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Introduction

Pancreatic adenocarcinoma (PDAC) currently ranks as 
14th most common cancer and 7th most common cause 
of cancer related death worldwide. Both are estimated 
to further increase especially in the developed countries 
due to an aging population, alimentary risk factors (e.g., 
obesity, smoking, alcohol) and a lack of specific treatment 
options (1-3). In the absence of specific clinical symptoms, 
late diagnosis with usually advanced disease stages at first 
presentation contribute to the overall poor prognosis 
in PDAC. The introduction of advanced multimodal 
treatment protocols with novel chemotherapeutic 
combinations, now commonly additionally performed 
in the neoadjuvant setting, have resulted in a less severe 
disease course. A recent meta-analysis reported median 
overall survival times of 26.1 months for neoadjuvant 
chemotherapy followed by surgery (4). Similarly, the 

introduction of a combination chemotherapy of oxaliplatin, 
irinotecan and leucovorin (FOLFIRINOX) has improved 
survival times e.g., in patients diagnosed with a metastatic 
disease stage (5). Molecularly, several genetic risk factors 
[e.g., family history, germline mutations (BRCA1, 2; PALB2 
Peutz-Jeghers-Syndrome, DNA repair mismatch genes 
MLH1, MSH2, MSH6, PMS2), genomic aberrations (KRAS, 
TP53, CDKN2A and SMAD4), and transcriptomic subtypes 
(squamous, also called basal like or quasi-mesenchymal 
versus classical, i.e., immunogenic progenitor or pure 
classical progenitor and exocrine like, i.e., ADEX)] have 
been identified (6). Despite these significant achievements 
few factors (e.g., BRCA-ness) currently inform clinical 
management decision. 

The two major challenges from a radiological standpoint 
are early tumor detection and non-invasive sub-classification 
of molecularly distinct, albeit (histo-)morphologically 

Review Article

Pancreatic cancer detection and characterization—state of the art 
cross-sectional imaging and imaging data analysis

Georgios Kaissis, Rickmer Braren

Institute of Diagnostic and Interventional Radiology, Faculty of Medicine, Technical University of Munich, Translational Oncology and Quantitative 

Imaging/Data Science Laboratory, Munich, Germany

Contributions: (I) Conception and design: All authors; (II) Administrative support: All authors; (III) provision of study materials or patients: All 

authors; (IV) collection and assembly of data: All authors; (V) data analysis and interpretation: All authors; (VI) manuscript writing: All authors; (VII) 

final approval of manuscript: All authors.

Correspondence to: Rickmer Braren. Institute of diagnostic and interventional Radiology, School of Medicine, Technical University Munich, 

Ismaninger Str. 22, 81675 Munich, Germany. Email: rbraren@tum.de.

Abstract: Pancreatic ductal adenocarcinoma (PDAC) represents a deadly disease, prognosticated to become 
the 2nd most common cause of cancer related death in the western world by 2030. State of the art radiologic 
high-resolution cross-sectional imaging by computed tomography (CT) and magnetic resonance imaging 
(MRI) represent advanced techniques for early lesion detection, pre-therapeutic patient staging and therapy 
response monitoring. In light of molecular taxonomies currently under development, the implementation 
of advanced imaging data post-processing pipelines and the integration of imaging and clinical data for the 
development of risk assessment and clinical decision support tools are required. This review will present the 
current state of cross-sectional radiologic imaging and image post-processing related to PDAC. 

Keywords: Pancreatic cancer; computed tomography (CT); magnetic resonance imaging (MRI)

Received: 03 May 2019; Accepted: 07 May 2019; Published: 21 May 2019.

doi: 10.21037/tgh.2019.05.04

View this article at: http://dx.doi.org/10.21037/tgh.2019.05.04

https://crossmark.crossref.org/dialog/?doi=10.21037/tgh.2019.05.04


Page 2 of 10 Translational Gastroenterology and Hepatology, 2019

© Translational Gastroenterology and Hepatology. All rights reserved. Transl Gastroenterol Hepatol 2019;4:35 | http://dx.doi.org/10.21037/tgh.2019.05.04

similar if not indistinguishable tumors. State-of-the-art 
cross-sectional imaging [computed tomography (CT) and 
magnetic resonance imaging (MRI)] can support intensified 
screening programs, for instance in hereditary and familial 
disease. However, whereas intraductal papillary mucinous 
neoplasias (IPMN) and mucinous cystic neoplasms (MCN) 
present macroscopically visible precursor lesions, pancreatic 
intraepithelial neoplasms (PanIN) remain undetectable 
by these imaging modalities and—as such—a domain of 
invasive imaging by endoscopic ultrasound (EUS). Major 
advancements in abdominal image quality have been 
achieved with the introduction of iterative reconstruction 
algorithms in CT and MRI, spectral CT (i.e., multi-
energy CT) and the more widespread availability of higher 
field strength MRI (3.0 Tesla) in combination with tailored 
sequences, accelerated acquisition (parallel imaging) and 
post-processing schemes as well as combinations thereof 
(e.g., compressed SENSE) (7). Regarding the pre-operative 
visualization and subtyping along currently developed 
taxonomies, high-end post-processing and image data analysis 
tools (radiomics, machine learning) are being developed. 

