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Introduction

A theoretical model of disease pathogenesis can provide 
useful touch points for investigation. Focusing analysis on 
touch points permit elucidation of the pathophysiology 
that defines the disease. Directed investigations assist in 
deciphering critical determinants that predict disease as 
oppose to observations that simply characterize features of 

the disorder without uncovering its true determinants.
Therefore, having a reliable model is indispensable in 

deciphering which alterations in physiology actually give 
rise to disease.

Irritable bowel syndrome (IBS) is a clinically defined 
disorder characterized by symptoms and signs that lend 
no clear entrance to its pathogenesis. The “brain-gut axis” 
approach, recently renamed the “gut-brain interaction” 
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serve as an efficient collection of prominent features of 
the disease consisting of relevant cohorts of symptom/sign 
observations that characterize IBS and other functional 
gastrointestinal disorders (FGIDs) (1). The seminal traits 
of abnormalities in IBS are clinical (1,2), histological (3-5), 
histoimmunological (6-11) and neurophysiologic (12,13). 
Added to these are new observations related to the enteric 
microbiome (14) and its relationship to IBS; this gut-
brain relationship between enteric microbiome and central 
nervous system can be visualized by physiologic neuro-
imaging (15,16). 

Instead of providing a working model, these observations 
present characteristics of IBS that are short of identifying 
causative determinants. It is likely that these observations 
represent the physiologic effects of yet to be determined 
cause or causes that induce the syndrome. This is true of 
the other functional GI disorders including non-erosive 
reflux, functional dyspepsia, and esophageal pain syndrome. 
Investigations have uncovered many features or traits, 
with no single one or two observations able to direct 
investigational efforts toward a definitive identification of 
the origin of these disorders. 

An alternative starting point—effective 
therapeutic intervention

An alternative starting point for any pathogenesis model is 
an effective therapeutic intervention—an intervention that 
brings about rapid and complete reversal of disease, that is, 
complete amelioration of signs and symptoms that define 
the disorder. This occurred with the discovery of insulin, 
various classes of antibiotics and targeted immuno-therapies 
for psoriasis, rheumatoid arthritis and certain cancers. 
The introduction of an effective therapeutic intervention 
provides a cause-effect starting point around which a model 
of pathogenesis could be constructed, complete with touch 
points for further investigation and discovery. More often 
than not, advances in medicine and physiology come by way 
of models fashioned from a curative outcome of an effective 
intervention. Thus the therapeutic intervention served to 
focus research efforts at known mechanism of action specific 
to that intervention. 

What constitute an effective therapeutic 
intervention?

Rapid and complete reversal of a disease process at a rate 
that is 10-fold greater than otherwise expected is termed 

a positive Glasziou treatment effect (17) qualifies as an 
effective therapeutic intervention. The difference in effect 
size between treatment and placebo is roughly 10–50 base 
points (18). Therefore comparisons between placebo and 
any prospective intervention require control of biases that 
confound outcomes. From his work at the Oxford Center 
of Evidence Based Medicine, Glasziou concluded that 
while randomized trials aptly and quantitatively discern a 
true treatment signal from noise of experimental bias, the 
magnitude of the treatment effect of certain interventions, 
can be so dramatic that experimental bias can be statistically 
ruled out as an explanation of the observed treatment effect. 
Glasziou (17) asserted that implausibly large associations, 
both between treatment and confounding factors and 
between confounding factors and outcome, are required to 
explain comparative response rates of 5–10. He concluded 
that rate ratios (obtained by comparing time to point 
of improvement between any prospective and standard 
intervention) that are beyond 10 reflect real treatment 
effects of the prospective intervention, even if confounding 
factors (experimental bias) were uncontrolled. In other 
words, the contributions of uncontrolled experimental bias 
would be trivial and non-determinative to the treatment 
outcome, having a P value of 0.05 or less.

