemination through mediation of 
chemotherapy resistance, has low levels of lineage-related 
and CT antigens (59). However, the CD133+ melanoma 
cell subpopulation has high expression of NY-ESO1 cancer 
testis antigen as well as susceptibility to specific T cells (60). 
The TAA DDX3X has been found in CD133+ CSCs/TICs 
in melanoma and many cancers, conferring immunogenicity 
on these cells and their ability to induce T-cell dependent 
protection against murine cancer growth in vivo (61). In 
contrast, the CD271+ CSC/TIC melanoma subpopulation 
is deficient in the expression of both lineage-related and CT 
antigens, making their removal by immune T cells difficult. 
This has been correlated with progression and metastasis of 
these cells. As such, melanoma cells offer a good example of 
multiple CSC/TIC subpopulations with different antigen 
expression patterns (62).

None of these potential TAAs seem to be a specific 
marker of CSCs/TICs since they may also be expressed in 
both tumoral and normal cells. However, T cell responses 
against TAAs are expressed by CSCs/TICs, such as IL-
13Rα2, SOX2 and CD133 in gliomas (63), CEP55 and 
COA-1 in colorectal cancer (CRC) (64) and epithelial cell 
adhesion molecule (EpCAM) in retinoblastoma (65). A 
possible exception is TAAs resulting from somatic point 
mutations of tumor cells and their CSCs (66).

Immune targeting of lung CSCs/TICs

Introduction

There is a strong relationship between resistance to 
conventional therapies and intrinsic mechanisms of CSC/
TIC resistance to chemo or radiotherapy. Direct targeting 

of CSCs/TICs or specific signaling pathways responsible 
for resistance can improve treatment benefit (67).  
Until recently, in contrast to tumors like melanoma, 
lung cancer was not thought to be immunogenic. Several 
immunotherapies, such as IL-2, interferon and bacille 
Calmette-Guerin, have been tried but have not proved 
successful to control the immune system in NSCLC 
patients. Therefore, immunotherapy for NSCLC was 
considered unsuccessful (68). However, immunotherapeutic 
approaches involving both stimulation of immune responses 
and inhibition of immune checkpoints have now been tested 
and could be combined with chemotherapy or targeted 
therapies with demonstrated efficiency in lung cancer 
(Figure 1). A body of evidence now suggests lung cancer 
is immunogenic. Lung cancer cells release growth factors, 
interleukins, cytokines and prostaglandins that inhibit 
T-cell response to the microenvironment, and also has been 
described that increased tumor-infiltrating lymphocytes 
(TILs),  NK cells ,  DCs, cytotoxic T lymphocytes 
(CTLs) and T helper cells are associated with improved 
survival in NSCLC (69). Also, a high ratio of effector 
T-cells to regulatory T cells (T-reg) is associated with 
improved long-term survival (70). In addition, increased 
immunosuppressive T-regs as a proportion of total TILs are 
associated with poorer survival in lung cancer (69). MHC 
class I expression is reduced in NSCLC and these tumors 
can therefore escape routine antigen processing (71).

Immunotherapy tends to produce durable responses in 
small subpopulations of patients. The challenge currently 
facing investigators is to identify biomarkers predictive of 
response. Good examples so far are CTLA4 and PD-1 and 
its ligand (72). Immune targeting of stem cells carries some 
risks, one obvious one being that pathways are shared with 
normal adult stem cells, and autoimmunity could carry 
toxicity to these normal cells. Therefore, it is crucial to 
identify markers exclusive to CSCs (73). Other obstacles 
could also limit immune responses, such as a variety of 
defense mechanisms like soluble mediators TGF-β and 
COX-2 which make prostaglandin E, IL-10 and arginase. 
Also defensive molecules such as Fas ligand, B7-H1, 
nonconventional HLA molecules, lack of MHC class I 
and recruitment of suppressor type cells (74). Very low 
levels of expression of these molecules limit detection and 
elimination of CSCs/TICs.

Cancer cells express many antigens that can be 
recognized and presented to T cells, leading to T cell 
activation and elimination of these tumoral cells. This T 
cell immune response is modulated by negative regulatory 
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molecules such as the immune checkpoint molecules 
CTLA-4, PD-1, killer cell immunoglobulin-like receptor 
(KIR) and lymphocyte-activation gene 3 (LAG3); these 
molecules prevent overstimulation of immune responses. 
The T cell immune response could be also modulated by 
co-stimulatory molecules such as glucocorticoid-induced 
tumor necrosis factor receptor (GITR), OX-40, CD28 and 
CD137 (75). Deregulation of these molecules in the tumor 
leads to tolerance of the tumor by the immune system 
and cancer cell escape from surveillance. A description of 
the different compounds tested to target these regulatory 
molecules follows (Table 1).