Methods

A PubMed (http://www.ncbi.nlm.nih.gov/pubmed) 
keyword search (computed/computer tomography, MD/
CT, magnetic resonance imaging, MRI, pancreatic ductal 
adenocarcinoma, PDAC, PCA and radiomics, machine/
deep learning) without starting date limitation and up to 
March 2019 was performed. Reference lists of identified 
papers were searched. Images were taken from our 
institution’s picture archiving system (PACS). Individual 
patient consent was waived by the hospital ethics 
committee (AZ 180/17S).

Cross-sectional imaging techniques applied in 
pancreatic cancer

CT

Multiphasic, multi-detector computed tomography (MDCT, 
CT) with iodine contrast agent (CA) is recommended for 
PDAC patient staging, including an arterial or parenchymal 
(30–50 s) and a portal-venous (60–80 s) enhancement phase. 
CA injection rates should be intermediate with 3–5 mL/s.  
Patients should be prepared with a negative oral CA 
(e.g., water) and intestinal motility should be reduced 
by intravenous application of N-butyl scopolamine. 
From the raw CT data, a sub-mm isotropic dataset is 
reconstructed and stored for multiplanar reformation 
(MPR) and further postprocessing (see Imaging Data 
Analysis). Reported sensitivities (SE), specificities (SP) and 
accuracy for the CT-based detection of PDAC are 90% 
(95% CI, 87–93), 87% (95% CI, 79–93) and 89% (95% CI, 
85–93) according to a recent meta-analysis of 15 studies, 
including 815 PDAC patients (8). However, detection of 
small PDAC requires expert review of the imaging data (9) 
and individual retrospective studies report SE/SP values 
of up to 97%/98%, accordingly (10). Equivalent SE/SP 
values and higher reader confidence have been reported 
for dual-energy CT (11) which better delineates tumor 
from normal adjacent tissue, compared to conventional CT 
(Figure 1). There are several advantages in CT imaging 
compared to MRI. CT provides a one-stop-shop staging 
exam that usually covers thorax and abdomen/pelvis. With 
the current scanner generation exam times are short (in 
the range of seconds) and motion artifacts are therefore 
generally not encountered. CT is widely available and 
cost effective (with the lower purchase cost resulting 
in lower exam cost, robustness leading to fewer repeat 

A B C D

Figure 1 Spectral CT of a PDAC of the pancreatic head region. (A) Late contrast-enhanced CT; conv. reconstruction; (B) magnified view of 
(A) showing low density tissue encasing the superior mesenteric artery (AMS); (C) late contrast-enhanced CT; monoE40 reconstruction; (D) 
magnified view of (C) showing better delineation of tumor and normal tissue with a sharp drop in contrast affinity at the tumor boundary.
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exams and therefore faster amortization). The necessity 
for high ionizing radiation doses represents an obstacle 
for the routine implementation of dynamic scan protocols 
that could provide additional valuable imaging-based  
biomarkers (12) and for its use as a screening tool in 
high-risk patients (e.g., branch-duct IPMN patients). 
Furthermore, despite the quantitative nature of CT, with 
scanners routinely being calibrated and radiodensity values 
of common tissue types having been set by convention and 
globally valid, acquisition protocol (e.g., pitch), tube current 
and voltage and detector type and age can influence the final 
image. As such, the harmonization of protocols for CT has 
been proposed to limit variance to an acceptable minimum. 

MRI

Multiparametric magnetic resonance imaging (mpMRI) 
in cases of suspected PDAC should be performed at 3.0T 
scanners. Since MRI is highly susceptible to motion 
artifacts, fast imaging protocols (using parallel imaging, 
compressed sensing) are required to achieve robust 
image quality. In addition, patient training/preparation 
and intravenous N-butyl scopolamine (e.g., 20 mg) 
are recommended to reduce controllable (breathing) 
and uncontrollable (bowel) motion. For T2w images 
fast spin echo sequences should be applied for thin  
(3 mm) axial and coronal acquisitions. Diffusion weighted-
MRI (DW-MRI), i.e., the detection of random motion 
of water molecules, is a CA free technique that allows the 
quantification of tissue microstructure, e.g., increased 
cellularity and macromolecular extracellular matrix content 
in PDAC, which is calculated from multiple b-value 
acquisitions and expressed as apparent diffusion coefficient 
(ADC). Most often echo planar imaging (EPI) sequences are 
used in combination with respiratory triggering. For time 
constraints a maximum of up to 4 b-values are measured 
and ADC values are calculated by mono-exponential 
fitting. A dynamic 3D gradient-echo (GRE) T1w sequence 
using macrocyclic gadolinium-based CAs (2–3 mL/s)  
is recommended despite current concerns regarding 
Gd-deposition in the brain (13). Magnetic resonance 
cholangiopancreatography (MRCP), applying heavily T2w 
sequences, is the method of choice for the morphology-
based classification of IPMN lesions into main-duct (MD), 
side-branch and mixed type lesions according to the 
revised Fukuoka criteria (14,15). MRCP data sets should be 
carefully reviewed in combination with high-resolution (i.e., 
reduced field of view) DW-MRI for the presence of solid 

lesions that may indicate the development of malignancy 
within an IPMN or concomitant PDAC and that require 
further work-up by EUS. Navigated or single breath-hold 3D 
MRCP acquisitions that allow for MPRs should be used (16). 