Six weeks of specific clinical symptoms and signs over 
a six month period are required to confirm the diagnosis 
of IBS (constipative or diarrhea dominant). As reported 
elsewhere (19-21) persisting symptoms and signs of IBS can 
be eliminated 2–3 days following the use of high potency 
polymerized cross-linked sucralfate (HPPCLS). Compared 
to the time to treatment effect for other FDA approved 
agents for IBS—lubiprostone, linaclotide, rifaximin, 
alosetron and tegaserod—this 2–3 day elimination of 
symptoms and signs of IBS represents a rate ratio range 
from 14–56. This is well beyond the required multiple of 10 
for a positive Glasziou treatment effect. While this repeated 
observation reported by our institution indeed requires 
reproduction by other investigators, the emergence of this 
outcome compels a proposal for an alternative model of IBS 
pathogenesis. A model stemming from the clinical outcome 
of HPPCLS is one based on syndrome reversal associated 
with an intra-luminal non-systemic, topically acting therapy 
having no obvious mucosal targets—a model based on the 
therapeutic efficacy of HPPCLS.

IBS model based on HPPCLS therapeutic efficacy

The model presented here accommodates the known 
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mechanism of action inherent to the intervention and 
the known mechanisms of actions involved in mucosal 
inflammation (5-7). Once ingested, HPPCLS acts as a 
muco-adherent, topically acting non-systemic agent (22-24).  
Its entire therapeutic effect is confined to the topical 
engagement of the mucosal epithelium. HPPCLS is distinct 
from standard sucralfate in its physical ability to maintain 
elevated surface concentrations of sucralfate. At 3 hours 
post-administration to rabbits with acetic acid-induced 
colitis (25), HPPCLS (polymerized sucralfate) maintains a 
surface concentration of sucralfate on normal mucosal lining 
that is 800% greater than that of non-polymerized standard 
sucralfate (of the same dose strength) and 2,400% greater 
on ulcerated or inflamed mucosal lining. It is assumed by 
the authors that reversal of mucosal immune activation 
associated with IBS (5-7) is likely involved in some manner 
(direct or indirectly) with the topical engagement of 
HPPCLS and the enteric mucosa.

The proposed model, therefore, bring to forefront a few 
basic givens. Firstly, mucosal immune activation is involved 
with the generation of all symptoms and signs of classic IBS. 
Immune activation occurs due to disturbance of the mucosal 
homeostasis. Thus, there is a genomic controlled primal 
drive to restore any perturbations of mucosal homeostasis 
and inflammation [which includes pro-inflammatory 
(PI) and anti-inflammatory (AI) agents] is the prime 
physiologic tool to restore homeostasis disrupted by an 
epithelial assault. Inflammation subsides only after a signal 
of “restored homeostasis” is received by the genome (26).  
Secondly, HPPCLS is topical and non-systemic agent. 
Thus, the HPPCLS mechanism of action infers the 
existence of an apical epithelial mediated process that is 
physically accessible to HPPCLS. Thirdly, given its topical 
mode of action, the chemical determinants of HPPCLS 
may point to epithelial-associated substances, ligands or 
receptors exposed to the luminal contents and accessible to 
HPPCLS. Fourthly, since there is complete cessation of the 
signs and symptoms of IBS in 2–3 days of using HPPCLS, 
then there must exist as well a network of submucosal 
feedback mechanisms satisfied by a particular epithelial 
event transpiring when HPPCLS adheres to the intestinal 
lining of the IBS patient. These four tenets form the basis 
of the model presented in this report.

Chemical determinants affecting HPPCLS 
adherence to the mucosa

Chemical determinants drive interactions between 

HPPCLS and the mucosal  l ining.  Without these 
interactions there can be no clinical effects. Obviously 
the chemical determinants within HPPCLS define 
interplay between it and the mucosal lining (27). Chemical 
determinants in HPPCLS results from combining sucralfate 
and calcium chelated hydroxybutanedioate (CCHBD) (25). 
Basic science experiments involving flame photometry, 
measurements of turbidity and pH, and gravimetric analysis 
highlight key characteristics of HPPCLS. Low-solubility 
sucralfate is readily suspended by the addition of CCHBD, 
creating polymerization and sucralfate cross-linkage. This 
suspension of CCHBD-treated sucralfate is prolonged 
and self-sustained. The initial neutral pH of low-solubility 
sucralfate becomes acidic with the addition of CCHBD. 
This implies that the suspended material is negatively 
charged. Previously low-solubility sucralfate assumes a 
suspended amorphous appearance. 

