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Introduction

The colonoscopic detection and removal of polyps is 
central to the current paradigm of colorectal cancer 
(CRC) prevention. Despite its key role, colonoscopy 
is imperfect in this task. Tandem colonoscopy studies 
consistently show up to 25% of adenomas are missed and 
substantial variability in adenoma detection rates between 
Colonoscopists is the norm. Alarmingly, lower detection 
rates are associated with higher risk for interval CRC (1-4). 
Intuitively the remedy to colonoscopy’s imperfection is to 

improve detection and this prevailing narrative has driven 
the development and evolution of multiple technologies 
such that the major colonoscope manufacturers all currently 
produce high definition (HD) imaging systems with one 
or more integrated detection technologies (Olympus, 
Fujfilm and Pentax, Tokyo, Japan) (5). New colonoscope 
systems have even been developed specifically around new 
detection technology such as widening field of view (FUSE 
EndoChoice Inc., Alpharetta, GA, USA) (6). Despite 
imaging advances gathering pace since the early 2000s the 
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impact on detection has been disappointing. Improvements 
from individual technology advances are marginal or 
modest in positive studies but balanced by large numbers 
of heterogenous or negative results. This is reflected in 
recent guidelines which suggest technologic advancements 
can be used but fall short of recommending routine use in 
average risk colonoscopy (7). The increasingly vast number 
of detection technology studies suffer from common 
limitations; the central two being an overly narrow focus 
on adenomatous polyp detection and secondly reporting 
only averaged detection rates from multiple Colonoscopists. 
Both are problems. Firstly, detection of sessile serrated 
lesions (SSLs) in addition to adenomas is of critical 
importance as they, like adenomas, are variably detected. 
More importantly SSLs are precursors in a CRC pathway 
which appears overrepresented in interval CRC (8,9). A 
hypothetical technology which improves adenoma detection 
yet has no, or worse, a negative impact on serrated lesion 
detection may fail to achieve optimal CRC prevention. 
The fixation on adenomas is compounded by the focus on 
the adenoma detection rate (ADR), whilst undoubtedly 
established and important, may be too blunt to evaluate 
subtle detection gains in new technologies. Common 
throughout the detection literature are studies without 
significant difference in ADR but significant improvements 
in diminutive or flat adenoma detection or reduction in 
adenoma miss rates. There is no consensus on what metrics 
should be used and what represents a clinically meaningful 
detection gain. The second core issue is that the provision of 
averaged detection rates may obscure assessment of the real 
value of new technologies. A generally accepted paradigm is 
that interventions which will improve the detection rate of 
the lowest detectors are likely to be of more overall clinical 
value than improving that of high detectors. Studies which 
do not routinely report whether detection gains are seen in 
this former group limit the practical remedial value of that 
technology. Furthermore, the inclusion of both high and 
low detectors in a technology study may blunt averaged 
detection gains if high detectors, already operating nearer 
the boundaries of detection, are not similarly aided by the 
study technology. Adding to this a myriad of additional 
factors require consideration when reviewing the literature, 
such as; heterogeneity in reporting on training programs 
and learning curves in new technologies, the combination 
multiple generations of imaging technology in meta-
analyses and the inherent limitation that while imaging 
studies may be randomized, blinding is usually not possible. 

One explanation for the generally meagre improvements 
in detection seen with imaging technology advances is that 
imaging represents only a single step in the multi-step 
process from colonoscopy preparation through to detection 
and polyp removal for histopathologic assessment. Ideal 
bowel preparation, optimal colonoscopy technique and 
the aide of distal attachments culminate in the exposure of 
colonic mucosa to the imaging technology and each of these 
have been demonstrated to individually impact on detection 
(10-12). In a recent network-meta-analysis, Facciorusso 
et al. concluded that while there were detection gains for 
most technologies (distal caps or imaging enhancements) 
there was limited evidence for superiority of any one single 
technology (13).

