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Introduction

It has been widely accepted that p53 is an important 
tumor suppressor and TP53 is mutated in about 50% of all 
tumors. p53 germline mutation can lead to Li-Fraumeni 
syndrome, patients susceptible to various types of cancer (1).  
p53 knockout mice, with a higher incidence of cancer 
(mostly lymphoma), demonstrates the function of p53 as 
a tumor suppressor (2). In a wide range of human cancers, 
TP53 undergoes abnormally high frequency mutations. 
For example, TP53 mutations were identified in 50% to 
60% of spontaneous human tumors such as the lungs, 
breast, bladder, colon, esophagus, stomach, liver, brain, 
bone, prostate, ovaries and lymphatic system tumors (3,4). 
p53 is also an important transcription factor that regulates 
the transcription of many downstream genes, such as p21 
involved in cell cycle checkpoints, GADD45 involved in 
cell growth regulation and DNA damage repair, NOXA 

involved in the process of apoptosis (5,6). Therefore, 
p53 plays an essential role in regulating cell growth, 
DNA damage repair and apoptosis. The regulation of 
p53 transcriptional activity is important for its function 
as tumor suppressor. Research on p53 transcriptional 
activity is also essential for the treatment of p53 mutations 
-induced tumors. p53 can protect cells from the malignant 
development of tumors and play an important role in the 
process of aging, differentiation and fertility, as well as 
in neurodegenerative diseases, diabetes and myocardial 
infarction (7). 

p53 is involved in many biological processes, and there 
are many questions required to be answered about the 
regulation mechanisms of p53 activity. How was a protein 
with so many important functions located at the right place 
at the right time? What mechanism is involved in regulating 
the various functions of p53? The regulation of p53 occurs 
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at both the transcriptional level and the protein level. Under 
normal conditions for cell growth, p53 can be rapidly 
degraded by ubiquitin ligase MDM2. Genomic instability 
and a variety of other cellular stimuli lead to activation of 
p53 through many mediators such as ATM, p19ARF and 
CHK2 (8). Many effect proteins can then stabilize p53 
protein and promote transactivation of downstream genes, 
including genes involved in DNA damage repair, cell cycle 
arrest, or programmed cell death. Protein post-translational 
modification is an important pathway for regulating 
protein activity and function. Similar to the N-terminal 
tail of histones, the C-terminal tail of p53 is a loose region 
containing many lysine sites that can undergo post-
translational modifications. Modulation of p53 activity by 
post-translational modifications may be an explanation for 
p53 to participate in a large number of cellular functions. 
Different stimuli can lead to different post-translational 
modifications of p53, which can dynamically regulate its 
function.

There have been reported more than 50 loci involved 
in the post-translational modifications of p53 including 
phosphorylation, acetylation, methylation, ubiquitination, 
glycosylation, etc. (9,10). Many of these modifications occur 
in the response of stress, and are interdependent, then 
trigger a subsequent series of events (11). The development 
and application of antibodies that recognize site-specific 
modifications of p53 have greatly simplified the study of 
post-translational modifications of p53 proteins and have 
made rapid progress. In recent years, the application of 
mass spectrometry has promoted the identification of new 
post-translational modifications of p53.

Phosphorylation

Phosphorylation of p53 occurs mainly at serine and 
threonine residues of N-terminal and C-terminal. After 
the cells are stimulated, most of the phosphorylation 
occur at once. Also, there are some sites phosphorylated 
in normal situation and undergo dephosphorylation 
induced by DNA damage (12). p53 was identified as a 
phosphorylated protein shortly after its discovery, and 
the first identified phosphorylation sites were murine 
Ser312 and Ser389 (13). In 1992, Lees-Miller et al. 
found that DNA-activated protein kinase DNA-PK was 
able to phosphorylate Ser15 and Ser37 at the amino-
terminal transactivation domain of p53 (14). After that, 
studies have reported that phosphorylation at Ser15 of 
p53 induced MDM2 dissociation with p53, leading to the 