There are chemical determinants inherent to the mucosal 
lining itself. Certain mucosal characteristics are pertinent 
to understanding the HPPCLS-mucosal interaction. 
The adherence of HPPCLS, largely electronegative, is 
influenced by the preexisting electrostatic texture of the 
mucosal lining. Adherence of charged macromolecules 
to the mucosal lining was investigated by Jubeh et al. (27)  
using liposomes that were positively, negatively, and 
neutrally charged in colitis-induced rat intestine. Negatively 
charged liposomes adhered to positively charged areas of 
the mucosal lining. Liposomes that were positively charged 
adhered to negatively charged areas of the lining. Neutrally 
charged liposomes adhered evenly throughout the lining. 
Negatively charged areas were normal appearing non-
inflamed mucosa. Positively charged areas were notably 
inflamed. This electrostatic texture mediates the adherence 
of the HPPCLS and the resulting clinically effects. Low-
solubility sucralfate, changed by chelated calcium into 
an amorphous electronegative polymerized and cross-
linked macromolecule, is known to hyper-accumulate 
on inflamed lining. The fact that it accumulates 7 times 
greater than expected on non-inflamed lining and 23 times 
greater on inflamed lining (25), implies that the cross-
linked polymerization can persist intralumenally, possibly 
promoting pi-stacked accumulation of sucralfate on the 
mucosal lining. 

Conceptual function-diagram of proposed model

The macro-elements of HPPCLS-mediated elimination 
of IBS can be conceptually depicted and diagrammed. The 
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proposed model assumes that the existing mucosal immune 
activation associated with all forms of IBS (constipation 
and diarrhea dominant), as well as other FGIDs, indicate a 
breach of epithelial homeostasis and the ongoing attempts 
of the mucosa to restore itself under the continual presence 
of the offending intraluminal agent, whatever that agent 
may be. The model accommodates the possibility that 
there are no specific “offending agent(s)” but abnormal 
function of epithelial elements tasked with maintaining 
normal mucosal integrity. In other words, the proposed 
model accommodates the possibility that constituents of 
normal luminal contents can be misidentified as offensive 
by a defective epithelial surveillance, thus igniting immune 
activation commonly observed in the mucosa of IBS 
patients.

Having this, the macro-elements of HPPCLS-mediated 
elimination of IBS may have the following sequence of 
emergence: (I) a surface point of contact of “offending 
agent” or of misidentification of normal intraluminal 
agent as offensive; (II) triggered dispatch of transepithelial 
signal(s) to the nucleus to initiate inflammation and (III) 
multiple signal relays transmitted through the cytoplasm 
of the “offended” enterocyte to its nucleolus, relays that 
coordinate numerous messages received as result of 
the epithelial disturbance. To illustrate this theoretical 

engagement (Figure 1), the model depicts the disease activity 
as a hub of responses and actions. The model assumes that 
mucosal homeostasis is an evolutionary center maintained 
by a constitutively controlled balance of PI and AI agents of 
both the innate and adaptive immune system. 

A signal (or signals) of epithelial injury or disturbance 
(whether apical, basal or cytoplasmal in location) from the 
injured (or disturbed) cells is relayed to its DNA which in 
turn incites a PI reaction complete with commensurate 
counterbalancing AI actions in an attempt to restore 
homeostasis. The ratio of PI to AI is determined by the 
extent of epithelial injury communicated from the epithelial 
cell to its genome.

The genome controls all cascades of PI/AI actions 
amplifying them to levels determined by the extent of injury 
(or perceived injury). If injury is minimal then a primary 
level of PI/AI response is initiated and controlled by the 
genome until it receives signal either verifying restored 
homeostasis or continued disturbance. If homeostasis is not 
achieved within a reasonable time or if continued injury is 
sustained, then the genome can amplify the PI/AI response, 
deepening the amplification as is required by the assault (or 
perceived assault). Once the epithelial breach is repaired, 
then a signal of “restored homeostasis” is relayed to the 
genome, which in turn de-amplifies its PI/AI actions. If the 

Conceptual model of pathogenesis multi-feedback loop Key to model
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Figure 1 Conceptual Model of Pathobiology of Functional Gastrointestinal Disorders (FGIDs). Used with permission from Translational 
Medicine Clinic and Research Center of Storrs. PI, pro-inflammatory, AI, anti-inflammatory. 
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HPPCLS observations of rapid reversal of IBS are to be 
believed, then this de-amplification is segmental (occurring 
in the anatomical site of the gut), sequential and rapid.