The conclusion in the current ESGE guideline is 
that most of the current technologies provide only 
“marginal detection gains” however we believe there is 
still a case for optimism (7). Most of the imaging advances 
covered in this review are already available on current 
generation colonoscopes, so Colonoscopists already have 
an opportunity to gain experience day to day. These 
technologies also have established benefits beyond 
detection such as characterization and real time prediction 
of polyp histology and the assessment of polypectomy scars 
at surveillance (7,14). When a technology has multiple 
practical benefits its inclusion, and use, is more likely and 
incorporation into successive colonoscope systems more 
readily justified. Perhaps more importantly, technology 
advances are still arriving. The current paradigm of 
detection imaging technology has recently been disrupted 
by the advent of computer aided detection (CAD) systems 
which have capacity to detect polyps and relay this to the 
Colonoscopist. In this review we aim to cover the major 
areas of colonoscope imaging advances with a focus on the 
evidence base for detection gains for each technology.

Colonoscope imaging definition and field of view

HD

Detection of mucosal abnormalities in the gastrointestinal 
tract is primarily dependent on the image seen by the 
endoscopist and the ability to recognize subtle differences 
in mucosal characteristics. The ability to discriminate these 
fine details was greatly advanced with the advent of HD 
endoscopes in the early 2000s. Prior to HD endoscopes, 
the image resolution achieved by standard definition 
endoscopes was approximately 370,000 pixels (15).  
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With improvements in charge-coupled device chips and 
complementary metal oxide semi-conductor (CMOS) 
technology, HD endoscopes now have image resolutions 
ranging from 850,000 pixels to more than 1 million pixels. 
Disappointingly these advances in definition have only 
translated into marginal gains in detection. Data from early 
studies of early HD systems were presented in a 2011 meta-
analysis which included 4,422 patients and demonstrated an 
increased adenoma diagnostic yield of 3.5% for HD over 
SD (16). Study heterogeneity, non-randomized studies and 
technological limitations of early HD systems may have 
contributed to the limited detection difference. However, 
optimism that randomized studies of more recent HD 
technology would demonstrate more impressive detection 
gains are yet to materialize. A multicentre trial in the 
United Kingdom of 262 patients in the UK National Bowel 
Cancer Screening Program randomized patients to either 
SD (Olympus Lucera System, Toyko, Japan) or the HD 
(Pentax HiLine system, Tokyo, Japan) did not demonstrate 
a difference in polyp or adenoma detection, though HD was 
superior in the detection of flat adenomas (18.6% vs. 5.2%; 
P<0.001) (17). Comparison of SD and HD within and 
between endoscopy systems was assessed in an ambitious 
study in which patients were randomized to either SD or 
HD WL or SD or HD virtual chromocolonoscopy (VCC) 
with one of three endoscopy systems (Fujifilm, Olympus, 
or Pentax, Tokyo Japan.) Acknowledging the study failed to 
reach target recruitment, there was no difference in ADR 
between SD or HD (18). Interesting HD white light (WL) 
did have a higher SSL detection (8.3 vs. 3.8; P<0.01) than 
SD WL.

A possible explanation for the limited detection 
improvements seen with HD is that while there are 
incremental gains between successive generations of 
endoscopy system these are small and that true detection 
improvement may be better measured when comparing 
colonoscopes over  two generat ions of  def init ion 
improvement (19,20). A large retrospective German study 
found a significantly difference in adenoma detection 
between two (33% vs. 27%; P=0.01) but not one generation 
of colonoscope technology (19). This hypothesis was further 
tested in a prospective multicentre randomized tandem 
trial which compared the adenoma miss rate in 856 patients 
at high risk for adenomas (symptomatic patients, polyp 
surveillance or positive family history) between the Olympus 
Exera 160-C and Exera III 190-C systems (Olympus, Tokyo, 
Japan) (20). HD colonoscopy had a significantly lower 
adenoma miss rate (16.6% vs. 30.2%; P=0.001) and higher 

ADR (43.8% vs. 36.5%; P=0.03) than SD (20). Interestingly 
in contrast to adenomas, no difference in SSL detection rate 
or missed SSLs was demonstrated (5.8% vs. 4.5%; P=0.361, 
2.1% vs. 1.2% P=0.308) though this should be interpreted 
within the context of a relatively low overall SSL detection 
rate. A second randomized control trial (RCT) without 
tandem colonoscopy of 1,221 average risk screening patients 
however failed to demonstrate a significant difference in 
ADR (HD 32% vs. SD 28%; P=0.01) though HD did detect 
an overall greater number of diminutive adenomas in the 
cohort (135 vs. 97; P=0.002) (21). Counterintuitively a lower 
overall detection of SSLs was seen the HD compared to the 
SD group (62 vs. 81; P=0.005) (21).