Immune checkpoint blockade

Immune checkpoints are inhibitory pathways crucial for 
maintaining self-tolerance and to escape to immune system 
control by the tumor (76). It has observed that inhibitory 
ligands and receptors are usually overexpressed in cancer 
cells or their microenvironment (77). Inhibition of these 
immune checkpoints releases the brakes on the immune 
system, resulting in antigen-specific T-cell responses. 
Such inhibition of immune checkpoints relies on the 
presence of TILs. Stimulation of TILs and/or modulation 
of the tumor microenvironment could weaken immune 
responses (78). In lung cancer, targeting the immune 
checkpoint molecules, CTLA4, PD-1 and its ligand PD-
L1 has achieved promising and durable responses but it 

CSC 

CSC CSC CSC 

Tumor bulk 

Standard  cancer therapy 
(chemo/radiotherapy) 

CSC –targeted therapy 
(immunotherapy) 

CSCs are killed Cancer cells lose  ability to regenerate 

Cancer cells are killed CSCs remain CSCs regrow tumor Cancer cells are killed

CSCs are killed

Tumor bulk

Cancer cells lose ability to regenerate

CSCs remain CSCs regrow tumor

Figure 1 Heterogeneous subpopulation of cancer cells could be treated with standard therapy, as chemo- or radio-therapy. This treatment 
eliminates cancer cells but not CSCs and tumor grows back. If the cancer cells are treated with CSC-targeted therapy, as monoclonal 
antibodies or vaccines, the immune system could be stimulated or immune checkpoints inhibited, and then CSCs are killed and tumor loses 
its ability to generate new cancer cells. CSC, cancer stem cell.

Table 1 Immune checkpoint blockade

Compound Target

Ipilimumab CTLA4

Tremelimumab CTLA4

Nivolumab PD-1

Pembrolizumab PD-1

BMS-936559 PD-L1

MPDL3280A PD-L1

MEDI4736 PD-L1

Bec2 GD3

Bevacizumab VEGF

Urelumab CD137

TRX518 GITR

Anti-OX40 OX40

Anti-CD40 CD40

Solitomab EpCAM

Anti-CD133 CD133

Lirilumab KIR

BMS-9896016 LAG-3

Racotumomab N-glycolil-GM3 ganglioside

CTLA4, cytotoxic T-lymphocyte antigen 4; PD-1, programmed 
death receptor 1; PD-L1, programmed death ligand 1; VEGF, 
vascular endothelial growth factor; GITR, glucocorticoid- 
induced tumor necrosis factor receptor; EpCAM, epithelial 
cell adhesion molecule; KIR, killer cell immunoglobulin-like 
receptor; LAG-3, lymphocyte-activation gene 3.
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remains unclear why some patients have only transient or 
no response (79). One strategy is to target CSCs/TICs 
with monoclonal antibodies targeting antigens that are 
differentially overexpressed in these cells. These could be 
used alone as unmodified antibodies to allow antibody-
dependent cytotoxicity (ADCC) to occur, or used with 
radioisotopes, chemotherapy, cytokines or enzymes to 
target cancer. A problem of this treatment is that stem 
cells could escape the cytotoxic effect of specific antibodies 
by decreasing expression of surface antigen, developing 
chemotherapy resistance or acquiring multiple mutations. 
Therefore, antibody treatment is used in combination with 
conventional cancer therapies (80).

CTLA4
CTLA4 is an immunomodulatory molecule expressed in T 
cells which plays a role in regulating T-cell activity at early 
stages of activation; its expression on T cells increases after 
exposure to an antigen. Binding of the CTLA-4 receptor to 
CD80/86 expressed on APCs has a co-inhibitory effect on 
T cells. By competing with the CD28 molecule for the same 
ligands, albeit with a higher binding affinity than CD28, 
CTLA-4 inhibits T-cell activation (68). Negative signals 
are delivered to T cells upon binding to APC CD80/CD86 
molecules via CTLA4, T cell function is inhibited and T 
cells can then be eliminated via apoptosis. Lung cancer could 
stimulate abnormal expression of CTLA-4 in T cells and these 
T cells exhibit an anergic phenotype (81). There are currently 
several clinical trials in lung cancer with human monoclonal 
antibodies against CTLA4 like ipilimumab or tremelimumab. 
To date, the response rate is low but these responses are more 
durable than with cytotoxic therapies (82).