Reported sensitivity, specificity and accuracy of mpMRI 
for the detection of PDAC are higher compared to CT with 
93% (95% CI, 88–96), 89% (95% CI, 82–94) and 90% (95% 
CI, 86–94) from pooled data of 11 studies that included 349 
PDAC patients (8). However, the same reservations brought 
up for reported SE/SP values for CT imaging of PDAC also 
apply for MRI. In addition, abdominal mpMRI has greatly 
benefited from recent technical developments, also not 
adequately reflected in older studies (17).

In addition to the detection and characterization of 
the primary tumor, mpMRI including DW-MRI presents 
a highly sensitive technique for the detection of liver 
metastases, making a combination of staging CT and 
mpMRI of the upper abdomen the ideal baseline imaging 
protocol for PDAC patients.

Cross sectional imaging findings in pancreatic 
cancer

Indirect signs of cancer

Indirect signs of PDAC are pancreatic duct dilations 
and the so-called “double-duct sign” with dilation of the 
pancreatic and the bile duct, seen with tumors developing 
in the pancreatic head region, albeit not specific for PDAC 
and also seen with tumors originating from the distal 
bile duct or papilla. Duct dilations are detected with very 
high sensitivity on T2w images and by MRCP. In cases 
of a pancreas divisum the separately at the minor papilla 
draining dorsal duct may appear normal with tumors arising 
in the head region near or at the ventral duct/major papilla. 
Conversely, even small lesions can (partially) obstruct and 
result in a dilation of the main pancreatic duct (MPD) 
or side branches as an early sign of tumor development 
that has a high sensitivity, albeit low specificity, since 
duct dilations are also frequently seen as a result of prior 
inflammatory episodes. Nevertheless, when present, a 
careful review of mpMRI data should follow and even 
further work-up by EUS or short-term follow-up imaging 
may be indicated since it can provide an opportunity 
to detect PDAC at an early (i.e., curable) tumor stage  
(Figure 2). In contrast, in the case of focal inflammatory 
processes, ductal structures are often partially maintained 
(i.e., penetrating duct sign).
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Precursor lesion detection and characterization

The direct detection of small pancreatic malignancies 
remains challenging despite major technological advances 
such as dual energy CT, 3.0 T MRI and improved post-
processing techniques. Direct visualization of the most 
common PDAC precursor lesion, pancreatic intraepithelial 
neoplasias (PanIN), which are typically <5 mm in size, 
is beyond resolution of routine cross-sectional imaging. 
However, the presence of non-communicating microcysts 
(best visualized on T2w imaging and MRCP) identified 
in an atrophic pancreas has shown association with 
histopathologically confirmed PanIN lesions (18), a finding 
requiring prospective evaluation. 

The other common precursor lesions, intraductal 
papillary mucinous neoplasms (IPMN) are morphologically 
subdivided into main-duct (MD), branch-duct (BD) and 
mixed-type (MT) IPMN. MD- and MT-IPMN have a 
high prevalence of malignancy and are easily identified by a 

MPD diameter of ≥10 mm and therefore do not present a 
radiological challenge. In BD-IPMNs the revised Fukuoka 
guidelines specify imaging features that correlate with the 
risk of the development of malignancy within 3 years. 
High risk stigmata (50%) include new onset jaundice, the 
detection of contrast-agent (CA) affine nodules ≥5 mm 
and/or a MPD diameter ≥10 mm, whereas worrisome 
features (5%) include a cyst diameter ≥3 cm at diagnosis or  
a >5 mm increase in cyst diameter within 2 years, thickened 
cyst walls, enhancing nodules <5 mm/enhancing septations, 
MPD diameter of 5–9 mm with distal atrophy and/or 
lymphadenopathy. More recent publications propose an 
increased risk for the presence of nodules >5 mm independent 
of CA uptake and/or cyst growth >5 mm/year (19) (Figure 3).

Diffusion weighted-MRI

In DW-MRI high b-value images have a high sensitivity 
for the detection of focal pathologies. However, further 

Figure 2 A “missed” PDAC referred to a tertiary center. (A) External contrast-enhanced CT shows tiny hypodense lesion of the pancreatic 
tail (arrow); (B) external follow-up MRI after 3 months reveals a T2w hyperintense lesion (arrow) with adjacent hyperintense cyst; (C) b600 
DW-MRI shows a corresponding focal diffusion restriction with high signal intensity (arrow); (D) in-house contrast-enhanced CT after an 
additional 6 months shows a large mass in the upper abdomen and a hypodense liver lesion, histologically confirmed as PDAC and PDAC 
liver metastasis.

Figure 3 Cancer within a large SB-IPMN. (A) T2w MRI shows a lobulated cyst of the pancreatic tail; (B) contrast-enhanced T1w MRI 
shows focal CA affinity in the wall of the cyst (arrow); (C) b600 DW-MRI shows a corresponding focal diffusion restriction with high signal 
intensity (arrow). 

