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Introduction

Lung cancer is a cancer of the modern man and only few 
cases date before the 20th century. By the mid-twentieth 
century it had swept the world, due to increased worldwide 
tobacco consumption (1). Even after widespread awareness 
about smoking in the last 4–5 decades, the lung cancer 
incidence has only plateaued and in the developed world, 
it still accounts for approximately 25% of cancer-related 

deaths. Detection of lung cancer at an early stage leads to a 
better prognosis; the 5-year survival for localized lung and 
bronchus cancer is 54.8%, compared to 27.4% for regional, 
and 4.2% for widely disseminated disease (1). Lung 
cancers are classified into small cell and non-small cell lung 
cancers (NSCLC) and approximately 80% are comprise of 
NSCLCs, which are classified into adenocarcinoma (AdC), 
adenosquamous carcinoma, squamous cell carcinoma 
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(SqCC), and large cell carcinoma based on tumor histology, 
with 80% of NSCLC being either AdC or SqCC (2,3). 
Based on the molecular pathogenesis patterns and histologic 
classification, AdCs are the most common type to show 
common recurrent genomic gains and losses, and somatic 
mutations. These driver mutations have been extensively 
studied in AdCs and the most common ones mutated are 
the epidermal growth factor receptor (EGFR), KRAS, and 
anaplastic lymphoma kinase (ALK) oncogenes (2,3). 

Over the past decade, epigenetics changes have been 
increasingly studied and used as markers for early cancer 
detection. Jean-Baptiste Lamarck first introduced the 
concept of epigenetics in his book Philosophie Zoologique 
more than 200 years ago, in which he called it “soft 
inheritance”. In 1939, Waddington defined epigenetics as 
“the causal interactions between genes and their products, 
which bring the phenotype into being” (4). Later Holiday 
defined epigenetics as heritable changes in gene expression 
that are not due to any DNA sequence alterations (5). 
Epigenetics consists of heritable modifications to the 
chromatin that influence gene expression and other DNA-
dependent processes without directly altering the DNA 
coding sequence (5). These complex processes involve 
DNA methylation, microRNA regulation, and histone/
nucleosome modifications. Mutations in epigenetic 
regulatory mechanisms and epigenetic pattern perturbations 
are implicated in many tumor types, including lung cancer, 
occurring through tumor suppressor gene silencing and 
oncogene activation. Epigenetic alterations are further 
linked to chemotherapy resistance (6,7). Unlike genetic 
mutations, epigenetic dysregulation is reversible and can 
be reversed by different pharmacologic approaches, the 
most common being hypomethylating agents and histone 
deacetylase inhibitors (HDACIs). Interestingly, while tumor 
heterogeneity represents a major challenge with targeted 
molecular therapies, broad re-modulation of the epigenome 

may address this problem through affecting multiple 
signaling pathways. The six FDA approved drugs that target 
the epigenome, their approval dates, and indications are 
summarized in Table 1. 

Epigenetic dysregulation in NSCLC 

The initiation and progression of lung cancer is the result of 
permanent genetic alterations that include point mutations, 
deletions, translocations, amplifications, and epigenetic 
modifications that affect different aspects of chromatin-
dependent processes, such as histone modifications, DNA 
methylation patterns, and microRNA regulation (8,9). 
DNA methylation plays a critical role in repressing gene 
expression and maintaining genomic stability by preventing 
recombination events between repetitive sequences (10). In 
eukaryotes, DNA methylation occurs in CpG dinucleotide 
islands which comprise roughly 1% of the human genome, 
but are present in over half of all human gene promoter 
sequences (11). In cancer cells, there is a dramatic reduction 
in cytosine methylation at these repetitive sequences, 
causing increased mitotic recombination and subsequent 
chromosomal instability (12-14). In addition, CpG islands 
of tumor suppression genes (TSGs) promoters are highly 
methylated leading to transcriptional repression, while 
other genes involved in processes such as DNA repair, 
apoptosis, the epithelial-mesenchymal transition (EMT), 
cellular movement and invasion, and metastasis are 
dysregulated by aberrant cytosine methylation (10,15). 
Further, hypomethylation of transposable element DNA can 
cause increased transposition within the genome, activating 
oncogenes and increasing chromosomal anomalies through 
insertional mutagenesis (16). Using the Illumina Infinium 
HumanMethylation27K array platform, Selamat et al. (17)  
interrogated the DNA methylation status of 27,578 CpG  
dinucleotides spanning 14,475 genes and identified 

Table 1 FDA-approved epigenetic therapy

Agent Class Approval date Indication

Azacitidine DNMT inhibitor 2004 Myelodysplastic syndrome

Decitabine DNMT inhibitor 2006 Myelodysplastic syndrome

Vorinostat Pan-HDAC inhibitor 2006 Cutaneous T-cell lymphoma

Romidepsin Class I HDAC inhibitor 2009 Cutaneous T-cell lymphoma

Panobinostat Pan-HDAC inhibitor 2015 Multiple myeloma

Belinostat Pan-HDAC inhibitor 2014 Peripheral T-cell lymphoma

HDAC, histone deacetylase; DNMT, DNA methyltransferases.
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more than 700 common differentially methylated genes. 
Additionally, accumulation of repressive histone markers is 
another hallmark of carcinogenesis, leading to chromatin 
compaction and gene expression repression. Histone 
deacetylases (HDACs) are often overexpressed in cancers 
and have become a major therapeutic target in recent years 
(18,19). HDAC overexpression can lead to TSG silencing 
and aberrant transcription due to altered expression/mutation 
of the genes encoding histone acetyltransferase (HAT) or 
HDAC enzymes or their binding partners, are clearly linked 
to carcinogenesis (20). This occurs in many human cancers, 
indicating that aberrant epigenetic acetylation activity is 
associated with cancer development (21-24). 