Ipilimumab is a human monoclonal antibody that blocks 
binding of CTLA-4 to its ligand. As a single agent it has 
virtually no effect (83) but does seem to provide modest 
benefit in NSCLC and small cell lung cancer (SCLC) 
patients in combination with chemotherapy. A phase II 
study of chemotherapy, paclitaxel and carboplatin with 
and without ipilimumab in stage IV NSCLC showed a 
significant improvement in progression-free survival (PFS) 
when ipilimumab was given after chemotherapy (5.7 vs.  
4.6 months) (84). Patients with squamous histology showed 
better response than non-squamous histology. Now are 
several clinical trials ongoing. A phase III trial is currently 
comparing ipilimumab to placebo in SCLC patients 
receiving platinum and etoposide, and another phase II is 
comparing ipilimumab to pemetrexed in non-squamous 
NSCLC. Ipilimumab is also being evaluated with the 

anti-KIR antibody BMS-986015 that recognizes KIR in 
NSCLC, castration-resistant prostate cancer (CRPC) and 
melanoma (85). These antibodies must be used carefully 
as they can cause autoimmunity and other severe side 
effects that limit their use (86). Tremelimumab, which also 
targets CTLA4, has been tested as maintenance therapy 
compared with observation in patients with stable or 
responding disease after first line chemotherapy, however, 
no improvement in PFS was seen (87).

PD-1
PD-1, like CTLA-4, is a member of the CD28 family. PD-1 
is expressed in T cells and inhibits their survival, proliferation 
and immune function through interaction with its ligands 
PD-L1 and L2. PD-1 is also expressed in B cells and in some 
myeloid cells (88). Interactions between PD-1 and its ligands 
attenuate immune responses (89) and serve to protect tumor 
cells from cytotoxic T cells since T cells become triggered for 
apoptosis upon signal transduction with PD-1 family proteins 
(90). Clinical trials with humanized monoclonal antibodies 
against PD-1 have shown good antitumor activity in subsets 
of patients with metastasis disease with a good safety profile 
(80). Several PD-1 antibody trials are ongoing and one study 
has found a strong correlation between pretreatment tumor 
expression and responses (72).

Nivolumab, a human monoclonal antibody that binds 
to PD-1, has been tested in several clinical studies in 
NSCLC and in two trials specifically for primary squamous 
cell carcinoma (SQCC), either as a single agent or in 
combination with chemotherapy or ipilimumab (68). In 
other studies it was combined with anti-KIR antibody (91). 
In a phase I clinical study it was administered to 306 patients 
with different tumor types, including 129 NSCLCs. Overall 
response rate (ORR) of this study was 17% and the median 
duration of response was 47 weeks. Another 10% of patients 
showed stable disease for 6 months with median survival of 
9.6 months. Thirty seven patients who received nivolumab 
at doses of 3 mg/kg showed 24% response rate and  
14.9 months median survival (68). Ongoing phase III studies 
are comparing nivolumab vs. docetaxel in the second-
line setting and a phase III first line trial of nivolumab 
vs. standard chemotherapy in PD-L1 positive metastatic 
NSCLC is currently recruiting (92). An ongoing phase I 
clinical trial is combining nivolumab plus ipilimumab with 
an ORR of 22% at time of interim analysis (93).

Another anti-PD-1 antibody similar to nivolumab, 
pembrolizumab (also known as MK-3475 or lambrolizumab) 
is a humanized IgG4 antibody that contains a mutation 
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at C228P designed to prevent Fc-mediated ADCC. In 
a phase I study, 38 NSCLC patients were treated with 
pembrolizumab, achieving 24% of lasting responses in 
previously treated patients. Pembrolizumab is now being 
examined in the relapsed/refractory setting (NCT01905657) 
and in combination with f irst-l ine chemotherapy 
(NCT01840579) (85,86).