A B C D

A B C
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differentiation of e.g., focal pancreatitis from PDAC 
presents a major challenge, as both pathologies can result 
in an increased cellularity compared to normal pancreas. 
In addition, varying degrees of tumor desmoplasia, 
differences in tumor perfusion and the presence of tumor 
necrosis further complicate the interpretation of a given 
DW-MRI derived, calculated ADC value and both, lower 
and higher ADC values, have been reported for PDAC 
in comparison to focal pancreatitis (20,21). Nevertheless, 
DW-MRI holds a great potential for the detection of 
solid cancer development in IPMN (22) and it may be 
helpful in the non-invasive differentiation of tumor 
subtypes and monitoring of therapy response (12,23,24). 
The inclusion of high b-values of up to 2,000 s/mm2  
may further improve the delineation of PDAC from 
adjacent inflammatory changes because of the increased 
diffusion-weighted and decreased T2w contribution (25). 
Advanced DW-MRI techniques (i.e., intravoxel incoherent 
motion, IVIM) including b-values below 200 s/mm2 allow 
for the quantification of the relative contribution of tissue 
perfusion and true molecular diffusion to the diffusion of 
water molecules, which may enable a better characterization 
of tissue microstructure (26), such as the differentiation of 
focal pancreatic lesions (e.g., mass forming pancreatitis) and 
PDAC based on an IVIM derived perfusion fraction (27). 

Contrast enhanced imaging

CT and MRI enable the reliable identification of PDAC 
lesions ≥5 mm. In native CT and MRI scans, tumors may 
be revealed by their solid growth pattern compared to 
the lobulated appearance of the normal and especially the 
atrophic glandular pancreas, which shows interleaved fat. 
The signal intensity of PDAC depends on the imaging 
modality and technique; on native imaging PDAC usually 
presents as isodense (CT), hypointense (T1w), hypo-/

hyperintense (T2w) or hyperintense (b600) lesion. Ductal 
obstruction can lead to edema of the adjacent “normal” 
pancreas tissue distal to the tumor and thus may obscure 
tumor borders. An unequivocal morphological distinction 
of PDAC from acute or chronic pancreatitis can be 
challenging, especially if these are focal, requiring EUS- or 
CT-guided biopsy.

In contrast enhanced CT/-MRI PDAC generally appear 
hypodense/-intense compared to the surrounding normal 
pancreatic tissue. This has been related to particularly 
low microvessel density (MVD) values compared to 
other tumor entities, abundant matrix deposition [mainly 
collagen type I and III, fibronectin and hyaluronic acid (28)]  
and a subsequent increase in intra-tumoral pressure (i.e., 
solid stress), also resulting in vessel collapse (29,30). 
Contradicting these findings at first sight (31) a positive 
correlation of stroma content and perfusion has been 
described, suggesting a more complicated interplay of 
the tumor microenvironment, where tumor cellularity in 
the presence of matrix deposition can be an additional if 
not dominating factor in the build-up of solid stress and 
hypoperfusion (29,30,32). Furthermore, the detection 
of a high lesion to background ratio at the tumor border 
has been identified as an aggressive imaging features that 
predicts poor clinical outcome (31).

Tumor growth beyond organ borders is often seen at primary 
staging and is regularly accompanied by a strong desmoplastic 
reaction of hazy or solid appearance that may help distinguish 
PDAC from focal inflammation especially at the vascular 
interface (Figure 4). However, as tumor development is often 
accompanied by inflammation, peri-pancreatic changes are no 
proof of tumor growth beyond organ borders. 

Structured reporting

Imaging findings should be reported in a standardized 

Figure 4 Mass forming pancreatitis of the pancreatic head region. (A) T2w image shows focal mass; (B) early contrast-enhanced T1w shows 
reduced CA affinity; (C) late contrast-enhanced T1w shows increased CA affinity; (D) b600 DW-MRI shows diffusion restriction with high 
signal intensity. Note the sharp boundary of the lesion to the adjacent fat tissue and blood vessel without hazy stranding, i.e., desmoplasia.

A B C D



Page 6 of 10 Translational Gastroenterology and Hepatology, 2019

© Translational Gastroenterology and Hepatology. All rights reserved. Transl Gastroenterol Hepatol 2019;4:35 | http://dx.doi.org/10.21037/tgh.2019.05.04

manner according to current guidelines (33), preferably 
using simplified and user-friendly templates, to improve 
acceptance among radiologists (34). Most importantly, 
templates must include a detailed description of the 
tumor to vessel interface, which (in combination with the 
identification/rule out of metastatic disease) directly impacts 
patients stratification into primary resectable, borderline 
resectable and non-resectable tumors (33). It should 
differentiate between tumor to vessel contact and signs of 
vascular infiltration that require vascular reconstruction in 
case of surgery (35). Reports should be saved in machine 
readable formats to enable further processing. 

Cross sectional imaging data analysis in pancreatic cancer

Technical advances have enabled significant gains in both 
image quality and acquisition speed. However, tumor 
identification and response evaluation still rely primarily 
on naked eye methods. For this reason, the output quality 
of radiological reports is determined to a great extent by 
radiologist training, experience and even external factors 
such as noise levels within the reporting room, stress and rest 
(36,37). Therefore, techniques to facilitate tumor detection 
and quantify image information in a more objective way have 
generated substantial interest and advances in computational 
performance of image reconstruction and postprocessing 
systems as well as electronic health records have enabled a 
multitude of workflow improvements for radiologists (38). 
These can be divided into tools facilitating the visualization 
and communication of findings and tools for quantitative 
image analysis.