DNA methylation

DNA methylation is the most studied epigenetic regulatory 
mechanism. CpG island methylation is completed by 
different DNA methyltransferases (DNMTs) that can 
lead to gene silencing. Three active DNMTs (DNMT1, 
DNMT3a, and DNMT3b) mediate the transfer of a methyl 
group from S-adenosyl-L-methionine to the CpG islands 
5’-cytosine carbon (25-27). DNMT1 binds essentially 
to hemimethylated DNA and is primarily involved in 
the maintenance methylation after DNA replication. 
DNMT3a and b binds preferentially to unmethylated or 
hemimethylated DNA, and are responsible of de novo DNA 
methylation (28-30). 

DNA methylation in lung cancer

DNMT overexpression is implicated in the pathogenesis 
of lung cancer. Elevated DNMT levels in lung cancer 
can result from transcriptional activator overexpression, 
loss of microRNAs that down-regulate the DNMTs, 
and/or impaired proteasomal DNMT degradation by 
hsp90 (21-23). Clinically, there is evidence that DNMT1 
overexpression is associated with diminished survival in 
surgically resected lung cancer (31,32). Consistent with 
these findings, different TSGs are silenced by promoter 
hypermethylation in lung cancer (21). Many of these TSGs 
are involved in normal cellular function, such as cell cycle 
regulation (p16), DNA repair (MGMT), apoptosis (DAPK, 
caspase-8), regulation of Wnt signaling (APC), cell adhesion 
and invasion (E-cadherin, H-cadherin and tissue inhibitor 
of metalloproteinase-3), and suppression of invasion 
(CDH13, TIMP-3). For example, Brock et al. (22) observed 
that methylation of cdk2A, p16, CDH13, RASSF1A and 

APC correlated with recurrence following surgical resection 
of stage I NSCLC regardless of histology, stage, gender, 
or smoking history. Similarly, another study found that 
methylation of p16 and concomitant p16 expression loss 
coincides with reduced survival after early stage NSCLC 
resection (23). In parallel, IGFBP-3 methylation is linked to 
NSCLC cisplatin resistance (24). 

Besides its role as a prognostic and predictive biomarker, 
DNA methylation has become a therapeutic target 
through DNMT enzyme inhibition. The two main 
DNMTs inhibitors that have been largely tested in the 
clinic are 5-azacitidine and decitabine (25). Following 
phosphorylation, 5-azacitidine is incorporated into DNA 
and RNA, followed by the covalent trapping of DNMTs 
to the DNA, leading to proteasomal degradation, and 
subsequent global DNA methylation reduction. The 
DNA damage and impaired DNA synthesis resulting 
from DNA-DNMT adducts is responsible for the direct 
cytotoxicity of these agents when used at higher doses. 
Unlike 5’-azacitidine, decitabine is not incorporated into 
the RNA and is specific only for DNA (26,27,33). The 
hypomethylating effects of these agents are best achieved 
at lower doses with a more prolonged administration (34). 
Pre-clinical models have shown antitumor activity for both 
agents through de-methylation and removal of repression 
on numerous TSGs, including p16 (35). Unfortunately, 
their use as single agent in clinical trials has showed limited 
success in lung cancer (36). 

In a phase I/II trial, 15 patients with untreated advanced 
NSCLC were treated with high dose decitabine (200 to 
660 mg/m2) administered as a continuous infusion over 
8 hours. Although no objective response was seen, four 
patients experiences stable disease for more than 6 months, 
and three patients had a survival of at least 15 months, with 
one patient surviving 81 months. Due to hematopoietic 
toxicities, only one patient completed more than one cycle, 
which may have impacted the treatment efficacy (37,38). 
Another dose-escalation phase I trial conducted on 35 
patients with solid tumor including 22 with lung cancer, 
investigated decitabine given at lower dose, administered 
over 72 hours continuous infusion. No objective response 
was seen, although three patients with squamous cell lung 
cancer had stable disease. Interestingly, pharmacodynamics 
studies revealed increased expression of p16, MAGE-3, 
and NY-ESO-1 in one-third of the patients (39). Further 
research will analyze the best sequence, dosage, treatment 
duration, and combination with other antineoplastic agents, 
as well as look for clinically relevant pharmacodynamic and 
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predictive response biomarkers. 