Overall HD colonoscopy appears to be associated with 
a marginal increase in adenoma detection which may be 
more marked when comparing over multiple generations of 
colonoscope imaging technology. There is no clear data to 
support HD improving SSL detection.

Field of view

Despite the theoretical advantage of a greater field of view, 
randomized trials have failed to support this technology 
advancement in routine colonoscope systems. Two RCTs 
have compared detection between colonoscopes with 
140 degree and 170 degree field of view and failed to 
demonstrate a difference (22,23). The possibility that the 
addition of more than 30 degrees of view is required to 
improve detection has been addressed with several systems 
such as FUSE with 330 degrees of view. Meta-analysis of 
the initial 8 FUSE RCTs demonstrated reduced adenoma 
miss rate but no difference in ADR or SSL detection rates 
and two subsequent RCTs have demonstrated consistent 
findings (6,24,25). Whilst FUSE and other extra wide 
field of view technologies [EWAVE (Olympus, Tokyo, 
Japan)], Third Eye Retroscope, Panoramic (Avantis 
Medical Systems, Sunnyvale, CA, USA), and NaviAid 
G-EYE balloon colonoscope (SMART Medical Systems 
Ltd, Ra’anana, Israel) highlight the potential of benefits of 
an expanded field of view, none have achieved widespread 
uptake for use in routine colonoscopy. The simple 
hypothesis that increasing the monitor size on which the 
endoscopic image is displayed without a wider field of 
endoscopic view could improve detection was examined in 
a single centre RCT where no difference in ADR was seen 
between 19- and 32-inch displays (26).

Overall there is little evidence to support significant 
detection gains from extra-wide field of view technology 
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which is reflected in limited inclusion into routine practice. 
More study in this area may be required.

Chromocolonoscopy (CC) and VCC

CC

CC was first described in 1977 and has consistently been 
associated with improved detection in the majority of 
studies with increases in overall polyp detection, adenoma 
detection and serrated polyp detection rates (27-30). Whilst 
not a universally considered a technologic imaging advance, 
a brief review of CC is warranted as virtual CC technologies 
aim to replicate and supplant CC, thus it remains the 
yardstick by VCC technologies should be judged. 

CC involves colonic inspection after the application 
of a contrast dye, indigo-carmine or methylene blue. CC 
highlights the topography and microtopography of the 
colonic mucosa, reflected in increased flat and diminutive 
adenoma detection (29,31) (Figure 1). A 2016 Cochrane 
review of seven randomized controlled trials concluded, 
despite heterogeneity in patient cohorts, that CC increased 
both the mean number of polyps detected as well as the 
number of neoplastic lesions found; OR detection of at 
least one polyp 1.87 (95% CI: 1.51 to 2.3) (29). With the 
widespread introduction of HD imaging which was already 
associated with detection gains the question of whether 
CC still conferred additional detection was assessed by 
Kahi et al. in 2010 (31). Six hundred and sixty patients were 
randomised to HD CC or white light (WL). Consistent 
with previous studies the CC mean procedure time was 
significantly longer (30.6 vs. 21.9 min; P<0.001) however 
the mean examination time was equivalent (7.9 vs. 7.6 min; 

P=0.12). The higher CC ADR (55.5% vs. 48.4%) was not 
statistically significant however CC did detect a higher 
proportion of flat adenomas, diminutive adenomas and a 
higher number of polyps per patient (31). 

In addition to improved adenoma detection, increased 
proximal  serrated les ion detect ion has a lso been 
demonstrated in a RCT where CC was compared with SD 
WL colonoscopy (12% vs. 6%; OR 1.96; P=0.012) though 
again the CC mean procedure time was significantly longer 
(36.8 vs. 30.6 minutes) (32).

Despite the benefits of CC, an increase in detection 
of advanced adenomas has not been demonstrated and 
guidelines have fallen short of recommending CC use in 
routine average-risk colonoscopy (28). In addition to the 
costs of procurement and preparation of the dye and the 
equipment for delivery, CC has consistently been associated 
with a time cost of longer withdrawal times, though it is 
possible these longer times are an inherent component 
of the improved detection of CC rather than simply an 
unwanted negative consequence (7,28,29).