Workflow, visualization and communication improvements

Due to significant improvements in computation and 
especially due to the widespread availability of parallel 
computing solutions, such as GPU-based rendering, coupled 
with the acceleration of data transfer speeds, radiologists 
can now routinely gain access to e.g., thin isotropic 
CT slices within minutes after their acquisition (39).  
These can then be processed on the fly at the reporting 
station to generate custom views, such as MPRs, and 
volume-rendered images such as maximum intensity 
projection (MIP) or cinematic rendering series. Such tools 
can greatly facilitate not only the radiologist’s understanding 
of pathology and pathological anatomy, but also aid in 
the demonstration of findings to referring clinicians and 
assist e.g., in operative planning or the production of 

custom medical devices, such as 3D-printed prosthetics or  
implants (40). Furthermore, the abovementioned advances 
in communications technology mean that images can now 
be stored in high-efficiency compressed and encrypted 
formats in the cloud and made available at a moment’s 
notice in the case of future need (41). Lastly, radiological 
reporting or expert opinion can now be outsourced to third 
parties over secure high-speed internet connections (42). 
This has led to the emergence of virtual tumor boards 
over state-of-the-art videoconferencing systems and 
greatly improved availability of radiological reporting in 
underprivileged areas of the world (43).

Quantitative imaging analysis

To gain a better terminological understanding, one must 
differentiate between the two common uses of the term 
quantitative imaging. On one hand, it can refer to the 
quantitative assessment of specific parameters which relate 
to concrete physical measurements, as can be performed 
with positron emission tomography, which is said to be 
a quantitative modality since the (radio-)activity per unit 
volume can be directly measured. In this sense, CT can also 
be referred to as quantitative since the scanners are calibrated 
and radiodensity is expressed in Hounsfield Units, which 
are similar or identical for the same materials. Certain MRI 
sequences can also produce quantitative measurements, 
for instance so-called T1-mapping sequences, which allow 
statements about the relaxivity or the precise quantification 
of contrast media uptake within a volume of interest.

In its second guise, the term quantitative imaging has 
come to denote the derivation of objective, mathematically 
quantifiable data from a certain part of the image (44). 
With the advent of so-called -omics approaches, this ports 
radiological images into the domain of advanced statistical 
analysis by high-performance computer systems, a field 
which within the last decade has become known as Data 
Science. The -omics approach to radiology is commonly 
called radiomics (45). Typically, a radiomics workflow 
consists of the definition of a volume of interest within 
the image, the derivation of data from this region and 
the statistical exploration of this data and its correlation 
with clinical, histopathological or genetic parameters as 
delineated below:

Volume of interest definition
The first step towards quantitative analysis of radiological 
images consists of the selection of a specific image sub-
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area, a process commonly called image segmentation. In 
its simplest form, it can be performed by positioning for 
instance a circular region of interest (ROI) in a specific area 
to gain insight into its radiodensity, a process very common 
to the radiologist for deciding for instance whether an 
adrenal lesion contains fat. In a more advanced setting such 
as pancreatic cancer, complete analysis of the tumor requires 
precise definitions of the tumor margins in all slices and/
or in multiple axes. In high-contrast settings, segmentation 
can be performed by the computer itself (46). This can 
be observed for instance for pulmonary lesions, since it is 
easy to program a computer to search for high-contrast 
areas and for specific density/intensity values. In pancreatic 
cancer, typically an ill-defined, hypovascular entity within 
a complexly formed organ which often carries the mark of 
chronic disease or is altered by the presence of the tumor 
itself, however, even modern, artificial-intelligence-based 
algorithms have great difficulties delineating the tumor 
margins and—at worst—reach accuracies only as high 
as about 60% (47). The fully automatic segmentation of 
pancreatic cancers is a subject of ongoing research with 
the most successful approaches currently first having the 
algorithm identify the pancreas, and consecutively the 
tumor region, all while integrating previously gained 
knowledge from manually segmented datasets (48).  

In any case, the end result of the segmentation process 
is a region or volume of interest, in essence just than a 
subsample of image pixels/voxels of the original acquired 
volume.

Derivation of imaging parameters 
The second step in the radiomics approach regards deriving 
mathematical descriptions about the spatial relationship 
and the intensity values of the pixels within the volumes 
of interest, which are commonly referred to as imaging 
features (49). Some features common to radiologist and 
clinician alike are for instance tumor volume or mean, 
maximum and minimum intensity, the latter important in 
the abovementioned setting of deciding whether a lesion 
contains fat (i.e., negative CT-value pixels). However, 
innumerable other approaches, some with substantial 
mathematical complexity, exist for the derivation of features 
which attempt to quantify more abstract concepts, such as 
tumor heterogeneity (50). These approaches are based on 
statistics and probability and extract information from the 
spatial positions or the probability of occurrence of pixels 
with a certain density or signal intensity and include for 
example histogram metrics, gray-level-cooccurence matrices, 

local binary patterns and wavelet decompositions (51). 

Exploration and correlation of imaging features with 
clinical, pathological or genomic data
At this point in the radiomic workflow, the transformation 
of what was originally visual data into a quantitative, 
mathematical entity has taken place. Imaging features can 
now be used within the context of a biostatistics workflow and 
treated like clinical information such as tumor marker levels 
or tumor stage. Typically, however, some pre-processing 
of these features has to take place, as is common in other 
bioinformatics workflows, to separate useful predictors from 
uninformative features. For this purpose, a feature selection 
step takes place using statistical or machine learning methods 
such as regularization or principal component analysis, 
which aims to reduce the number of features and increase 
their significance for the overall analysis (52). The remaining 
features are then included in statistical models of e.g., tumor 
progression, survival models or compared to features derived 
from other entities, such as for the prediction of genetic 
signatures or histopathological tumor subtypes. 