Smoking and DNA methylation

Some epigenetic alterations in lung cancer occur at 
greater frequency in smokers (i.e., p16, FHIT, RASSF1A 
mutations) and increase with increasing smoking duration/
intensity (40-42). DNMT1 expression is elevated in 
smokers with lung cancer, likely due to tobacco-specific 
nitrosamines that reduce DNMT1 ubiquitination and 
degradation (21,43). Additionally smoking-induced chronic 
inflammation and increased reactive oxygen species 
generation, leading to increased DNA methylation (44). 
Damiani et al. (21) developed an in vitro model that mimics 
the field cancerization observed in chronic smokers and 
identified different epigenetic changes and their kinetics. 
Immortalized normal human bronchial epithelial cells 
(HBECs) were exposed for 12 weeks to two cigarette 
carcinogens; methylnitrosurea (MNU) and benzo(a)pyrene-
diolepoxide 1 (BPDE). Stable knockdown of DNMT1, 
but not DNMT3 prevented cell transformation after 
exposure to these carcinogens. HBECs take a fibroblast-
like mesenchymal appearance after 4 weeks of carcinogen 
exposure. Significant reductions in miR-200b and miR-200c,  
were observed at 4 weeks exposure and was sustained 
upon cell transformation at 12 weeks. Interestingly, these 
microRNAs are involved in regulating and inhibiting the 
EMT (35). Further studies revealed that expression of 
these EMT-regulating microRNAs are initially reduced by 
transcriptionally inactive chromatin at 4 weeks, followed 
later by cytosine methylation-mediated repression at their 
promoters (21,45). 

On-going clinical trials

CC-486 is a novel oral azacitidine. An ongoing trial is 
examining the safety and efficacy of CC-486 in combination 
with pembrolizumab compared to pembrolizumab alone in 
previously treated advanced NSCLC (46). Another clinical 
trial is currently testing the combination of nab-paclitaxel 
with CC-486 when used in second line in advanced 
nonsquamous NSCLC (47). RRx-001 is a novel, broad-
spectrum epigenetic anticancer agent that inhibits HDACs, 
DNMT1, and DNMT3a expression. Currently, it is being 
tested in lung cancer for its ability to sensitize the tumor 
to re-administration of a platinum doublet chemotherapy 
regimen (48). Another phase I trial is examining the 
tolerability and minimum effective dose of inhaled 

azacytidine (AZA) in NSCLC (49).

Histone modifications

Nucleosomes are chromosomal building blocks containing 
two molecules each of the core histones H2A, H2B, H3, 
and H4. DNA wraps around the nucleosomes octameric 
core approximately 1.8 times (50). The histone amino 
termini extend from the core, where they can be modified 
post-translationally by acetylation, phosphorylation, or 
methylation (51). Acetylation is regulated by opposing 
actions between HATs and HDACs (51). In humans there 
are 18 HDACs classified into four classes (I, II, III, IV) 
based on their homology to yeast HDAC’s, their subcellular 
localization, tissue specificity, and enzymatic activities (51). 

HDAC inhibitors are emerging as novel anti-cancer 
agents due to their ability to kill cancer cells by inducing 
apoptosis, autophagy, cellular necrosis, ROS, cell cycle 
arrest, suppressing tumor angiogenesis, and exerting 
immunomodulatory effects. They activate both death-
receptor and intrinsic mitochondrial pathways, lowering the 
overall tumor cell apoptotic threshold. They up-regulate 
pro-apoptotic genes involved in the death receptor pathway 
(i.e., TRAIL and DR5) and/or the intrinsic apoptotic 
pathway (Bax, Bak, and APAF1) and downregulate pro-
survival genes (BCL-2 and XIAP). They also cause selective 
activation or induction of BH3-only proteins and hence 
initiate the intrinsic apoptotic pathway (52-54). 

In addition to their direct anti-cancer effects, HDACIs 
strengthen the immune system by up-regulating the 
expression of MHC class I and II proteins, and co-
stimulatory/adhesion molecules such as CD80, CD86, 
human leukocyte antigen (HLA)-DR, HLA-ABC, and 
intracellular adhesion molecule-1 (ICAM-1,28). HDACIs 
can also inhibit angiogenesis, a critical factor in tumor 
invasion and metastases (52,53). HDAC inhibitors may 
also enhance immune responses by altering the activities of 
immune cells, either directly or indirectly through cytokine 
secretion modulation (54). 

The idea of HDAC inhibitors came through empirical 
screens, when molecular targets of agents that induce 
tumor differentiation were discovered, such as like butyrate, 
trichostatin A (TSA), and suberoylanilide hydroxamic acid 
(vorinostat) (52-54). By this theory, one can also deduce 
that HDAC in itself may be oncogenic, but there is no data 
demonstrating this. In contrast, knocking down of HDACs 
produces a range of antitumor effects. HDACI’s inhibit the 
growth of a wide variety of malignant cells in vitro, including 
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lymphoma, myeloma, leukemia, and NSCLC, and inhibit 
the growth of a variety of solid tumors and hematological 
malignancies by both parenteral and oral administration, 
including prostate and breast cancers, leukemia, glioma, and 
lung cancer (52-54). 