PD-L1 (B7-H1)
Another therapeutic strategy is inhibition of PD-L1. PD-
L1 is overexpressed in around 50% of NSCLC patients and 
is associated with poor prognosis. Its overexpression induces 
T-cell anergy and circumvents recognition and processing of 
tumor antigens by APCs (90). A potential advantage of this 
approach is lack of interference with T-cell PD-1 receptor 
interaction with APCs via other ligands, such as B7-H2 (94).  
A human anti-PD-L1 antibody, BMS-936559, has been 
tested in a phase I trial and showed promising clinical 
activity and good safety profile in NSCLC with partial 
response in 5 of 49 patients (68,95). Other antibodies in 
clinical development are MPDL3280A (RG7446), a human 
IgG1-kappa anti PD-L1 monoclonal antibody with a single 
amino acid substitution in its Fc region that docks with 
Fc receptors in circulating immune cells, thus preventing 
ADCC and inadvertent killing of bystander immune cells 
that also express PD-L1, such as activated T cells. In a 
phase I trial, 85 NSCLC patients received MPDL3280A 
as a single agent, with 23% best overall response and 24-
week PFS of 46% (96,97). Another IgG1-kappa PD-L1 
inhibitor is the antibody MEDI4736, engineered with a 
triple mutation in the Fc domain that also avoids ADCC as 
does MPDL3280A. MEDI4736 is currently being tested in 
a phase I clinical trial. In this study, of 11 NSCLC patients 
evaluated for efficacy, three achieved partial response, two 
showed stable disease and one had disease progression (68).

In conclusion, a few patients have good responses to 
anti-PD-L1 antibodies like nivolumab, MPDL3280A or 
MEDI4736, despite the absence of PD-L1 expression by 
immunohistochemistry. However, robust predefined cut-
points or independent external validation methodology 
are not available in the literature. In addition, use of fresh 
or paraffin-embedded tumor samples could affect results 
in fresh samples due to the influence of cytokines, such as 
IFN-α, that upregulate PD-L1 expression (86,98).

GD3
GD3 is a cell surface ganglioside highly expressed in SCLC 
but not in NSCLC. Bec2/bacille Calmette-Guerin is an 

anti-idiotypic antibody that binds to the idiotype of the 
antibody against GD3. Therefore, Bec2/bacille Calmette-
Guerin is thought to mimic GD3. In a phase III clinical trial 
in 515 limited stage patients, use of Bec2/bacille Calmette-
Guerin showed no improvement in survival, PFS, or quality 
of life in the vaccination arm compared with control arm 
(median survival 16.4 vs. 14.3 months, respectively) (99,100). 
1E10 is an anti-idiotypic antibody against Neu-glycosylated 
sialic acid ganglioside (NeuGc-GM3). It was used in clinical 
trials in SCLC and NSCLC, and a survival benefit of 
about 6 months was noted in those patients that developed 
immunity to NeuGc-GM3 (101).

Vascular endothelial growth factor (VEGF)
Bevacizumab is an anti-VEGF antibody that plays a role in 
tumor angiogenesis and inhibition of immune response by 
switching off the action of DCs. A phase III clinical trial in 
metastatic NSCLC demonstrated improved PFS and overall 
survival (12.5 vs. 10.2 months) (102).

Other immunotherapy compounds
CD137, GITR and OX40 are positive regulatory molecules 
of T cell immune responses. Now we describe some 
compounds that target these molecules.

Urelumab (BMS-663513) is a human IgG4 monoclonal 
antibody that targets CD137 receptor of the tumor growth 
factor alpha (TNFα) family and acts as co-stimulatory 
molecule of T cell activation. Urelumab activates a 
component of the TNF receptor expressed on the cell 
membrane of activated white blood cells, subsequently 
activating CD137-expressing immune cells and stimulating 
a cytotoxic T cell response against tumor cells. Clinical 
development in NSCLC has been stopped but is continuing 
in other cancers (NCT014712109) (85,86).

GITR is a member of the TNF receptor family. GITR 
co-stimulates CD4+ and CD8+ naïve T cells, leading to T 
cell proliferation and effector function (85,103). TRX518 is 
an anti-GITR antibody currently being tested in a phase I 
trial in melanoma (NCT01239134).

OX-40 (CD134) is  a lso a  member of  the TNF 
receptor family. Like CD137 and GITR (101), OX-40 
is a co-stimulatory molecule in activated T cells at sites 
of inflammation and regulates antigen-specific T-cell 
expansion, survival and cytokine production (IL-2, IL-4, 
IL-5, IFN-gamma) (104). In a phase I trial, 30 patients with 
solid tumors were treated with an anti-OX-40 antibody 
with tumor reduction in 12 patients and enhanced humoral 
and cellular immunity (75,105).
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CD40, a member of the TNF receptor family, is 
expressed in APCs and its ligand is expressed in T cells. 
Binding of both enhances APC ability to present antigens 
and activate T cells. Preclinical studies have demonstrated 
that anti-CD40 antibodies have the potential to suppress 
tumor growth and metastasis (106).