stabilization of p53 protein (15). These are the earliest 
assumptions about the post-translational modifications 
of p53. A milestone discovery is that phosphorylation 
at Ser15 is essential for cell stress independent on DNA 
damage. In the glucose-induced response, Ser15 can be 
phosphorylated by the AMPK (AMP-activated protein 
kinase) pathway and mediates the metabolic cell cycle G1/
S block (16). Ser6 and Ser9 were originally discovered as 
substrates for CK1δ and CK1ε, members of the protein 
kinase CK1 family, and were phosphorylated after 
treatment with multiple genotoxic and non-genotoxic 
agents. The phosphorylation at Ser6 and Ser9 is important 
for tumorigenesis and metastasis induced by TGF-β, 
activated Ras and mutant p53 (17). Phosphorylation at 
the two loci also plays crucial role in the mesodermal 
development of xenopus (18). Phosphorylation at Ser46 
mediated by p38 MAPK, HIPK2, DYRK2, MDM4 (19)  
and possibly other kinase can exert apoptotic cell death, one 
possible mechanism is that phosphorylation at Ser46 induces 
amphiregulin expression and its target microRNA (20). 
The transactivation domain of p53 is capable of forming 
two domains with similar structure, TAD1 (1–40 residues) 
and TAD2 (41–83 residues). The TAD2 domain of p53 
is capable of interacting with the p62 subfamily of the 
universal transcription factor TFIIH, which is important 
for the p53-initiated transcription events after loosening 
of the chromatin structure of the promoter region. 
Phosphorylation at Thr55 mediated by transcription factor 
TAF1 (TAFII250), as well as phosphorylation at Ser46 can 
trigger the interaction of TAD2 with pleckstrin homology 
(PH) region of p62 (21). Phosphorylation of p53 at position 
392 can be induced by DNA damage and plays a role in 
activating the sequence-specific DNA binding capacity 
of p53. Phosphorylation may also stabilize the formation 
of p53 tetramers, which is important for its activity, so 
phosphorylation modification is essential for p53 to play 
suitable activity (22).

Acetylation

Acetylation at the lysine residue of p53 is induced in 
a variety of forms of cytotoxicity and non-cytotoxic 
stimuli, resulting in stabilization and activation of p53. 
Lysine residues of carboxyl terminal (K305, K370, 
K372, K373, K381, K382 and K386) and a DBD residue 
(K164) can be acetylated by CREB-binding protein 
(CBP) (KAT3A)/p300 (KAT3B), which can increase 
the sequence specific DNA binding capacity of p53 by 
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inducing its conformational changes (23,24). K320 of p53 
can be acetylated by another histone acetyltransferase 
p300/CBP-re l a t ed  f a c to r  PCAF (KAT2B)  (25 ) .  
The acetylation of p53 promotes the recruitment of 
transcriptional activators, such as CBP and PCAF 
complexes, in the promoter region of p53 downstream 
genes and activation of p53 downstream genes (26).  
Acetylation of p53 is important for its ability to inhibit 
the cell cycle progression of G2 phase, which is achieved 
by NF-Y-p53-dependent inhibition of G2 phase response 
gene (27,28). The effect of deletion of one or more sites 
may be compensated by other acetylation sites (29,30). 
Deacetylase HDAC1 could deacetylate most acetylation 
sites of p53 in vitro and cultured cells (31,32). Deacetylase 
SIRT1 is capable of interacting with p53 in the nucleus, 
specifically deacetylating the K382 acetylation of p53 (33). 
Depsipeptide, an inhibitor of HDAC, significantly induces 
acetylated p53 at K373/K382 binding to the regulatory 
region of p21 and increases the expression of p21 (23,34). 
Different stimulus signals can induce acetylation at K305 
of p53 mediated by p300 in vivo and in vitro (35), which 
is important in regulating the transcriptional activity of 
p53 (35). K120, in the DNA binding domain of p53, can 
be acetylated by Tip60/hMOF (a MYST family HAT, 
independent of p300/CBP or PCAF) and the mutation of 
this site is of frequent recurrence in the process of tumor 
development (36). Acetylation at K120 induced by DNA 
damage significantly changes the effect of salt concentration 
on the specificity of its DNA binding capacity (37). p53 
with K120 acetylation preferentially locates at the promoter 
region of the critical gene promoting apoptotic, rather than 
the promoter region of those genes involved in cell cycle 
arrest (38). Chronic myeloid leukemia (CML) is a disease 
that causes abnormal hematopoietic stem cell function 
due to the expression of BCR-ABL, which increased the 
acetylation at K317 of p53 and promoted the translocation 
of p53 to cytoplasm and activation of BAX after DNA 
damage. Acetylation at K320 (human p53)/K317 (mouse 
p53) plays an important role in the regulation of p53 shuttle 
between nucleus and cytoplasm and the p53-dependent 
BAX-mediated apoptosis following DNA damage (39). 
Recent research also revealed that in intestinal adenoma 
formation deacetylation of p53 was pivotal for the induction 
of autophagic flux (40).