Law of mucosal homeostatic equilibrium—
proposed model by components

General principles governing the model

The conceptual model above is useful to outline the 
sequence of general events, but it omits cellular and 
humoral signaling molecules and the general principles 
governing their involvement. Inflammation is an act of 
preservation. If unsuccessful in restoring homeostasis, 
inflammation can become immunopathologic (26). It is 
a complex network of immunologic events under strict 
genomic control and modulation. During inflammation, 
cytokines, or signaling molecules, arise from cellular 
elements of the innate and adaptive immune system and 
provide exogenomic coordination. Based on the observed 
clinical effects of HPPCLS, it seems that the entire 
sequences of immune events are deactivated in an orderly 
fashion with the eventual outcome of restored baseline 
homeostasis of the epithelium. 

It is the authors opinion that probiotics-associated 
substances, probably short chain fatty acids (SCFA) and 
other topically acting agents follow the same overall 
inhibitory AI trek but by way of differing mucosal pathways. 
The HPPCLS pathway is likely transforming growth 
factor/epithelial growth factor (TGF/EGF) or trefoil 
factor (TFF) dependent (28-34) while SCFA generated by 
probiotic microbes utilize TGF/EGF independent pathways 
(35-38). To identify relevant touch points for prospective 
analysis, the plausible compartments of tissue-level 
actions and counteractions should be assigned to known 
cellular, subcellular, autocrine and paracrine elements. 
Comparative analysis of the homeostatic concentrations 
with the concentration of these elements in patients with 
varied severity and types of IBS will permit elucidation of 
pathophysiology of IBS and FGIDs.

Regardless of the manner of mucosal-mediation used 
by either HPPCLS or probiotics, the cohorts of molecular 
and cellular mediators involved originate from both the 
innate and adaptive immune systems. Each anatomical 
layer of the GI lining (epithelial-applied mucus, the five 
cell-types populating the epithelium, the sub-epithelium 
and lamina propria) (39,40) play host to cellular and 
molecular mediators of both the innate and the adaptive 

immune systems—mediators that can be either PI and AI. 
In addition to this, the state of homeostasis is maintained 
by a genomic-controlled balance of PI and AI mediators 
with every genomic-initiated PI action accompanied by a 
commensurate counterbalancing AI reaction.

Interplay of specific components of the model

Armed with these general principles, a model of can be 
constructed comprising of known PI and AI mediators 
localized (I) to the lumen; (II) underneath the mucus 
blanket; (III) within and just beneath the epithelial lining 
and (IV) within the lamina propria. Figure 2 shows the 
dynamic of the proposed pathobiology of IBS and most 
functional bowel disorders.

According to this model there are (I) luminal triggers; 
(II) activation of a PI immune response; (III) concomitantly 
expressed compensatory feed-back AI reaction; with 
(IV) homeostasis either immediately restored or delayed 
and finally, if homeostasis is delayed there is (V) a step-
wise amplification of deepen PI immune response with 
its compensatory feed-back AI reaction. Prolonged delay 
of homeostasis gives rise to (VI) the signs, symptoms and 
findings associated with IBS and functional bowel disorders. 

The model specifically identifies potential humoral 
and cellular elements possibly involved in successive 
amplification of the inflammatory immune response.

Pathobiology of IBS

The biology of the immune response comprises cellular and 
molecular elements that facilitate events required to mount 
an immune response. Alterations in any of these elements 
are pathologic, compromising the immune response, 
delaying restoration of homeostasis and thereby giving rise 
to the signs, symptoms and findings associated with IBS or 
other functional GI disorders.

