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Introduction

Lung cancer remains the leading cause of cancer mortality 
in men and women worldwide (1). Non-small cell lung 
cancer (NSCLC) is the most common subtype accounting 
for approximately 85% of all lung cancers (2). The 5-year 
survival in unselected NSCLC at all stages of diagnosis 
remains less than 20% and for stage IV disease is less than 5% 
(3,4). In advanced NSCLC, testing for distinct molecular 
genotypes has led to a personalized approach to treatment, 
which has improved outcomes when compared to standard 
platinum chemotherapy (5-13). Maintenance chemotherapy 
and other targeted agents have had a modest impact on 
survival (14-16). Immune checkpoint inhibitors (ICIs) are 
negative regulators of T cells and include anti cytotoxic 
T-lymphocyte antigen 4 (CTLA-4) antibodies and anti-
programmed cell death-1 (anti-PD-1)/programmed cell 
death receptor ligand-1 (PD-L1) antibodies. These drugs 

have demonstrated efficacy in NSCLC, melanoma and renal 
cell cancer, three cancer types with a predilection to brain 
metastases. Approximately 30–50% of patients with NSCLC 
can expect to develop CNS disease at some point (17,18). 
The number of patients with brain metastases is rising 
and can be explained by the more frequent use of sensitive 
imaging techniques such as magnetic resonance incidence 
(MRI) and by the improved survival seen in patients owing 
to new systemic treatments (19,20). Patients with molecular 
subtypes such as epidermal growth factor receptor positive 
(EGFR+) and anaplastic lymphoma kinase positive (ALK+) 
lung cancers may have an increased risk of CNS disease 
at diagnosis compared with EGFR/ALK wild-type (WT) 
NSCLC however this risk may also be explained by a 
potential lag in diagnosis in this patient population (21-23). 
The overall survival (OS) in patients with brain metastases 
is variable and ranges from 3 to 15 months (24). Prognostic 
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factors such as number of lesions, performance status and 
extra-cranial control are important determinants (24). In the 
EGFR+ and ALK+ subgroups a superior survival of 34 and 
38 months respectively has been reported (25). 

Historically standard treatments for brain metastases 
in NSCLC focused on achieving local control with mixed 
results. Dependent on size, number, symptoms, site and 
histology of lesions, patients may have been offered surgery 
and or whole brain radiation (WBRT). WBRT is associated 
with cognitive decline and inferior quality of life (26-28). 
While stereotactic radiosurgery (SRS) has the advantage of 
less cognitive impairment and shorter treatment times, the 
number of metastases is thought to limit SRS (28). Systemic 
treatment has inferior CNS disease control due to variable 
penetration across the blood brain barrier (BBB) (29). 
Platinum regimens have however demonstrated response 
rates between 23–50%, which approximated extra-cranial 
responses (30). Guidelines have suggested that chemotherapy 
could have a role in patients with asymptomatic disease 
where local therapies are not possible (31). Bevacizumab in 
combination with carboplatin/paclitaxel has demonstrated 
efficacy and early results of a phase II study of 67 patients 
with non-squamous histology and brain metastases, revealed 
a 61.2% overall response rate (ORR) in intracranial lesions 
and a 6-month progression-free survival (PFS) of 56.5% (32).  
Oral EGFR-tyrosine kinase inhibitors (TKIs) and ALK 
inhibitors can gain access to the CNS and response rates, 
especially in ALK+ NSCLC are promising (33-38). 

ICIs in NSCLC

The evasion of immune destruction is now recognized as 
a hallmark of cancer (39). Immune checkpoints are crucial 
to this and under normal physiological conditions control 
immune homeostasis and prevent autoimmunity (40). 
Immune checkpoints belong to a large diverse family of 
receptors that can negatively impact the efferent immune 
response by impairing T cell clonal expansion, repressing 
function and activation and by preventing immune attack 
against tumor antigens (41). The PD-1/PD-L1 and  
CTLA-4 axes are the most common checkpoints studied 
with monoclonal antibodies that can inhibit ligand binding. 
CTLA-4 is expressed on T cells and appears to primarily 
inhibit the early activation of effector T cells within 
lymphoid organs and can enhance the immunosuppressive 
FOXP3+ regulatory T (Treg) cell population (42). 
PD-1 counterattacks the T cell response foremost at 
the tumor or inflammatory site and is upregulated on 