In the absence of stimuli, p53 is at a low level of 
expression, mainly in the form of monomer. p53 protein has 
the most effective function in the form of tetramer because 
the DNA binding affinity of tetramer p53 is high (41).  

Oligomerization of p53 occurs prior to acetylation, 
and oligomerization could provide a docking site for 
acetyltransferase (42). Studies have shown that lysine 
acetylation modification of p53 C-terminal is of much 
higher efficiency in p53 tetramer than the dimmer and 
acetylation almost cannot occur on the p53 monomer. 
Acetylation at p53 C-terminal lysine residue also prevents 
the ubiquitination at the same lysine residue site induced 
by MDM2, further stabilizes the tetramer, enhances the 
DNA binding ability of p53 to specific sequence, and also 
promotes the recruitment of transcriptional activators (42).

The mechanism of p53 transactivation is variant on 
different promoters and acetylation modification plays an 
important role in the selective regulation of p53 function. 
The role of acetylation is dependent on the cellular 
environment. 

Methylation

Methylation at lysine and arginine is also a reversible 
mechanism for the regulation of p53 function. K370, K372, 
K373 and K382 at the carboxy terminus of p53 can be 
methylated and the effect to enhance (43,44) or inhibit (45) 
the function of p53 depends on the modified site. Jansson 
et al. reported that three arginine residues R333, R335 and 
R337 of the p53 oligomerization domain (TET) can be 
methylated by a class II methyltransferase PRMT5 (46). 

Lysine methylation

SET7/9 can methylate p53K372 in the nucleus after 
DNA damage, which enhances the overall stability of p53 
binding to chromatin, increases recruitment of p53 in 
regulatory regions of p21 and other downstream genes, 
promotes transcriptional activation of p21 and other 
downstream genes (47). On the other side, Smyd2-mediated 
monomethylation at p53K370 inhibits the transactivation 
of p53, which inhibits p53-mediated cell cycle arrest and 
apoptosis (48). A demethylase KDM1, demethylating 
Lys370, prevents the binding of p53 coactivator 53BP1 (43).  
The 370 locus is close to the 372 locus, suggesting that 
interactions may occur between methylation at these 
lysines. Under physiological conditions, SET9 prevents 
Smyd2 from binding to p53 (48). The SET7/9-mediated 
methylation at K372 can activate p53 function by inhibiting 
Smyd2-mediated methylation at K370 after DNA damage. 
The role of smyd2-mediated methylation at K370 is to 
inhibit p53-mediated transcriptional activation; therefore, 
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methylation at K370 after DNA damage repair is required 
to remove methylation at K372 so that the activity of p53 
can be restored to the basal level. These results indicate 
that methylation at lysine is a dynamic post-translational 
modification in the complex regulation of p53 activity. 
However, p53K370 can also be bimethylated with the effect 
of positive regulation of p53 activity, one evidence is that 
after DNA damage p53 protein with K370me2 modification 
increased in the promoter region of p53 downstream gene. 
The demethylation process from activated bimethylation 
modification to inhibitory monomethylation is regulated 
by lysine-specific demethylase LSD1 (43). Researchers 
have identified another modification associated with p53 
physiological function, monomethylation at p53K382 
by SET8 in 2007, which reduces the transactivation of 
p53 to high response downstream genes (45). Different 
from the K382 monomethylation modification, the level 
of p53K382me2 increased after DNA damage and was 
recognized and bound by the tandem Tudor domain 
of 53BP1, which interacted with p53 by stabilizing the 
accumulation of p53 (49). In addition, studies have reported 
that G9a and Glp could mediate the bimethylation 
at p53K373, while the p53K373R mutants cannot be 
methylated. Different from the activation effect by K370me2 
and K382me2 (mediated by interaction with 53BP1), 
p53K373me2 modification is a non-activated signal (50). 