Altered surveillance—site and basis of an 
immune trigger

Prior to any perturbation or disturbance of epithelial 
homeostasis and normal clinical function, there is an 
actively supported state of homeostatic surveillance (41,42). 
An equilibrium or neutral state of quiescence is maintained 
by cellular and molecular elements responsible for active 
and effectual surveillance. An intact immune response 
capable of restoring homeostasis once it is disturbed begins 
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Figure 2 Cytokine controlled trans-epithelial multi-feedback loop for mucosal-homeostasis disrupted in patients with IBS, NERD and 
functional dyspepsia. Used with permission from Translational Medicine Clinic and Research Center of Storrs, taken from 2015 James W. 
Freston Single Topic Conference: A Renaissance in the Understanding and Management of Irritable Bowel Syndrome. Pages 11-14. 2015; 
www.gastro.org/education/Freston_2015_Abstracts.pdf
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with effectual surveillance (43-46). A compromise in the 
cellular and molecular elements responsible for surveillance 
will play out as a compromised immune response, unable to 
maintain a stable homeostasis.

The trigger site for an immune response is the 
epithelium and the basis of an inept immune response 
can initiated from altered epithelial surveillance being 
either molecularly hyper-hypo-vigilant. Altered epithelial 
surveillance may spring from atypical alterations in the 
function of one or more epithelial cell types. Disordered 
variants in molecular markers on the alpha-beta or delta-
gamma intra-epithelial lymphocytes (IELs) regionally 
distributed from the esophagus and the rectum (47-49) can 
compromise epithelial surveillance. Surveillance can be 
compromised by dysfunction or altered molecular markers 
on surfaces of epithelial enterocytes, enterochromaffin cells, 
Paneth or microfold cells, as each cell type contribute to 
homeostatic surveillance.

Errors in trans-epithelial sampling of luminal contents 
by paracellular, globlet, microfold and dendritic cells can 
compromise surveillance as well (40). Finally enteric glial 
cell dysfunction in presenting to T cells, luminal antigens 
previously processed by any of the afore-mentioned 
frontline epithelial cells can compromise surveillance. 
Compromised surveillance or breached epithelium will 
trigger primary immune activation.

Primary immune activation & compensatory AI 
immune reaction

Breached epithelium or compromised surveillance will 
trigger a primary immune activation within lamina propria 
immune cells, dendritic cells, or innate lymphocytes (T- 
and B-cells) secreting interleukins (ILC1, ILC2 and ILC3) 
(50,51). Compensatory AI immune reaction tasked with 
restoration of epithelial homeostasis involves secretion of 
TFFs, galectins, TGFβ, TGFα, and EGF. Primary immune 
activation also stimulates the apical expression on the 
epithelium of AI receptors (ErbB1, 2, 3, 4, TLR and NLR, 
serine/threonine receptors). Compensatory reactions also 
include reactionary activation of alpha-beta or delta-gamma 
IELs, chiefly responsible for epithelial surveillance.

Secondary immune activation and its 
compensatory AI immune reaction

As shown in Figure 2, should primary activation of the innate 
immune response with its compensatory AI reaction, fail 

to restore homeostasis, then secondary immune activation 
occurs, accompanied by its compensatory AI immune 
reaction. Distressed epithelial cells (such as upregulated 
enterocytes, enterochromaffins, Paneths, microfold 
cells, goblet or dendritic cells) activate submucosal mast 
cells, macrophages and monocytes to secrete nerve 
growth factor, histamine and PI cytokines (52-54).  
Compensatory reaction counterbalancing secondary 
immune activation involve stimulated secretion of TGFβ, 
interferon-γ, with membrane expression of AI receptors 
(ErbB1, 2, 3, 4, TLR and NLR, serine/threonine) on mast 
cells and monocytes in the lamina propria.

Primary target activation & compensatory 
primary target feedback deactivation

Primary target of secondary immune activation are afferent 
and efferent neurons (55,56), enterocytes, eosinophils, 
neutrophils and enterochromaffin cells (57-59).

Up-regulation of these targeted cells lead to membrane 
expression of AI receptors (ErbB1, 2, 3, 4, TLR and NLR, 
serine/threonine) on the effector cells and on recruited cells 
(mast cells, eosinophils, neutrophils) and on the basolateral 
aspect of enterochromaffin cells (6). These AI receptors are 
responsive to local concentrations of TGFβ, TGFα, HGIF, 
PDGF and amphiregulin (60-64). 