Histone modifications in lung cancer

Over the last decade, many studies have revealed epigenetic 
aberrations involving histone lung cancer modifications. 
Miyanaga et al. (54) tested 16 NSCLC cell lines with HDAC 
inhibitors including TSA and vorinostat, and both displayed 
antitumor activities in 50% of the NSCLC cell lines. They 
also conducted gene expression profiling and created a 
nine-gene classifier which predicts HDAC inhibitor drug 
sensitivities (54). Van Den Broeck et al. (46) showed that 
histone epigenetic modifications play a crucial role in lung 
carcinogenesis. Compared to normal lung cells, lung cancer 
cells displayed aberrant histone H4 modification patterns with 
hyperacetylation of H4K5/H4K8, hypoacetylation of H4K12/
H4K16, and loss of H4K20 trimethylation. Their findings 
indicate an important role for histone H4 modifications and 
highlight H4K20me3 as a potential biomarker for the early 
detection of and therapeutic approaches to lung cancer (46).  
Seligson et al. (55) demonstrated that lower global levels of 
histone modifications are predictive of a more aggressive 
cancer phenotype in lung AdC. Additionally, the differential 
expression pattern of HATs and HDACs in the tumor samples, 
compared to the normal counterparts, can have potential 
therapeutic implications, such as eventual early tumor 
detection, prognostication, and the guiding of epigenetic-
targeted therapies (56). HDAC1 gene expression appears to 
correlate with lung cancer progression, with strong HDAC1 
and HDAC3 gene expression correlating with a poor 
prognosis in pulmonary AdC patients (57-59). HDAC3 was 
also seen elevated in 92% of tumor with SqCC histology using 
antibody microarrays for detection of target proteins (60). 
HDI-treated NSCLC cells down-regulated TNF-receptor-1 
mRNA, protein levels, and surface protein expression, and 
consequently responded to TNF-treatment with attenuated 
NF-B nuclear translocation and DNA binding. HDIs, 
therefore, might beneficially contribute to tumor treatment, 
by reducing the responsiveness of tumor cells to the TNF-
mediated activation of the NF-B pathway (61). 

Treatment with TSA resulted in a dose-dependent 
reduction of H157 lung cancer cells by apoptosis with 
nuclear fragmentation and an increase in the sub-G0/
G1 fraction. TSA initiated apoptosis by activation of the 

intrinsic mitochondrial and extrinsic/Fas/FasL system 
death pathways (62). TSA is also a powerful NSCLC 
cell radiosensitizer, enhancing G2/M cell cycle arrest, 
promoting apoptosis, and interfering with DNA damage 
repair, and synergistically triggering cell death when 
combined with other HDAC inhibitors, such as vorinostat 
(63,64). Vorinostat inhibits telomerase activity by reducing 
H-tert expression in A549 lung cancer cells (65). To 
explore the mechanisms by which vorinostat slows growth 
of lung cancer cells, changes of several key cell cycle and 
apoptosis proteins were examined. The cyclin-dependent 
kinase inhibitor p21 was upregulated in NCI-H520 and 
NCI-H460 cells treated with vorinostat. Prominent p21 
induction was associated with G0-G1 cell-cycle arrest in 
vorinostat treated human lung cancer cells. p53 levels 
increased in NCI-H520 cells, partly explaining the 
increased p21, since p21 is a p53 transcriptional. C-myc 
levels decreased in both cell lines, indicating vorinostat 
exerts antiproliferative activity. Vorinostat also decreased 
bcl-2 expression in NCI-H460 cells (66). 

Smoking and histone modifications 

Cigarette smoke exposure to respiratory epithelia may also 
influence the histone modifications. Nickel cations present 
in tobacco smoke induce histone deacetylation and increase 
histone H3K9 dimethylation. Zhou et al. and others (67-69) 
found that smoke carcinogenic elements including nickel, 
chromate, and arsenite also induce H3K4 methylation. 

Novel HDAC inhibitors

The novel cyclic amide-bearing hydroxamic acid-based 
HDAC inhibitors, SL142 and SL325, have shown greater 
HDAC inhibitory activity and lung cancer cell line 
viability-inhibition than vorinostat. These small molecules 
induce significant caspase-3 activity, indicating that they 
could induce lung cancer apoptosis (70). N-Hydroxy-4-(4-
phenylbutyryl-amino) benzamide (HTPB), another novel 
HDAC inhibitor, caused significant lung cancer cell growth 
suppression by inducing cell cycle arrest, mitochondrial 
mediated apoptosis, disruption of F-actin dynamics, and 
inhibition of mitochondrial membrane potential (MMP)2 
and MMP9. The effect was seen in vitro and in vivo (71). 
CG0006 a newly synthesized HDAC inhibitor, was assessed 
in a NCI-60 cancer cell panel and induced cell death by 
increased p21 and p27 expression (72). Other novel agents 
such as MGCD0103, OSU-HDAC 44, CI-944, MS-275, 
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and LAQ824 were tested and show significant cytotoxic 
effects on lung cancer cells (73-80). 

MicroRNA and microRNA silencing

MicroRNAs (miRs) are small, endogenous, single-stranded, 
noncoding RNAs of 20–22 nucleotides that regulate gene 
expression. More than 1,000 miRs have been identified and 
regulate more than one-third of coding mRNAs and each 
one can regulate hundreds of target mRNAs (81). Thus 
silencing of miRs by methylation can profoundly modulate 
tumor development and progression (82). Heller et al. (83) 
identified 33 miRs whose expression was increased in A549 
cells (lung AdC) following demethylation treatment (83). 
miR-9-3, miR-34b and miR-126 are methylated in NSCLC 
and this is associated with an altered prognosis (83,84). 
miR-487b is commonly silenced by methylation in primary 
lung tumors and is reduced in respiratory epithelial cells 
and lung tumor-derived cell lines following tobacco smoke 
exposure (85). This finding reinforces past data which 
showing that smoking influences methylation and promotes 
lung cancer. 