Arginine methylation

Arginine methylation can also modulate the activity of 
p53, which is an important regulatory mechanism in p53 
response. When DNA is damaged, Strap is able to recruit 
PRMT5 to p53 and promote methylation of p53. The 
absence of PRMT5 changes the specificity of p53 binding 
in the promoter region and triggers apoptosis dependent 
on p53. Methylation by PRMT5 also has influence on the 
activity of p53 oligomerization (46). Under physiological 
conditions, the arginine methylation sites of endogenous 
p53 by PRMT5 were identified as Arg333, Arg335 and 
Arg337. Arg335 and Arg337 can be bimethylated by 
PRMT5 while Arg333 is monomethylated (51). Arginine 
methylation modulates the promoter binding specificity of 
p53, and PRMT5 siRNA reduces the protein level of p21, 
an important downstream protein of p53 involved in the 
regulation of cell cycle arrest. Whereas the proteins encoded 
by downstream genes of p53 involved in apoptosis, such as 
PUMA, NOXA, AIP1 and APAF1 (52) are little affected or 
unaffected. Importantly, mutations of Arg333 and Arg337 

exist naturally, although seldom, which demonstrate the 
importance of p53 methylation. Mutation of Arg337 
(normally mutated to cysteine or histidine), related with 
tumor development, changes biochemical characteristics 
of p53 (53) and causes tetramer of p53 dynamically  
unstable (54). Thus, the role of p53 arginine methylation in 
the regulation of p53 activity may be a mechanism for the 
effect of these mutations.

Ubiquitination

In normal non-stimulated cells, p53 renews quickly and the 
expression of p53 remains low level. MDM2 is an important 
factor for maintaining p53 levels, which promoted 
the polyubiquitination of p53 and the degradation by 
proteasome pathway, thereby inhibiting p53-mediated 
transactivation (55). The major ubiquitination sites of p53 
mediated by MDM2 are six lysines at the carboxy terminus 
(K370, K372, K373, K381, K382, and K386) (56). The 
expression of MDM2 is also regulated by p53, indicating 
a negative feedback of p53 expression. So that an increase 
in p53 level can induce MDM2 expression, leading to a 
decrease in p53 expression and activity (57). Moreover, 
several lysines of the DNA binding domain of p53 are also 
target for ubiquitination (58). MDM4 is similar to MDM2 
and inhibits p53-mediated transactivation. The induction 
of p53 can result from its release from these negative 
regulatory factors. Inhibits and/or rapidly degradations of 
MDM2 and MDM4 cause rapid accumulation of p53 and 
activate its transcription function (59,60). Ubiquitination 
prevents p53 from binding to the downstream gene in the 
nucleus, leading to apoptosis and cell cycle arrest (61,62).

A number of E3 ligases involved in MDM2-independent 
p53 ubiquitination have been identified, such as Pirh2, ICP0, 
COP1, TOPORS, ARF-BP1, CHIP, Ubc13, synoviolin, 
EF41, CARP2, WWP1, MSL2, E6-AP, TRIM2454 and 
MKRN1 (63). Ubc13, WWP1, E4F1 and MSL2 are E3 
ligases mediating proteasome-independent ubiquitination 
of p53. Besides these E3 ligases, MDM2 at low level 
also mediates mono-ubiquitination of p53, resulting in 
proteasome-independent p53 ubiquitination (64).