With the increase in data quantity and complexity, 
traditional statistical  approaches are increasingly 
complemented or superseded by artificial intelligence 
methods, or—more specifically—machine learning 
techniques (53). Machine learning denotes any algorithm 
which does not require explicit (i.e., imperative or 
declarative) programming but is capable of handling new 
information in a process akin to human learning, i.e., 
by integrating the new information and improving over 
time. With the exponential increase in computing power, 
a specific type of machine learning algorithm, so called 
artificial neural networks (54), which are designed with a 
similar architecture as the human nervous system, i.e., with 
inputs, processing “neurons” and outputs, have shown great 
promise in use-cases such as image analysis. Very complex 
neural networks, using several stages (or layers) of “neurons” 
are commonly referred to as deep neural networks, and the 
process of training these neurons, i.e., generating a model 
for the prediction of a certain state from the input data, is 
called deep learning. Although it is beyond the scope of 
this article to deliberate the specifics of deep learning (55), 
suffice it to denote that they represent a major advance in 
image analysis and can potentially replace the traditional 
radiomics workflow as it is currently practiced: they have 
shown considerable success in the automatic detection and 
segmentation of structures and are supremely suitable for 
image classification (56). This makes deep learning based 
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approaches an ideal candidate for future quantitative image 
analysis workflows (57). The great challenge lies in the 
training of such algorithms, which in many cases requires 
large amounts of precisely annotated data to ascertain 
sufficient model performance and the ability of the model 
to generalize beyond the scope of specific datasets. In any 
case, machine learning and artificial intelligence hold great 
potential for radiological research and can be envisioned 
as integral tools of the clinical radiological workflow of 
the future (58), for instance for triaging exams for high-
relevance findings, assisting with tumor volumetry or as a 
decision support tool for patient risk stratification. 

Summary and conclusions

Early tumor detection, non-invasive tumor subtyping and 
treatment response evaluation present major challenges 
in the radiological work-up of patients at risk and patients 
who have already developed pancreatic cancer. Intensified 
screening programs with state-of-the-art imaging 
techniques and advanced image post-processing algorithms 
are being developed and hold the potential to improve 
patient outcome.

Acknowledgements

R Braren is supported by funding of the German Research 
Foundation (DFG, http://www.dfg.de/en/) within the SFB-
Initiative 824 (collaborative research center, http://www.
sfb824.de/en/), “Imaging for Selection, Monitoring and 
Individualization of Cancer Therapies” (SFB824, project 
C6).

Footnote

Conflicts of Interest: The authors have no conflicts of interest 
to declare.

 

References

1. McGuigan A, Kelly P, Turkington RC, et al. Pancreatic 
cancer: A review of clinical diagnosis, epidemiology, 
treatment and outcomes. World J Gastroenterol 
2018;24:4846-61. 

2.  Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. 
CA Cancer J Clin 2017;67:7-30. 

3.  Rahib L, Smith BD, Aizenberg R, et al. Projecting Cancer 
Incidence and Deaths to 2030: The Unexpected Burden 

of Thyroid, Liver, and Pancreas Cancers in the United 
States. Cancer Res 2014;74:2913-21. 

4.  Versteijne E, Vogel JA, Besselink MG, et al. Meta-analysis 
comparing upfront surgery with neoadjuvant treatment in 
patients with resectable or borderline resectable pancreatic 
cancer. Br J Surg 2018;105:946-58. 

5.  Conroy T, Hammel P, Hebbar M, et al. FOLFIRINOX or 
Gemcitabine as Adjuvant Therapy for Pancreatic Cancer. 
N Engl J Med 2018;379:2395-406. 

6.  Collisson EA, Bailey P, Chang DK, et al. Molecular 
subtypes of pancreatic cancer. Nat Rev Gastroenterol 
Hepatol 2019;16:207-20. 

7.  Sartoretti T, Reischauer C, Sartoretti E, et al. Common 
artefacts encountered on images acquired with combined 
compressed sensing and SENSE. Insights Imaging 
2018;9:1107-15. 

8.  Toft J, Hadden WJ, Laurence JM, et al. Imaging 
modalities in the diagnosis of pancreatic adenocarcinoma: 
A systematic review and meta-analysis of sensitivity, 
specificity and diagnostic accuracy. Eur J Radiol 
2017;92:17-23.

9.  Corrias G, Huicochea Castellanos S, Merkow R, et al. 
Does Second Reader Opinion Affect Patient Management 
in Pancreatic Ductal Adenocarcinoma? Acad Radiol 
2018;25:825-32. 

10.  Gangi S, Fletcher JG, Nathan MA, et al. Time interval 
between abnormalities seen on CT and the clinical 
diagnosis of pancreatic cancer: retrospective review of CT 
scans obtained before diagnosis. AJR Am J Roentgenol 
2004;182:897-903. 

11.  Quiney B, Harris A, McLaughlin P, et al. Dual-energy CT 
increases reader confidence in the detection and diagnosis 
of hypoattenuating pancreatic lesions. Abdom Imaging 
2015;40:859-64. 

12.  Klauß M, Stiller W, Pahn G, et al. Dual-energy perfusion-
CT of pancreatic adenocarcinoma. Eur J Radiol 
2013;82:208-14. 