Combinatory epigenetic therapy

In normal cells, chromatin in the region of an actively 
transcribed tumor suppressor gene is typically in an 
open configuration, allowing transcription factor access. 
Carcinogenesis is associated with the epigenetic silencing 
of tumor suppressor genes, which may be secondary to 
DNA CpG island methylation and/or a closed chromatin 
configuration (6,86). Combined epigenetic therapy aims 
to reverse these alterations. Hypomethylating agents 
cause CpG island demethylation, allowing enhanced TSG 
transcription. On the other hand, HDAC inhibitors shift 
the chromatin to a more open configuration, favoring 
TSG transcription. While targeting each process alone 
has had disappointing effects on lung cancer, targeting 
both processes simultaneously may result in therapeutic 
synergism and enhanced TSG expression (87). 

Combinatory hypomethylation and HDAC inhibition

Cameron et al. (88) demonstrated that while treatment 
with either TSA (an HDAC inhibitor) or decitabine 
alone has no effect on the TSG transcription, the drugs 
combined lead to synergistic reactivation of the TSG 
expression in colorectal carcinoma cells. Similarly, Boivin 

et al. (89) demonstrated that in lung cancer cell lines, 
AZA combined with the HDAC inhibitor phenylbutyrate 
exerted a greater DNA synthesis inhibition than either 
agent alone. Zhu et al. (90) 2001 found that lung cancer cell 
lines pre-treated with decitabine, show enhanced HDAC 
inhibitor-induced apoptosis and further enhanced histone 
acetylation. Similarly, AZA combined with the HDAC 
inhibitor entinostat inhibited lung cancer growth in an 
orthotopic mouse model, and caused the re-expression of 
p16, p21, and the pro-apoptotic gene PRC2. These results 
provide a sound scientific rationale for exploring combining 
hypomethylating agents with HDAC inhibitors in patients 
with advanced lung cancer (78,90). 

Initial clinical trials using a combined approach failed to 
show significant response in patients with lung cancer: 

•	 Decitabine and valproic acid, Chu et al. (91);
•	 5-AZA and sodium phenylbutyrate, Lin et al. (92);
•	 Hydralazine and magnesium valproate, Candelaria  

et al. (93);
•	 Decitabine and vorinostat, Stathis et al. (94).
However, a more recent clinical trial combining AZA 

and entinostat in heavily pre-treated advanced NSCLC has 
revived interest in the combinatory approach. Strikingly, the 
achieved median overall survival was 6.4 months. Among the 34 
evaluable patients, ten had stable disease for at least 12 weeks, 
one patient had complete response lasting 14 months and 
another patient had partial response lasting 8 months (87). 

Role of epigenetic priming followed by conventional 
therapy

Interestingly, demethylation of four epigenetically silenced 
genes associated with lung cancer (APC, RASSF1a, CDH13, 
and CDKN2A) was detectable in serial plasma circulating 
DNA samples in these patients and was associated with 
improved progression free and overall survival (87). Another 
intriguing observation from this trial was a persistent clinical 
response after epigenetic therapy cessation and a notable 
clinical response to subsequent next anti-cancer treatments 
(cytotoxic chemotherapy and anti-PD1 monoclonal 
antibody) in many of these patients. Four out of 19 patients 
who received subsequent salvage therapy exhibited a major 
objective response; two patients survived 44 and 52 months 
respectively, after failing epigenetic treatment (95). This 
observation has raised an important hypothesis; epigenetic 
therapy may reprogram cancer cells and render them 
more susceptible to subsequent treatments. The above 
findings illustrate a new paradigm in cancer treatment—
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epigenetic priming. It consists of epigenetic modulator 
pretreatment prior to antineoplastic agent treatment. 
Currently many clinical trials are addressing this promising 
concept. An ongoing trial is currently randomizing patients 
with pretreated NSCLC to second line chemo alone vs. 
priming with 5-AZA and entinostat followed by second line 
chemotherapy. Another phase II trial is investigating the 
efficacy of nivolumab, a monoclonal antibody inhibitor of 
PD-1, after pre-treatment with 5-AZA and entinostat in 
patients with advanced NSCLC. This ongoing trial is based 
on recent findings that PD-L1 expression may be upregulated 
following treatment with AZA, increasing potentially the 
efficacy of anti-PD1 therapy (95). The combination of 5-AZA 
and entinostat is also being explored in the adjuvant setting 
with patients with resected stage I NSCLC, and comparing 
it to observation, the current standard of care after surgical 
resection in stage IA NSCLC (96).

Combinatory HDAC inhibition with other agents

Similarly, HDAC inhibitors show a more prominent effect 
when used in combination with other agents. Vorinostat has 
shown significant benefit when combined with carboplatin 
and paclitaxel in advanced lung cancer (96). Combinatorial 
TSA and etoposide treatment induced caspase-mediated 
AIF-dependent apoptotic cell death in non-small cell lung 
carcinoma cells. Genistein and carotene as nutritional 
factors in combination with TSA enhanced the cell growth 
arrest effect on A549 NSCLC cells (97). Combined 
treatment with low-dose vorinostat enhanced 5-FU drug-
mediated cytotoxicity and resulted in synergistic effects, 
especially in 5-FU-resistant NSCLC cells. Vorinostat may 
overcome 5-FU resistance by down-regulating thymidylate 
synthase expression and up-regulating p21waf1/cip1 
expression via histone acetylation at its promoter. This is 
the first report that vorinostat enhanced 5-FU sensitivity 
via the modulation of 5-FU metabolism in lung cancer cells 
and will facilitate future clinical investigations of combined 
chemotherapy and vorinostat in patients with NSCLC (66).