Different types of p53 ubiquitination result in different 
effects of p53 function. Several E3 ligases, in addition to 
MDM2, can mediate K48-linked polyubiquitination of 
p53 and target it to the 26S proteasome for degradation. 
Other types of ubiquitination, including mono- or K63-
linked polyubiquitinations, affect p53 stabilization by 
regulating nuclear export and cytosolic localizations of 
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p53. Ubiquitination also disrupts p53 from binding to the 
promoter of target genes as a transcription factor in the 
nucleus that results in apoptosis and cell cycle arrest (65).

Other post-translational modification

In addition to the modifications described above, there are 
some other types of modifications of p53 which have already 
been identified, such as SUMO-1 and SUMO-2/3-mediated 
sumoylation (66), neddylation (NEDD8) (67), etc. Moreover, 
O-linked N-acetylglucosamine, ADP-ribosylation and 
prolyl isomerization modifications can also regulate p53 
activity (68). Recently, p53 β-hydroxybutyrylation, a new 
PTM, has been identified by Wenhui Zhao in 2019, which 
is catalyzed by CBP and results in lower levels of p53 
acetylation, thereby attenuates p53 activity (69).

We have summarized the various PTMs of p53 and their 
effect on cellular functions (Table 1). 

Crosstalk between p53 post-translational 
modifications

Hupp et al. proposes an allosteric model depending on 
post-translational modifications of the p53 C-terminus that 
activates p53 function as a DNA-binding protein, that the 
C-terminal of p53 can act as a negative regulator, maybe 
by binding to the core DNA binding region of p53 and 
make it form an inactive conformation (74). A variety of 
studies have supported this allosteric model (75,76). Some 
alterations, such as post-translational modifications and 
binding of single-strand DNA or antibody can disrupt the 
interaction between the C-terminal domain and the core 
domain of p53, allowing the DNA binding domain to form 
an activated conformation (23,75,76). Importantly, there is 
close interaction between post-translational modifications 
of p53 and these modifications participate in the regulation 
of p53 activity cooperatively. 

Activation of p53 triggered by cell stress response is 
primarily regulated by post-translational modifications 
of p53, including phosphorylation and acetylation (77). 
For example, in the UV or radiation-induced response, 
the first modification induced in the N-terminus of 
p53 is phosphorylation at Ser33 and Ser37 and then 
phosphorylated p53 promotes acetylation at K373/K382 
and K320 mediated by p300 and PCAF, respectively (78).  
Phosphorylation of p53 at the C-terminus induced 
by CHK1 and CHK2 in DNA damage response also 

regulates acetylation of the C-terminus (79). In the 
DNA damage response, both acetylation at K392 and 
phosphorylation at Ser392 of p53 increase the interaction 
between p53 and MDC1, which is an important linker 
protein capable of recruiting many proteins to DNA 
damage sites (80). Phosphorylation of the p53 C-terminus 
regulatory region (such as Ser392) catalyzed by casein 
kinase Ⅱ (CK2) promotes binding of p53 with DNA 
and induces site-specific acetylation dependent on DNA 
and p300 (75). Phosphorylation of p53 amino terminal 
sites, including Ser15, Ser20, Ser33, Ser37, Ser46, Ser55 
and Thr18 promotes the binding of p53 with p300/
CBP and the transactivation of p53 (81). In addition, 
the bisphosphorylation or polyphosphorylation events 
cooperatively increase the interaction of p53 and p300 
by about 80-fold (82). Phosphorylation at these sites also 
prevents MDM2 binding, resulting in a decrease in p53 
renewal (83).