Racotumomab (1E10) is an anti-idiotype murine 
monoclonal antibody against the human monoclonal 
antibody for N-glycolil-GM3 ganglioside. N-glycolil-
GM2 is a glycolipid present within gangliosides, sulfatides, 
and other antigens expressed in some solid tumors 
which seems to correlate with survival and suppression 
of immune activity in NSCLC. A phase III clinical trial 
(NCT01460472) is currently ongoing with a planned 
accrual of 1,018 participants (85).

EpCAM is a transmembrane glycoprotein overexpressed 
in most human carcinomas (107). Solitomab (MT110) is 
a single-chain bispecific T-cell engager (BiTE) antibody 
targeting EpCAM (108) which has been tested in dose 
escalation phase I clinical trials in patients with locally 
advanced, recurrent or metastatic lung cancer (109). CD133 
is reported in CSC/TICs in lung cancer (110). A bispecific 
antibody against CD3 and CD133 has been designed to 
eradicate CD133+ cancer cells (111).

KIR and LAG3 are negative regulatory molecules of 
T cell immune responses, like PD1 and CTLA-4. Several 

monoclonal antibodies are designed to target these 
molecules.

KIR is a receptor on NK cells that downregulates NK 
cytotoxicity activity (86). Lirilumab (IPH2102), an anti-
KIR human monoclonal antibody, was used in combination 
with nivolumab and demonstrated efficacy in preclinical 
models. A clinical trial in 32 NSCLC patients is ongoing 
(NCT01714739) as is another combining lirilumab plus 
ipilimumab in 20 NSCLC patients (NCT01750580) (86).

LAG3 (CD223) is a receptor expressed with PD-1 on 
tolerant T cells and T-regs which suppresses APC activation 
by binding with MHC II (112) and becoming an inhibitory 
molecule of T cell activation in the same manner as KIR. 
A clinical trial is ongoing with BMS-9896016, an anti-
LAG3 monoclonal antibody, alone and in combination with 
nivolumab (NCT01968109) (86).

Vaccines

TAAs contain more than 70 proteins, including CT 
antigens such as MAGE-A3, and antigens like MUC-1 that 
are overexpressed in tumor cells. Using protein or peptide 
vaccines such as Stimuvax (tecemotide or L-BPLP25) and 
GSK1572932, TAAs can be targeted for subsequent killing 
of tumor cells (113).There are many TAAs expressed by 
tumors not identified, and to recognize them whole tumor 
vaccines were designed. Vaccines such as Lucanix can 
be harvested from the patient’s own tumor (autologous) 
or from established cancer cell lines (allogeneic) and 
express many TAAs found in patient tumors, theoretically 
generating an immune response to the tumor (113).

Adaptative T-cell therapy is a passive strategy that 
involves the transfusion of T-lymphocytes to attack cancer 
cells in the patient. NY-ESO-1 is one such vaccines (113).

Vaccines currently in clinical trials in lung cancer (Table 2).
MUC1 is a highly glycosylated transmembrane protein 

overexpressed and abnormally glycosylated in many 
cancers including NSCLC (114). High levels of MUC1 
could enhance immunosuppression and predict poor 
prognosis in patients with adenocarcinoma (115). Stimuvax 
is a 25-aminoacid MUC-1 peptide formulated into 
liposomes targeting MUC1 (116). Several clinical trials 
have already been performed, including a phase IIb study 
in stage IIIB and IV NSCLC (117). Median survival time 
in patients receiving Stimuvax was 17.2 vs. 13.0 months for 
those receiving best supportive care. Three year survival 
was 31% with Stimuvax vs. 17% for supportive care (118). 
Following this study, a phase III clinical trial in NSCLC 