Millward et al. (98) combined vorinostat with a novel bi-
cyclic proteasome inhibitor marizomib and tested advanced 
solid tumors, including NSCLC cells, and found highly 
synergistic antitumor activity. Although no responses were 
demonstrated using RECIST criteria, 61% of evaluable 
patients demonstrated stable disease with 39% having 
decreases in tumor measurements (98). Chien et al. (99) 
showed that vorinostat when combined with arsenic trioxide 
(ATO) acts synergistically to enhance in vitro and in vivo 

death of H1299 NSCLC cell. Seo et al. (100) combined 
suboptimal doses of Sulindac (NSAID) with vorinostat which 
resulted in growth suppression of A549 human NSCLC cells 
primarily via enhanced MMP collapse, release of cytochrome 
C, and caspase activation (100). Several on-going clinical trial 
using hypomethylating agents and HDAC inhibitors for the 
treatment of lung cancer are summarized Table 2. 

Novel therapeutic strategies: aerosol vidaza

After subcutaneous or intravenous administration, 5-AZA 
and decitabine are catabolized by cytidine deaminase in 
the liver, reducing the bioavailability of the drug to the 
lung. Aerosol delivery of these drugs may achieve higher 
concentrations in the pulmonary tissue by bypassing 
the hepatic first pass. Pharmacokinetic mice model had 
shown that aerosolized 5-AZA administration resulted in 
significant reduction of lung tumor burden and induction of 
global DNA demethylation at one-third of the comparable 
effective systemic dose (101).

Epigenetic biomarkers in lung cancer

Epigenetic changes as possible biomarkers for early lung 
cancer detection, diagnosis, prognostication, and the 
guiding of therapeutic options has recently been intensely 
studied, with heavy focus on DNA cytosine methylation, 
miR alterations, and histone modifications (6,8,9,46,50-
52,54,81-85,102-104). Each of these epigenetic changes 
has specific testing methods and different degrees of 
clinical applicability. Presently most lung cancer epigenetic 
biomarkers are in development and will probably not have 
clinical application for several years (104). 

DNA hypermethylation

DNA 5'-cytosine hypermethylation is an early lung 
carcinogenesis (6,8,9). Many genes are hypermethylated 
in lung cancer including p16, PAK3, NISCH, KIF1A, 
OGDHL, BRMS1, FHIT, CTSZ, CCNA1, NRCAM, LOX, 
MGMT, DOK1, SOX15, TCF21, DAPK, RAR, RASSF1, 
CYGB, MSX1, BNC1, CTSZ, and CDKN2A (105-118). 
The percent of hypermethylation for each gene varies, with 
some like p16 and MGMT hypermethylated in 100% of 
patients with pulmonary SqCC up the 3 years before cancer 
diagnosis (119). p16 inhibits cyclin-dependent kinases 4 and 6, 
which after binding cyclin D1, phosphorylate and inactivate 
the retinoblastoma tumor suppressor gene, blocking cell cycle 
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progression (119). p16 is lost in ~70% of lung cancer cases, 
often by promoter methylation, promoting the G1 to S phase 
transition (119-121). Interestingly, p16 methylation occurs in 
normal-appearing epithelium from smokers and precursors 
lesions, and increases in frequency with the progression of 
the carcinogenic process (120). The specific mechanism(s) by 
which each gene hypermethylation event promotes cancer 
vary, but most involve repression of tumor suppressor genes 
with concomitant activation of genes promoting cell growth 
and cell cycle progression (105-122). Some of the genes 
hypermethylated in lung cancer and their functions are given 
in Table 3. 

DNA hypermethylation in lung cancer patients can be 
detected in bronchoscopic washings/brushings, sputum 

samples, and blood (plasma and serum), all of which are 
less invasive and easier on the patient than a tumor biopsy. 
These techniques may also eventually be useful in the 
detection of very early lung tumors or newly recurring 
tumors not detectable by other methods (120). 5'-cytosine 
methylation is quantified predominantly by three different 
molecular methods:

•	 Methylation-sensitive restriction enzymes: most 
restriction endonucleases do not cut methylated DNA, 
while others only cut methylated DNA (137,138). 
There are many variations of this analysis, but they 
generally compare the activities of endonucleases 
that cut or will not cut methylated DNA, often using 
the isoschizomers MspI and HpaII which recognize 

Table 2 Selected ongoing clinical trials involving hypomethylating agents and HDAC inhibitors for the treatment of lung cancer

Clinical trial Phase Protocol# Intervention and endpoint

Chemotherapy with or without  
epigenetic priming in NSCLC

II NCT01846897 This is a randomized trial evaluating the efficacy of epigenetic priming by 
5-AZA (either po or SC) and entinostat prior to standard second line  
cytotoxic chemotherapy