activated T-cells and other immune cells within the tumor 
microenvironment. Binding of PD-1 to its ligands (PD-L1 
and PD-L2) promotes tumor immune escape by initiating 
a signaling cascade that inhibits T cell proliferation and 
limits cytotoxic function (41,43). PD-L1 can be found on a 
spectrum of cells including endothelial and epithelial cells 
together with T and B cells, mast and dendritic cells and the 
high expression of PD-L1 in NSCLC may correlate with 
inferior prognosis (44). Nivolumab and pembrolizumab 
are IgG4 monoclonal antibodies targeting PD-1 with early 
efficacy data presented in phase I studies (45,46). Three 
large randomized trials have recently confirmed the activity 
and improved survival of PD-1 inhibitors after failure of 
first line platinum chemotherapy in unselected NSCLC 
as well as those selected by tumor PD-L1 expression 
(47-49). Durable responses across trials are reported in 
approximately 20% of patients, 30% of those with PD-L1 
tumor expression (45,48-50). PD-1 inhibitors now represent 
a standard option in NSCLC patients with metastatic 
disease. The efficacy of PD-L1 inhibitors post platinum 
doublet chemotherapy (POPLAR) and the combination 
of CTLA-4 inhibitors and PD-L1 inhibitors has also been 
established (51,52). Trials comparing ICIs to chemotherapy 
in the first-line setting are expected to report in 2016, 
with ongoing trials of combination ICI plus chemotherapy 
regimens versus standard first-line chemotherapy (53,54). 
The only biomarker known to predict response to PD-1 axis 
inhibitors in NSCLC is the percentage of PD-L1 positive 
tumor cells. In KEYNOTE-010, untreated patients who 
had a tumor proportion score ≥50% (membranous PD-
L1 expression in at least 50% of tumor cells) demonstrated 
higher response rates of 50% (47). This is however far from 
an ideal biomarker and the lack of PD-L1 expression does 
not preclude a response (48,49,53,55,56). There has been a 
growing interest in mutation load as a predictive marker for 
immune checkpoint inhibition; determining this however, 
may be costly and impractical on a global scale (57,58). 
Most of the published studies of ICIs in NSCLC required 
local CNS control and stability prior to study entry, thus 
the value of ICIs in patients with brain metastases is 
understudied.

The immunogenicity of the CNS

Until recently the brain was considered an immune-
privileged organ, a term first coined by Billingham and 
Boswell in the 1950s (59,60). The limited regenerative 
capacity of neural cells means that strict control must be 
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in place to prevent autoimmunity. Over the past century 
foreign tissues and pathogens have been shown to evade the 
immune system when transplanted into brain parenchyma 
(61-63). Anatomical barriers such as the BBB and an absent 
lymphatic system were thought responsible for poor CNS 
immunogenicity. The latter has now been refuted since 
the discovery of an intact CNS lymphatic system, which 
questions our traditional understanding of CSF flow and 
explains how peripheral immune responses can be generated 
(64,65). CNS-specific immune cells have also been shown 
to traverse the cribriform plate in order to reach deep 
cervical nodes (66). Although the BBB restricts access and 
flow of peripheral innate and adaptive immune cells, other 
interfaces such as the CSF and choroid plexus can provide 
mechanisms of entry (67). 

The various compartments of the CNS are complex and 
heterogeneous in immune cell composition. Microglia are 
the only immune cells within brain parenchyma and are 
considered poor antigen presenting cells (68). However 
within the ventricles, leptomeninges and perivascular spaces 
are cells of the innate immune system, predominantly 
macrophages, as well as of the adaptive immune system 
with a relatively high density of CD4+ memory T cells 
(67,69). These resident cells are important for ongoing 
immunesurveillance. Once the CNS becomes inflamed or 
tumourigenesis initiates, the BBB becomes more permeable 
and the production of cytokines and chemokines may 
perpetuate immune cell infiltration (60). Despite this 
theory, primary CNS tumors do not appear to have a high 
density of tumor infiltrating lymphocytes (TILs) whereas 
renal cell carcinomas and melanomas have a higher TIL 
burden in the microenvironment in CNS metastases (70,71). 
Similar to systemic disease, the reasons for immune cell 
heterogeneity within the tumor environment have not been 
fully explained.

A number of studies have evaluated the prognostic 
impact of TILs in systemic cancers (72). Within the CNS, 
the association of TILs with survival has been conflicting. 
Harter et al. investigated a large cohort of patients with CNS 
tumors including NSCLC metastasis (n=62) and could not 
find a correlation between TIL burden and patient survival. 
This group also reported low TIL levels in lung cancer 
brain metastases, with highest density of TILs in RCC and 
melanoma (73). Similarly Berghoff reported increased TILs 
in RCC and melanoma brain metastases but also reported 
high density in NSCLC samples (n=57), and correlated 
survival with density of TILs and the ‘immunoscore’ (71). 
Both studies were retrospective and the latter only included 

patients with a single brain metastasis. The median number 
of lesions in the study by Harter et al. was also one. Lung 
cancer genotype was not available in either study.