Secondary target activation & compensatory 
secondary target feedback deactivation

Sustained, unabated stimulation of up-regulated afferent 
neurons, efferent neurons and enterochromaffin cells result 
in altered contraction of the mucosa muscularis, circular 
and longitudinal muscles as well as sustained afferent 
neuronal sensitization leading to pain and hyperalgesia 
(65,66). Neuro-cytokines and effector substances released 
by up-regulated neurons can (I) stimulate epithelial cells 
(esp. enterochromaffin cells) to secrete fluids (12,13,67) 
giving rise to diarrhea-dominant IBS; (II) stimulate sub-
mucosal muscularis and the circular muscles of the gut to 
contract while simultaneously causing the longitudinal 
muscles to relax (68,69)—discordant contractions giving 
rise to constipation-dominant IBS, (such actions also result 
in intestinal cramping and bloating) and (III) stimulate 
capillary vessels to expand and increase their flow (12,13). 
Additionally, stimulated sub-mucosal sensory neurons 
release pain substances within the sub-mucosa and into the 
bloodstream; they also transmit up-regulating neuronal 
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signals outside the GI tract into dorsal root ganglia of 
the spine to affect segments of the GI (12,13) that is 
proximal and distal to the area of immune activation. 
Activation of secondary targets lead to the clinical 
symptoms, signs and findings associated with IBS and other 
FGIDs. Counterbalancing these targeted activations are 
compensatory neuronal secretion of glucagon-like peptide-2 
(GLP) which in turn stimulates VIP receptors in neurons 
within the submucosal plexus to modulate against the gut 
effects stemming from activation of secondary targets  
(70-73) In fact, GLP1 given to patients with IBS provides 
an effective, on demand, relief of acute pain attacks (74). 

Summary

In IBS (as well as other FGIDs) it is likely that luminal 
triggers engage vulnerable elements of surveillance in the 
mucosal epithelium. Sites of vulnerability can be antigen-
sampling systems involving paracellular, transepithelial cells 
(microfold cells and goblet cells), Paneth cells, dendritic 
cells or intraepithelial lymphocytes. This breach of epithelial 
homeostasis activates the primary (innate) and then 
secondary (cellular, adaptive) immune systems that in turn, 
up-regulate primary and secondary targets of PI activation. 
The inflammatory actions of up-regulated targets, though 
counterbalanced with compensatory AI feedback (in terms 
of membrane expression of AI markers or secretion of AI 
messengers), result in the symptoms, signs and findings of 
functional bowel syndrome. If no substantial defects exist 
in the mediating components of the primary and secondary 
immune systems, then topical actions that reverse the initial 
breach will provide a feedback inhibition signal (shown in 
red in Figure 1) sufficient to induce the genome to initiate 
successive deactivation of subservient immune cascades and 
to thereby reverse the signs and symptoms of the functional 
bowel syndrome. 

Whether  or  not  the c l inica l  and experimental 
observations characteristic of IBS (altered tight junction, 
activated immune responses, etc.) are actually eliminated 
by HPPCLS remains unknown. It would be expected that 
molecular findings typical of IBS should be minimized, 
substantially reduced and or significantly subdued so as to 
offer negligible clinical consequences.

Conclusions

Deciphering the pathophysiology of any disorder is greatly 

benefited by the use of an intervention that dramatic 
ameliorates the signs and symptoms of disease. In the 
regulatory approval of interventions for IBS, the FDA 
requires a 12-week comparison with placebo with patient-
reported (rather than clinician-reported) outcomes centered 
on (I) alleviation of pain/discomfort and (II) improved 
regulatory of bowel habits and consistency of stool. Instead 
the required 84 days of observation to verify a significant 
treatment effect, HPPCLS meet the patient-reported 
outcome-standard within 2–3 days. The resultant rate ratio 
is 14–56 times that expected with other interventions—
lubiprostone, rifaximin, linaclotide, alosetron, tegaserod—
and highlights HPPCLS’s mechanism of action as a 
possible window into the pathophysiology of functional 
bowel disorders. Being non-systemic and topically active, 
HPPCLS implicates mucosal determinants of IBS that 
are physically accessible. The model in concept (Figure 1) 
and in its specifics (Figure 2) provides several touch points 
of analysis to help pinpoint the true disturbance in IBS. If 
substantiated but others, HPPCLS-mediated reversal of 
IBS, implicate repairable breach or breaches in epithelial 
surveillance may give rise to the symptoms and signs of IBS 
and FGIDs.
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