Epigenetic priming prior to nivolumab II NCT01928576 Determine and compare the response rate to nivolumab with or without 
priming with 5-AZA SC and entinostat in metastatic NSCLC that  
progressed on previous chemotherapy 

Oral 5-AZA (CC-486) combined with  
romidepsin (expansion cohort for NSCLC)

I NCT01537744 This phase I trial is studying the safety and efficacy of the combination po 
5-AZA with IV romidepsin in advanced solid tumors including NSCLC

5-fluoro-2-deoxycytidine (FdCyd) with 
tetrahydrouridine (THU)

II NCT00978250 Evaluate the safety and efficacy of the hypomethylating agent FdCyd 
combined with THU in patients with previously treated breast cancer, head 
and neck cancer, urothelial transitional carcinoma and NSCLC

CC-486 with MK-3475 I NCT02546986 Randomized, double blind study to assess the safety and efficacy of oral 
5-AZA with pembrolizumab vs. pembrolizumab with placebo in previously 
treated advanced NSCLC 

Entinostat with pembrolizumab IB/2 NCT02437136 Dose-escalation study evaluating the safety and tolerability of entinostat 
in combination with pembrolizumab in patients with pre-treated NSCLC 
or melanoma. Cohort 2 will includes patients with NSCLC who previously 
responded then failed PD-1 or PD-L1 blocking antibody

CC-486 with nab-paclitaxel II NCT02250326 Assess and compare the safety and efficacy of bab-paclitaxel with  
CC-486 vs. nab-paclitaxel monotherapy as second line treatment in  
advanced non-squamous NSCLC

Azacitidine and entinostat before (priming) 
chemotherapy in treating patients with 
advanced NSCLC

II NCT01846897 Percentage of patients progression-free at 6 months from the time of 
randomization

HDAC inhibitor vorinostat with  
chemotherapy and radiation therapy for 
treatment of locally advanced NSCLC

I NCT01059552 To assess that safety and maximally tolerated dose of vorinostat in  
combination with chemoradiation for unresectable locally advanced 
NSCLC

Vorinostat-iressa combined therapy on 
resistance by BIM polymorphysim in 
EGFR mutant lung cancer

I NCT02151721 This is a phase I study assessing the MTD of vorinostat-gefitinib  
combined therapy in EGFR mutant lung cancer

HDAC, histone deacetylase; NSCLC, non-small cell lung cancer; EGFR, epidermal growth factor receptor; BIM, B-cell chronic lymphocytic 
leukemia-lymphoma like 11 gene; AZA, azacytidine; SC, sub-cutaneous; MTD, maximum tolerated dose.
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CCGG with HpaII cutting blocked by either cytosine 
methylated and MspI activity blocked with the outer 
cytosine being methylated (137,138). Following 
endonuclease treatment, methylated or un-methylated 
DNA sequences are enriched and analyzed by PCR or 
DNA sequencing (120,137-139);

•	 Bisulfite conversion: under the correct conditions 
treatment of DNA with sodium bisulfite causes 
deamination of unmethylated cytosine to uracil, 
while leaving methylated cytosine intact. With PCR 
amplification the deaminated cytosine (a uracil) is 
copied into a thymine. The PCR products can be 
then analyzed by sequencing or mass spectrometry. 
Comparison of identical DNA samples with and 
without bisulfite allows analysis of the methylcytosine 
content and the specific methyl-cytosine moieties 
(140-142);

•	 Affinity purification methods: this technique uses 
either a methylcytosine-specific antibody or a 
tagged E. coli methyl-binding domain protein to 
immunoprecipitate methylated DNA (143-145). 
The resulting immunoprecipitates are commonly 
analyzed by next generation DNA sequencing (146). 

A large number of studies have demonstrated that 
alteration in cytosine hypermethylation has diagnostic and 
prognostic value in lung cancer (82,102,105-122), and in 
some cases appears to predict treatment responses (137-
139,141-143,145-147). For example, Zhang et al. (147) 
examined the methylation of 20 TSGs in 78 NSCLCs 
compared to 50 matched plasma samples from individuals 
without cancer. A five-gene set (APC, RASSF1A, CHD13, 
KLK10, and DLEC1) showed significantly higher 
methylation in lung cancer patients and had a sensitivity of 
83.64% and a specificity of 74.0% for cancer diagnosis in 

Table 3 Selected genes subjects to hypermethylation in lung cancer

Mechanism Gene Encoded protein Gene function References

DNA repair MGMT O-6-methylagunaine DNA methyltransferase Removes alkyl from the O6 position of guanine (123) 

hMLH1 DNA mismatch repair protein MLH1 Involved in DNA repair (124)

MSH2 DNA mismatch repair protein MSH2 Involved in DNA repair (124)

Apoptosis DAPK Death associated protein kinase Pro-apoptotic (125,126)

CASP8 Caspase-8 Effector of extrinsic apoptosis. Occurs selectively 
in small cell lung cancer

(127,128)

TNFRSF6 FAS receptor Part of TNF-receptor superfamily, mediates  
extrinsic apoptosis. Silenced in 40% of SCLC 

(127)

DR4, DR5 Death receptor 4 and 5 Part of TNF-receptor superfamily, mediates  
extrinsic apoptosis. Silenced in 40% of SCLC

(127)

Cell cycle P16 Cyclin-dependent kinase 4 inhibitor A CDK4/6 inhibitor involved in cell cycle arrest at  
G1/S checkpoint 