Ubiquitination and acetylation are mutually exclusive 
events that have different effect on the regulation of p53 
functions. With ubiquitination mediated by MDM2, 
p53 cannot be acetylated by p300/CBP, leading to 
rapid degradation through proteasome pathway (84). 
Interestingly, p300/CBP not only acetylated p53, but 
also acetylated MDM2, resulting in inhibition of p53 
ubiquitination mediated by MDM2 (85). Acetylation of p53 
inhibits its interaction with MDM2 and MDM4 (24,68). 
Recent studies have demonstrated that tripartite motif-
containing protein 25 (TRIM25) might be a negative 
regulator of p53 acetylation and polyubiquitination as 
well as a positive modulator for p53 sumoylation, which 
modulates p53 nuclear export in prostate cancer cells (86).

There is also close relationship between methylation 
and acetylation at p53 lysine residues. Lysine methylation 
modification mainly occurs in response to DNA damage, 
which will promote (44,87) or even inhibit (48) the 
subsequent acetylation at other residues. For example, 
methylation at p53 K372 has the function to induce the 
subsequent acetylation modifications, thereby increase the 
stability and activity of p53 and result in upregulation of its 
target p21 gene and cell cycle arrest. p53 acetylation induced 
by DNA damage is also impaired in the absence of lysine 
methylation (87). Taken together, there is close and intricate 
relationship among post-translational modifications of 
p53, which is crucial for the function of p53 in cell stress 
and tumor suppression. Figure 1 has exhibited the crosstalk 
among post-translational modifications of p53 in response 
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Table 1 Molecular and cellular consequences associated with p53 PTMs

PTM type PTM residues Molecular and cellular consequences Refs.

Phosphorylation S6, S9 Regulation of tumorigenesis and metastasis; involves in mesodermal 
development

(17,18)

S15 Mediates cell cycle G1/S block; increases stabilization of p53 protein in 
cell stress response

(14,16)

S37 Promotes p53 activity in cell stress response (14)

S46, T55 Exert apoptotic cell death (20,21)

S392 Activates the sequence-specific DNA binding capacity of p53 (22)

Acetylation K305, K370, K372, K386 Increase the sequence-specific DNA binding capacity (23,24)

K120 Promotes p53-dependent apoptosis induced by DNA damage; regulates 
tumor development

(36)

K164 Regulation of p53-mediated cell growth arrest; promotes p53-dependent 
apoptosis induced by DNA damage

(24)

K320 Increases the sequence-specific DNA binding capacity, promotes the 
recruitment of transcriptional activators, affects p53 shuttle between 
nucleus and cytoplasm and the p53-dependent BAX-mediated apoptosis 
following DNA damage; induces cell cycle arrest

(25,26,39,70)

K373, K382 Promote its promoter-specific transactivity and apoptosis in the cellular 
UVB response; mediate p21 activation for G1 phase arrest; Deacetylation 
of K382 is catalyzed by HDAC1 and SIRT1

(31-34,70,71)

K381 Activates transcription and induces apoptosis (72)

Methylation K370 Represses the transactivation of p53, resulting in inhibition of p53-
mediated cell cycle arrest and apoptosis; Demethylation of K370 is 
catalyzed by KDM1, prevents the binding of p53 coactivator 53BP1

(43,48)

K370me2 Positive regulation of p53 activity (43)

K372 Enhances the overall stability of p53 binding to chromatin, increases 
recruitment of p53 in regulatory regions of p21 and other downstream 
genes

(47)

K373me2 Inactivation of p53 (50)

K382 Reduces the transactivation of p53 to high response downstream genes (45)

K382me2 Increases the transactivation of p53 (49)

R333, R335me2 Regulation of sequence-specific DNA binding capacity and 
oligomerization of p53

(46,52)

R337me2 Modulates the promoter binding specificity of p53, changes biochemical 
characteristics of p53 and causes tetramer of p53 dynamically unstable; 
regulates tumor development

(52-54)

Ubiquitination K370, K372, K373, K381, 
K382, K386

Mediates degradation of p53, inhibits p53-mediated transactivation 
leading to apoptosis and cell cycle arrest

(55,56,61,62)

Sumoylation K386 Represses transcription activity and binding to the endogenous p21 gene 
of p53

(73)

β-hydroxybutyrylation K120, K319, K370 Results in lower levels of p53 acetylation, thereby attenuates p53 activity (69)

PTM, post-transcriptional modification.
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of DNA damage. 