Table 2 Vaccines

Compound Target

Stimuvax MUC-1

Anti-NY-ESO1 NY-ESO 1

GSK1572932 MAGE-A3

CimaVax EGF

Anti-WT-1 WT-1

Anti cyclophilin B Cyclophilin B

Lucanix TGF-β2

IDM-2101 CEA, p53, HER2, MAGE 2 and 3

Dendritic vaccine p53

TG4010 MUC-1

Anti-IDO IDO

GV1001 Telomerase

MUC-1, mucin-1; MAGE-A3, melanoma associated antigen  

A3; EGF, epidermal growth factor; WT-1, Wilms tumor  

antigen-1; TGF-β2, transforming growth factor beta 2; CEA, 

carcino embryonic antigen; IDO, indoleamine-2,3-dioxigenase.
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was carried out (START trial) in 1,513 patients with 
median overall survival of 25.6 months for patients treated 
with Stimuvax and 22.3 with placebo. Therefore, the trial 
did not achieve its primary endpoint of improvement 
in overall survival. However, analysis of treatment with 
Stimuvax plus chemotherapy and radiotherapy did show 
an improvement in median overall survival of 30.8 months 
compared to 20.6 months for placebo. Inspired by these 
results, a new phase III clinical study is currently ongoing 
(START 2 trial) with a primary end-point of overall 
survival in patients receiving Stimuvax plus chemotherapy 
and radiotherapy (113). Similar to the START trial, a 
phase III clinical trial in Asian NSCLC patients is ongoing 
(INSPIRE) comparing Stimuvax with placebo. In another 
phase III–IV trial, NSCLC patients were treated with 
Stimuvax plus bevacizumab following chemotherapy. In 
a stage III–IV trial, 16 of 65 patients showed a T-cell 
immune response and had median survival of 30.6 months 
compared to 13.3 months for best supportive care (85,119).

NY-ESO-1 is a fusion protein vaccine currently being 
tested in NSCLC (120). In a clinical trial with other tumors 
a measurable response rate of 66% (four of six patients) was 
reported in synovial cell sarcomas and 45% in melanoma 
(five of eleven patients) (120).

MAGE-A3 is an antigen present in about 35% to 55% 
of NSCLC patients. GSK1572932 is a recombinant DNA 
vaccine composed of MAGE-A3 and immunoadjuvant 
AS15. In a phase II clinical trial, 182 stage I and II patients 
were enrolled with a 27% improvement in time to 
progression and disease-free survival in patients receiving 
the vaccine. A phase III clinical trial is ongoing studying the 
combination of the vaccine with adjuvant chemotherapy in 
2,270 NSCLC patients (121).

Mutations in the epidermal growth factor receptor (EGFR) 
gene are associated with cell proliferation, apoptosis, 
angiogenesis and metastasis. The epidermal growth factor 
(EGF) ligand is often overexpressed in lung cancer and its 
receptors frequently mutated (122). The CimaVax vaccine is 
a humanized recombinant EGF fusion protein that targets 
the EGF ligand circulating to prevent EGFR activation. 
Circulating anti-EGF antibody titers increased as a result 
of vaccination. These findings were then correlated with 
decreased levels of serum EGF and patient survival. A 
phase II trial included 80 patients with NSCLC (stage IIIB 
or IV) after first-line chemotherapy and demonstrated a 
decrease in EGF concentration in patient serum. A strong 
correlation was found between antibody titer and reduction 
in EGF concentration. Reduction of EGF concentration to 

below 168 pg/mL is associated with prolongation of overall 
survival (13 months with 168 pg/mL or less vs. 5.6 months 
above 168 pg/mL). High initial concentration is a predictive 
factor of vaccine response and an adverse prognostic factor 
for non-vaccinated patients. A phase III clinical trial is 
ongoing (85,123).

A phase I trial in stage III–IV NSCLC is investigating 
vaccines targeting indoleamine-2,3-dioxigenase (IDO), an 
immune regulatory protein that suppresses activity of CD8+ 
cytotoxic T cells. To date, long-lasting clinical benefits have 
been demonstrated in almost half of the patients (124).

GV1001 is  a  telomerase-based vaccine used in 
clinical trials in NSCLC patients previously treated with 
chemotherapy and radiotherapy (85). In a phase II trial 
(CTN-2006), 23 stage III patients received radiotherapy 
and docetaxel followed by GV1001 vaccination. Long-
term immunomonitoring showed durable responses in  
13 patients. Immune responders achieved a median of  
371 days survival, compared with 182 days for non-
responders. In another clinical trial (CTN-2000), 26 patients 
were vaccinated with two telomerase peptides (GV1001 and 
I540). Thirteen developed a GV1001 response and achieved 
increased survival compared with non-responders (median 
survival 19 vs. 3.5 months, respectively) (125).