An analysis of PD-L1 and TIL densities in NSCLC 
primary tumor and matched brain metastases revealed 
higher PD-L1 expression in brain metastases (52% vs. 
32%) but denser TILs in primary tumors (74). The density 
of TILs in tumor may be a predictive marker for immune 
checkpoint inhibition. Given that the non-synonymous 
mutational burden may represent a predictive marker in 
NSCLC, the differences in mutational load in systemic 
disease versus brain metastases may be a contributing factor 
in TIL differences but this theory has not been explored (57).

Immunotherapy in NSCLC CNS disease—clinical 
evidence

Clinical evidence to support the efficacy of ICIs in CNS 
disease is limited. Early data from a phase II study has been 
reported by Goldberg et al. and represents the first report 
of PD-1 inhibitors in untreated or progressive NSCLC 
brain metastases (75). This single institution study enrolled 
18 patients with melanoma and 18 patients with NSCLC 
including one EGFR+ and one ALK+ lung cancer patient. 
Patients were required to have asymptomatic intracranial 
disease with at least one brain metastasis measuring between 
5 and 20 mm that was untreated. Primary NSCLC tumors 
had to have at least 1% PD-L1 staining. In the lung group, 
10/18 patients had received previous local therapy for brain 
metastases but evidence of progressive disease. All patients 
received pembrolizumab 10 mg/kg every 2 weeks until 
disease progression. Among the patients with NSCLC, 
33% of patients (n=6) had a response (four with complete 
response, one each with confirmed and unconfirmed partial 
response) with a median response duration of more than  
6 months. The numbers of CNS responders in both cohorts 
correlated with patients achieving a systemic response. 
Responses in the CNS lasted from 3 to 7 months. It is 
unknown if responders included specific molecular subtypes. 
Another third (n=6) of NSCLC patients had confirmed 
progressive disease intra-cranially and an additional 
four (22%) could not be evaluated due to rapid systemic 
progression. The median OS in the NSCLC cohort was  
7.7 months but had not been reached in the melanoma 
group. Neurological toxicities were predominantly grade 1–2, 
such as seizures, headache and dizziness, and did not result in 
treatment cessation. Cognitive dysfunction and stroke were 
less common although a melanoma patient experienced a 
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transient but severe episode of cognitive dysfunction. 
In a phase II study (CheckMate 063) of nivolumab, 

lung cancer patients with squamous cell cancer who had 
received at least two lines of systemic treatment were 
treated with nivolumab. Of two patients with evaluable 
CNS disease, both had a response (55). Neurotoxicity 
was again uncommon. A further retrospective review of 
five patients with NSCLC and new or progressing brain 
metastases not requiring corticosteroids were treated with 
nivolumab. Two patients had an intracranial response, 
including one partial response and one complete response 
both sustained for over 24 weeks (76). A number of early 
phase immunotherapy trials are now including patients with 
untreated asymptomatic CNS disease; however as yet there 
are no phase III studies that allow enrolment of patients 
with untreated brain metastases from NSCLC (Table 1).

In patients with brain metastases from melanoma, 
the role of ICIs has been more extensively investigated. 
Ipilimumab, a CTLA-4 inhibitor, was evaluated in both 
patients with asymptomatic brain metastases and those 
with symptomatic disease requiring steroids. The response 
rates were 18% and 5% respectively (77). It should be 
noted that 76% of patients with asymptomatic disease had 
progressive brain metastases at 12 weeks, likely requiring 
local interventions (78). A retrospective study of ipilimumab 
reported similar responses (79).

Updated analysis from a phase II study of ipilimumab 
and fotemustine in metastatic melanoma (NIBIT-M1) 
has confirmed that 7 of 20 patients enrolled with brain 
metastases were alive over 2 years from study entry (80). 

The NIBIT 3 phase III study includes a cohort of patients 
with untreated asymptomatic brain metastases (81). 

Nivo lumab has  a l so  demonst ra ted  ac t i v i ty  in 
hypermutated glioblastoma and may have a role in primary 
neurodegenerative disorders such as Alzheimer’s disease 
which reinforces the potential application of ICIs in select 
populations with intracranial pathology (58,82). 