Summary and outlook

Different stimuli lead to different post-translational 
modifications of p53, making p53 a protein that can be 
dynamically regulated, and play the corresponding function 
quickly and accurately in various stress responses and 
physiological processes. As the most frequently inactivated 
tumor suppressor in human cancers, the inactivation and 
mutation of p53 has been reported in more than 50% of 
cancers (88). It has been widely accepted that regulation on 
cell cycle progression is one of the major mechanisms by 
which p53 inhibits tumor cell growth (89). As an important 
transcription factor, p53 facilitates cell cycle arrest mainly 
through upregulation of the expression of its target genes 

involved in cell cycle progression, such as p21, GADD45 
and Cdc25C (90). Since PTMs of p53 play essential roles 
in regulation transactivity of p53, cell cycle progression 
mediated by p53 is also regulated by these modifications. 
We have summarized the effect of various p53 PTMs on 
cell cycle progression (Table 2). Interaction between post-
translational modifications makes the regulation of p53 
function complex and delicate. All of the post-translational 
modifications of p53 are reversible. PTM-removal enzymes 
are important for cells to recover from stress response 
and play an essential role in establishing thresholds for 
p53 activation, thereby preventing p53 from improper 
activation. Furthermore, some modifications are mutually 
exclusive, so PTM-removal enzymes are required to change 
the state of modification, in particular for the activation of 
p53 to promote its function. These PTM-removal enzymes 
can affect the development of tumors, which may serve as a 
potential target for new antineoplastic drugs. Considering 
that p53 also inhibits the expression of many genes, the 
role of post-translational modifications in p53-mediated 
transcriptional inhibition is also an interesting subject 
to research. Moreover, since p53 is an important tumor 
suppressor and is dysfunctional in a variety of cancers, does 
the post-translational modification, in addition to mutations 
in gene sequences, lead to abnormal activity of p53 in these 
cancers? Research on the function of p53 post-translational 
modifications, its underlying molecular mechanism(s) 
and interaction between these modifications are of great 
significance to provide new molecular basis for therapeutic 
strategy of p53 dysfunction associated cancers. 

Figure 1 Crosstalk between post-translational modifications of 
p53 in response of DNA damage.

DNA damage 

p53 phosphorylation p53 methylation

p53 ubiquitination p53 acetylation

Table 2 Effect of p53 PTMs on cell cycle progression

PTM type Effect on cell cycle progression Refs.

Phosphorylation ATM and ATR phosphorylate p53 (Ser6, -15, -37, and -392) in response to DNA damage mediate p21 
activation for arresting the cell cycle at the G1-S checkpoint

(91)

Phosphorylation of p53 on Ser15 induced by AMPK activation initiates AMPK-dependent cell-cycle arrest 
(G1/S block) 

(16)

Phosphorylation of p53 on Ser33 mediated by p38γ, p38δ and JNK2 causes a transient G1 arrest (92)

Acetylation Acetylation of p53 at K164, K320, K373 and K382 induce cell cycle arrest (93-95)

Methylation Methylation of p53 at R333, R335 and R337 enhance p53-dependent cell cycle arrest (46,96)

Smyd2-mediated monomethylation at p53K370 inhibits p53-mediated cell cycle arrest (48)

Methylation of p53K372 induces cell cycle arrest by upregulation of p53 target p21 gene (47)

Ubiquitination E3 ligase Pirh2 mediated ubiquitination of p53 decreases p53-mediated cell cycle arrest (97)

K48-linked ubiquitination of p53 mediated by E3 ligase MDM2 inhibits cell cycle arrest (98,99)

PTM, post-transcriptional modification.
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