(15,35,41,120)

PTEN Phosphatase and tensin homolog Negative regulator of AKT/MTOR pathway,  
and cell cycle 

(129) 

RASSF1A Ras association domain family 1 Involved in cell cycle regulation, and ras-induced 
apoptosis 

(130)

Cell adhesion 
and invasion

CDH1 E-cadherin Promotes cell-cell adhesion, inhibits cell motility, 
invasion and metastasis 

(131)

CDH13 H-cadherin Involved in regulation of cell proliferation (131)

TSLC1 Tumor suppressor in lung cancer 1 Involved in cell-cell adhesion (132)

Transcription 
regulation

APC Adenomatosis polyposis coli Negative regulator of WNT pathway, and β-catenin (133)

RARβ-2 Retinoic acid receptor β Involved in cell growth and differentiation (134)

SHOX2 Homeobox family gene Transcriptional regulator involved in cell growth  
and differentiation 

(135)

RUNX3 Runt-related transcription factor 3 Transcription factor that acts as tumor suppressor 
gene and is pro-apoptotic 

(130,136)

SCLC, small cell lung cancer.
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the Chinese population. The same study revealed that in a 
64 lung cancer patient sample, patients with four or more 
concurrently methylated genes in a 15 gene panel (APC, 
CHD13, KLK13, DLEC1, RASSF1A, EFEMP1, SFRP1, 
RAR, p16INK4A, RUNX3, Hmlh1, DAPK, BRAC1, 
p14ARF) had a poorer progression-free two year survival of 
13.8 months with four or more genes methylated compared 
to 17.8 months with less than four gene methylated. Last a 
study by Salazar et al. (148) revealed that lung cancer patients 
with an unmethylated plasma CHFR gene responded 
significantly better to EGFR tyrosine kinase inhibitors than 
those with a methylated CHFR gene, demonstrating that 
gene methylation might be useful in predicting therapy 
responses. 

miR as biomarkers in lung cancer 

miRs taken from sputum and blood may be useful lung cancer 
biomarkers (82-85,120). They are very stable in human plasma 
and have value in initial lung cancer detection (149-151).  
Bianchi et al. (150,151) developed a miR-34 group based test 
that detects lung cancer in 80% of asymptomatic high-risk 
individuals who are otherwise healthy smokers. Interestingly, 
this class of miRs has shown value in predicting lung 
cancer relapse, where low expression of these miRs were 
highly predictive of relapse (152). Similarly low miR-30a,  
miR-107, miR-138, miR-204, miR-32, miR-148b, miR-145, 
miR-224, miR-200c, miR-125b, and miR-375 predict a poor 
clinical outcome, and events such as increased lymph node 
metastasis and larger tumor size, while high miR-126, miR-21,  
miR-197, mi-150, and miR-141 levels predict also predict a 
poor outcome (153-167).

miRs have also been shown to have value in predicting 
therapeutic responses. For example, Zhao et al. (167) found 
that circulating miRs had value in predicting EGFR mutation, 
gefitinib sensitivity, and the patient’s prognosis (167).  
Last, miRs-33a and miR-124 may have prognostic value 
in lung cancer, with higher levels inhibiting the EMT 
transition and tumor metastasis, respectively (168,169). miRs 
are typically quantified by PCR amplification (149-169). 
Presently changes in miRs are seldom used clinically and 
developing reliable miR panels for clinical use in lung cancer 
diagnosis, prognostication, and treatment will take several 
more years (120). 

Epigenetic changes in histones as lung cancer biomarkers 

Histone modifications and changes in the expression 

patterns of HATs and HDACs may have value in early 
tumor detection, prognostication, and the guiding of 
epigenetic targeted therapies (55-61). Presently histone 
modifications and HATs and HDACs are used in the 
treatment of lung cancer (59-74), but their clinical use as 
lung cancer biomarkers and use in guiding therapy is several 
years away (75-88,118). 

Conclusion and future directions 

Epigenetics plays an important role in early lung cancer 
development and progression. Recent studies have shown 
that methylation of TSGs correlates with the prognosis 
of resected early stage NSCLC, and this can be exploited 
to recognize which patient may benefit from adjuvant 
epigenetic therapy in order to reduce the risk of relapse 
after surgery. Since it can affect multiple pathways (21-
24,28-32,46,54-61,67-69,82-85) that regulate all major 
properties of the cancer cell (105-122), targeting the 
epigenome may hold promise (137-148) in lung cancer 
therapy (153-169). 

In spite of some disappointing clinical outcomes in 
earlier studies employing only epigenetic therapy, the field 
continues to evolve. Indeed, the remarkable responses to 
subsequent chemotherapy after epigenetic therapy with 
AZA and entinostat constitutes a paradigm shift in the 
management of metastatic NSCLC (76). There is a current 
trend to explore epigenetic priming agents to render 
lung cancer more susceptible to cytotoxic chemotherapy 
and immunotherapy. Finding predictive biomarkers to 
select patients who may derive benefits from epigenetic 
modulation and defining pharmacodynamic markers to 
gauge the efficacy of these agents, optimizing their effects, 
and their delivery sequence in conjunction with other 
antineoplastic agents, all constitute major challenges that 
need to be explored to move this promising field ahead. 
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