While limited data suggest that intracranial response 
rates to ICIs are similar to response rates with platinum 
doublet therapy, ICI therapy has the distinct advantage 
of producing durable responses in select patients. As yet 
there is no definitive biomarker to enrich this population. 
The role of ICIs in EGFR+ and ALK+ NSCLC has been 
controversial, with subgroup analyses of phase III trials 
suggesting no significant survival advantage over second-
line chemotherapy (47,48). Gettinger et al. on the other 
hand did report responses in EGFR+ patients and a recent 
study has shown that EGFR/ALK+ lung cancer may 
upregulate PD-L1 expression through activation of PI3K-
AKT and MEK-ERK signaling pathways (53,83). In 
these molecular subgroups where the incidence of brain 
metastases is high, further clarification of response to ICIs 
will be important. When brain metastases develop, the cost 
of patient care rises significantly (84). It is unlikely that use 
of ICIs without better patient selection will be cost effective 
in treating an overall poor prognostic cohort of patients. 

Future prospects

A number of studies are now investigating the role of 

Table 1 Ongoing studies including untreated brain metastases in NSCLC

Group or institution trial Phase Study Status

Yale University, NCT02681549 II Pembrolizumab plus bevacizumab for treatment of brain metastases in metastatic 
melanoma or NSCLC

Recruiting

BMS, CheckMate 012 I Study of nivolumab (BMS-936558) in combination with gemcitabine/cisplatin, 
pemetrexed/cisplatin, carboplatin/paclitaxel, bevacizumab maintenance, erlotinib, 
ipilimumab or as monotherapy in subjects with stage IIIB/IV NSCLC (CheckMate 
012)

Ongoing but 
not accruing

MD Anderson, NCT02444741 I/II MK-3475 and hypofractionated stereotactic radiation therapy in patients with 
NSCLC

Recruiting

Medimmune, D4190C00006 I A phase Ib study of MEDI4736 in combination with tremelimumab in subjects with 
advanced NSCLC (52)

Recruiting

AstraZeneca, NCT02179671 II Immune-modulated study of selected small molecules (gefitinib, AZD9291, or 
selumetinib + docetaxel) or a 1st immune-mediated therapy (IMT; tremelimumab) 
with a sequential switch to a 2nd IMT (MEDI4736) in patients with locally 
advanced or metastatic non-small-cell lung cancer

Completed

NSCLC, non-small cell lung cancer.
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ICIs in patients with untreated brain metastases and it is 
likely that this will expand following the recent report of 
Goldberg and colleagues. For example, CheckMate 012, a 
phase I study of combination nivolumab and ipilimumab 
in NSCLC, includes an arm of patients with asymptomatic 
brain metastases (Table 1). The role of combination radiation 
and immunotherapy is a rapidly evolving field. Specifically 
in the brain metastases population, combinations of 
ipilimumab/SRS and nivolumab/SRS have demonstrated 
safety and feasibility in retrospective analyses of melanoma 
patients (85-87). Kniesley reported a series of melanoma 
patients with brain metastases and found an improvement 
in median survival of 21.3 vs. 4.9 months when ipilimumab 
was added to SRS. Radiation necrosis is however, thought 
to occur with a higher frequency when immunotherapy 
is used (88). Also the potential for an abscopal effect in 
malignancy is a subject of great interest, with case reports 
in NSCLC (89,90). Radiation is thought to repair aberrant 
vasculature and attract tumor specific T cells into the 
tumor microenvironment therefore enhancing the immune 
response (91). Recently it has been shown in mouse models 
that there is a persistent influx of bone marrow-derived 
immune cells into the CNS after radiation, suggesting that 
the physiologic effects of radiation may unleash restraints 
on the regulation of immune homeostasis (92). The 
diagnosis of pseudoprogression can be a challenge and case 
reports of surgical resections have revealed necrotic tissue 
with inflammatory cells and only scattered tumor cells 
(93,94). 

Given that patients with small asymptomatic brain 
lesions seem to respond best to ICIs, and that brain 
metastases have a lower TIL infiltrate compared to primary 
lung tumors, immunotherapy in the adjuvant setting may be 
more efficacious in delaying time to development of CNS 
disease. The adjuvant studies of immunotherapy versus 
placebo post resection or radical chemoradiation in stage III 
disease (NCT02273375, NCT02595944, NCT02125461) 
will help address this question. 

Conclusions

A select group of patients with brain metastases from 
NSCLC may have durable responses to immune checkpoint 
blockade. More data are needed for better patient selection 
but this cohort is likely to reflect extra-cranial responders. 
Combination treatments including radiotherapy may 
enhance outcomes. In a historically poor prognostic patient 
population, ICIs offer a promising systemic approach to 

intracranial disease without major toxicity.
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