13.  Gulani V, Calamante F, Shellock FG, et al. Gadolinium 
deposition in the brain: summary of evidence and 
recommendations. Lancet Neurol 2017;16:564-70. 

14.  Tanaka M, Fernández-del Castillo C, Kamisawa T, 
et al. Revisions of international consensus Fukuoka 
guidelines for the management of IPMN of the pancreas. 
Pancreatology 2017;17:738-53. 

15.  European Study Group on Cystic Tumours of the 
Pancreas. European evidence-based guidelines on 
pancreatic cystic neoplasms. Gut 2018;67:789-804. 

16.  Lohöfer FK, Kaissis GA, Rasper M, et al. Magnetic 



Page 9 of 10Translational Gastroenterology and Hepatology, 2019

© Translational Gastroenterology and Hepatology. All rights reserved. Transl Gastroenterol Hepatol 2019;4:35 | http://dx.doi.org/10.21037/tgh.2019.05.04

resonance cholangiopancreatography at 3 Tesla: Image 
quality comparison between 3D compressed sensing and 
2D single-shot acquisitions. Eur J Radiol 2019;115:53-8. 

17.  Zhang B, Peeters H. Efficient MR inhomogeneity 
correction by regularized entropy minimization and 
proximal alternations. In: 2015 IEEE 12th International 
Symposium on Biomedical Imaging (ISBI). IEEE 
2015:1069-72. 

18.  Vullierme MP, Menassa L, Couvelard A, et al. Non-
branched microcysts of the pancreas on MR imaging of 
patients with pancreatic tumors who had pancreatectomy 
may predict the presence of pancreatic intraepithelial 
neoplasia (PanIN): a preliminary study. Eur Radiol 2019. 
[Epub ahead of print].

19.  Kwong WT, Hunt GC, Fehmi SM, et al. Low Rates of 
Malignancy and Mortality in Asymptomatic Patients With 
Suspected Neoplastic Pancreatic Cysts Beyond 5 Years of 
Surveillance. Clin Gastroenterol Hepatol 2016;14:865-71. 

20.  Matsuki M, Inada Y, Nakai G, et al. Diffusion-weighed 
MR imaging of pancreatic carcinoma. Abdom Imaging 
2007;32:481-3.

21.  Wang Y, Chen ZE, Nikolaidis P, et al. Diffusion-
weighted magnetic resonance imaging of pancreatic 
adenocarcinomas: Association with histopathology and 
tumor grade. J Magn Reson Imaging 2011;33:136-42. 

22.  Hoffman DH, Ream JM, Hajdu CH, et al. Utility of 
whole-lesion ADC histogram metrics for assessing the 
malignant potential of pancreatic intraductal papillary 
mucinous neoplasms (IPMNs). Abdom Radiol (NY) 
2017;42:1222-8. 

23.  Collisson EA, Sadanandam A, Olson P, et al. Subtypes 
of pancreatic ductal adenocarcinoma and their differing 
responses to therapy. Nat Med 2011;17:500-3. 

24.  Trajkovic-Arsic M, Heid I, Steiger K, et al. Apparent 
Diffusion Coefficient (ADC) predicts therapy response in 
pancreatic ductal adenocarcinoma. Sci Rep 2017;7:17038. 

25.  Fukukura Y, Shindo T, Hakamada H, et al. Diffusion-
weighted MR imaging of the pancreas: optimizing b-value 
for visualization of pancreatic adenocarcinoma. Eur Radiol 
2016;26:3419-27. 

26.  Le Bihan D, Breton E, Lallemand D, et al. Separation of 
diffusion and perfusion in intravoxel incoherent motion 
MR imaging. Radiology 1988;168:497-505. 

27.  De Robertis R, Cardobi N, Ortolani S, et al. Intravoxel 
incoherent motion diffusion-weighted MR imaging of 
solid pancreatic masses: reliability and usefulness for 
characterization. Abdom Radiol (NY) 2019;44:131-9. 

28.  Bailey JM, Swanson BJ, Hamada T, et al. Sonic Hedgehog 

Promotes Desmoplasia in Pancreatic Cancer. Clin Cancer 
Res 2008;14:5995-6004. 

29.  Provenzano PP, Cuevas C, Chang AE, et al. Enzymatic 
Targeting of the Stroma Ablates Physical Barriers to 
Treatment of Pancreatic Ductal Adenocarcinoma. Cancer 
Cell 2012;21:418-29. 

30.  Jacobetz MA, Chan DS, Neesse A, et al. Hyaluronan 
impairs vascular function and drug delivery in a mouse 
model of pancreatic cancer. Gut 2013;62:112-20. 

31.  Koay EJ, Truty MJ, Cristini V, et al. Transport properties 
of pancreatic cancer describe gemcitabine delivery and 
response. J Clin Invest 2014;124:1525-36. 

32.  Stylianopoulos T, Martin JD, Chauhan VP, et al. Causes, 
consequences, and remedies for growth-induced solid 
stress in murine and human tumors. Proc Natl Acad Sci 
2012;109:15101-8. 

33.  Al-Hawary MM, Francis IR, Chari ST, et al. Pancreatic 
Ductal Adenocarcinoma Radiology Reporting Template: 
Consensus Statement of the Society of Abdominal 
Radiology and the American Pancreatic Association. 
Radiology 2014;270:248-60. 