The Wilms tumor antigen-1 (WT-1) is found in most 
NSCLC and SCLC patients (126) and a clinical trial tested 
a 9-mer of WT-1 in several tumor types. Three of 10 lung 
cancer patients showed an immunological response and one 
patient continues to survive following repeated vaccinations 
over more than 2 years (127). WT2725 is a peptide vaccine 
derived from Wilms tumor protein; a clinical trial in SCLC 
is also ongoing (85).

Cyclophilin B is found in lung cancer patients and can be 
a target of CTLS (128). A cyclophilin-based vaccine is being 
tested in a phase I trial, though no significant increases in 
cellular response have been observed.

T G F -β2  i s  r e l e a s e d  b y  t u m o r  c e l l s  i n  t h e i r 
microenvironment to protect themselves from immune 
system. Expression of TGF-β2 has been correlated with poor 
prognosis in NSCLC (129). Lucanix (Belagenpumatucel-L) 
is a vaccine consisting of allogeneic NSCLC cell lines 
transfected with an antisense plasmid to TGF-α2, designed 
to block TGF-β secretion. A phase II clinical trial in 75 
NSCLC patients (stages II–IV) has been completed. The 
estimated probability of surviving 1 or 2 years was 39% 
and 20% for patients receiving a low dose of the vaccine 
and 68% vs. 52% for the higher doses. Estimated median 
survival time for patients on the low dose was 252 vs.  
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581 days for the high dose (129). This vaccine in now 
in a phase III study (STOP) with 532 patients enrolled. 
This trial did not meet its primary endpoint, with median 
overall survival of 20.3 months in vaccine-treated patients 
treated vs. 17.8 months in the group control, but a marked 
improvement in survival has been detected in specific 
subgroups of patients (85,113).

The IDM-2101 peptide vaccine is based upon ten 
different HLA-A2 restricted epitopes against five different 
antigens (CEA, p53, HER2, MAGE-2 and MAGE-3 
antigens along with a pan-DR epitope). A phase II study has 
been completed and demonstrated immune response (130).

DC vaccines: most smoking-related cancers have p53 
mutations and DC vaccines are based on infecting DCs 
with p53 adenoviruses (131). In in vitro experiments, when 
these transfected DCs are activated they can generate 
CTLs against p53 (132). In SCLC patients, a significant 
immune response is induced and patients are sensitized 
to chemotherapy (133). Cyclophosphamide followed by 
vaccinations with tumor-antigen-loaded, DC-derived 
exosomes inhibits Treg functions, restoring T and NK cell 
effector functions and activating cell immunity. This is 
currently being studied in phase I trials (85).

Conclusions

The study of two different scientific fields such as stem cell 
research and cancer immunology and the links between the 
two could be crucial to develop new therapeutic approaches 
to prevent metastasis and development of therapy resistance. 
CSCs/TICs are characterized by low immunogenicity and 
immunosuppressive activity. They defend themselves from 
the immune system and adapt to modifications in the tumor 
microenvironment caused by chemotherapy or radiotherapy. 
After chemotherapy and radiotherapy, some resistant cells 
remain that could be detected and partially killed by the 
immune system. Equilibrium subsequently occurs between 
immunological elimination and growth of cancer cells and 
during this period cells may suffer some changes, giving 
rise to a poorly immunogenic stem cell subpopulation that 
is not recognized by the immune system. The molecular 
identification of immunomodulating agents that can reverse 
or inhibit CSC/TIC escape from immunosurveillance 
should allow design of new immunotherapy protocols 
targeting CSCs/TICs. Immune checkpoint blockade has 
shown promising results in clinical trials in lung cancer. 
Responses tend to be durable, but there are problems with 
inter-patient heterogeneity of responses and appropriate 

patient subpopulations need to be identified. The tumor 
microenvironment could play a major role in modulating 
immune response. The success of immunotherapeutic 
approaches will depend on a better understanding of the 
basic biology of immune responses and, in particular, the 
role that tumor microenvironment plays in shaping immune 
responses. Vaccines targeting stem cells genes, however, are 
not without potential risks and adverse effects. The most 
obvious risks relate to pathways shared with normal stem 
cells. Research into combination of CSC/TIC-targeting 
antibodies and/or vaccines with conventional cancer 
therapies at the optimum moment during the course of the 
disease, and the identification of suitable biomarkers could 
improve cancer treatment, is therefore crucial.
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