34.  Kambadakone AR, Zaheer A, Le O, et al. Multi-
institutional survey on imaging practice patterns in 
pancreatic ductal adenocarcinoma. Abdom Radiol (NY) 
2018;43:245-52. 

35.  Kaissis GA, Lohöfer FK, Ziegelmayer S, et al. Borderline-
resectable pancreatic adenocarcinoma: Contour irregularity 
of the venous confluence in pre-operative computed 
tomography predicts histopathological infiltration. PLoS 
One 2019;14:e0208717. 

36.  Bruno MA, Walker EA, Abujudeh HH. Understanding 
and Confronting Our Mistakes: The Epidemiology of 
Error in Radiology and Strategies for Error Reduction. 
RadioGraphics 2015;35:1668-76. 

37.  Waite S, Scott J, Gale B, et al. Interpretive Error in 
Radiology. AJR Am J Roentgenol 2017;208:739-49. 

38.  Wildman-Tobriner B, Thorpe MP, Said N, et al. Moving 
Radiology Workflow to the Electronic Health Record: 
Quantitative and Qualitative Experience From a Large 
Academic Medical Center. Acad Radiol 2019. [Epub ahead 
of print].

39.  Shi L, Liu W, Zhang H, et al. A survey of GPU-based 
medical image computing techniques. Quant Imaging Med 
Surg 2012;2:188-206. 

40.  Mitsouras D, Liacouras P, Imanzadeh A, et al. Medical 
3D Printing for the Radiologist. RadioGraphics 
2015;35:1965-88. 

41.  Mezrich JL, Siegel E. Storing Medical Images in the 



Page 10 of 10 Translational Gastroenterology and Hepatology, 2019

© Translational Gastroenterology and Hepatology. All rights reserved. Transl Gastroenterol Hepatol 2019;4:35 | http://dx.doi.org/10.21037/tgh.2019.05.04

Digital Age: The Need for Universal and Technologically 
Appropriate Guidelines. J Am Coll Radiol 2017;14:752-4. 

42.  Davis A. Outsourced radiology: will doctors be deskilled? 
BMJ 2008;337:a785. 

43.  Shea CM, Teal R, Haynes-Maslow L, et al. Assessing the 
feasibility of a virtual tumor board program: a case study. J 
Healthc Manag 2014;59:177-93. 

44.  Rosenkrantz AB, Mendiratta-Lala M, Bartholmai BJ, et 
al. Clinical utility of quantitative imaging. Acad Radiol 
2015;22:33-49. 

45.  Kumar V, Gu Y, Basu S, et al. Radiomics: The process and 
the challenges. Magn Reson Imaging 2012;30:1234-48. 

46.  Larue RT, Defraene G, De Ruysscher D, et al. 
Quantitative radiomics studies for tissue characterization: 
a review of technology and methodological procedures. Br 
J Radiol 2017;90:20160665. 

47.  Zhou Y, Xie L, Shen W, et al. Pancreas Segmentation 
in Abdominal CT Scan: A Coarse-to-Fine Approach. 
Available online: https://www.semanticscholar.org/paper/
Pancreas-Segmentation-in-Abdominal-CT-Scan%3A-A-
Zhou-Xie/788f341d02130e1807edf88c8c64a77e4096437e

48.  Wolz R, Chu C, Misawa K, et al. Automated Abdominal 
Multi-Organ Segmentation With Subject-Specific Atlas 
Generation. IEEE Trans Med Imaging 2013;32:1723-30. 

49.  Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images 
Are More than Pictures, They Are Data. Radiology 
2016;278:563-77. 

50.  Lubner MG, Smith AD, Sandrasegaran K, et al. 
CT Texture Analysis: Definitions, Applications, 
Biologic Correlates, and Challenges. RadioGraphics 
2017;37:1483-503. 

51.  Zwanenburg A, Leger S, Vallières M, et al. Image 
biomarker standardisation initiative. 2016. Available 
online: https://arxiv.org/abs/1612.07003

52.  Yip SS, Aerts HJ. Applications and limitations of 
radiomics. Phys Med Biol 2016;61:R150-66.

53.  Parmar C, Grossmann P, Bussink J, et al. Machine 
Learning methods for Quantitative Radiomic Biomarkers. 
Sci Rep 2015;5:13087. 

54.  van Gerven M, Bohte S. Editorial: Artificial Neural 
Networks as Models of Neural Information Processing. 
Front Comput Neurosci 2017;11:114.

55.  LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 
2015;521:436. 

56.  Krizhevsky A, Sutskever I, Hinton GE. ImageNet 
classification with deep convolutional neural networks. 
Commun ACM 2017;60:84-90. 

57.  Greenspan H, van Ginneken B, Summers RM. Guest 
Editorial Deep Learning in Medical Imaging: Overview 
and Future Promise of an Exciting New Technique. IEEE 
Trans Med Imaging 2016;35:1153-9. 

58.  Esteva A, Robicquet A, Ramsundar B, et al. A guide to 
deep learning in healthcare. Nat Med 2019;25:24-9.

doi: 10.21037/tgh.2019.05.04
Cite this article as: Kaissis G, Braren R. Pancreatic cancer 
detection and characterization—state of the art cross-sectional 
imaging and imaging data analysis. Transl Gastroenterol 
Hepatol 2019;4:35.