It is possible that overcoming the logistic hurdles in 
delivering CC could reduce the barrier to widespread CC 
use. This was studied in multi-centre, placebo controlled 
randomised double blind trial of methylene blue colonic 
release tablets (MB-MMX) (33). Methylene blue was 
combined with a pH and time dependent multimatrix 
structure designed to release the dye in the colon. A total 
of 1,249 patients were randomised in the intention to treat 
analysis with an increase in the detection of at least one 
adenoma, traditional serrated adenoma or SSL in the MB-
MMX group (56.29% vs. 47.81%; P<0.01) (33). 

Overall CC confers significant detection advantages and 
continues to have a role in detection particularly in high 

Figure 1 Flat adenomatous polyps and background colonic mucosa highlighted with chromocolonoscopy (A) 5 mm flat (Paris 0-IIa) 
adenoma. A 7 mm flat (Paris 0-IIa) adenoma detected with chromocolonoscopy (B) and viewed with near focus magnification (C).

A B C
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risk patient groups. However it is the juxtaposition these 
benefits with the challenges in implementation that has 
facilitated interest and research in VCC. 

VCC

Push button VCC is now routinely incorporated into HD 
colonoscope systems either as light filters (NBI, Olympus 
Tokyo Japan) narrow wavelength laser (BLI/LCI Fujifilm, 
Tokyo, Japan) or post-image acquisition processing 
(I-Scan Pentax, FICE Fujifilm, Tokyo, Japan). In principle 
VCC aims to replicate the enhanced surface contrast and 
microtopography advantages of CC with simple push button 
technique rather than the physical spraying of dye in CC. 
In addition VCC aims to exaggerate the mucosal capillary 
vascular networks which is hypothesized to improve 
detection through the absence of the normal background 
vascular network and, for adenomatous lesions, highlight 
denser neoplastic vascular network (34). These conceptual 
advantages of VCC have unfortunately not translated into 
clear detection gains with evidence of increased detection 
mixed or limited in effect (7). However current generation 

VCC does appear superior to initial VCC technology 
giving a glimmer of hope to a future role of VCC in routine 
colonoscopy (34).

Narrow band imaging (NBI) 

Conventional white light colonoscopy has three optical 
filters covering the visible wavelength range from 400 
to 800 nm. NBI is achieved by filtering out the red light 
bandwidth, leaving a narrowed spectrum of light, at 415 
and 540 nm, to penetrate the mucosa less deeply, resulting 
in increased contrast for surface vessels and structures (5) 
(Figure 2). 

A recent meta-analysis of data from 4,491 individual 
patients in eleven randomised controlled trials compared 
the efficacy of NBI to white light colonoscopy (34). Overall, 
the ADR was 42.3% for HD-WL vs. 45.2% for NBI (OR 
for adenoma detection of 1.14 NBI compared to HD-
WLE; 95% CI: 1.01–1.29; P=0.04). Despite heterogeneity 
in bowel prep scores, NBI was found to be superior to WL 
when bowel prep grade was best compared to only adequate 
(OR 1.30; 95% CI: 1.04–1.62; P=0.02). ADR was also found 

Figure 2 Normal colonic mucosa viewed with high definition white light (HD WL) (A) and narrow band imaging (NBI) (D) Diminutive flat 
(Paris 0-IIa) adenoma viewed with HD WL (B) and NBI (E). Large flat sessile serrated lesion viewed with HD WL (C) and NBI (F).

A

D

B

E

C

F
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to be higher only with newer generation “bright” NBI than 
WLE (OR 1.28; 95% CI: 1.05–1.56; P=0.02), but not in 
initial generation NBI. Non-adenomatous polyps (OR 1.24; 
95% CI: 1.06–1.44; P=0.008), right sided non-adenomatous 
polyps (OR 1.35; 1.05–1.74; P=0.02) and flat polyps (OR 
1.24; 95% CI: 1.02–1.51; P=0.03) were also more likely 
to be detected with NBI than WL. SSLs are likely to 
comprise a substantial proportion of non-adenomatous 
right sided polyps. SSL detection was specifically assessed 
in recent meta-analysis where the only VCC technology 
demonstrating gains was NBI (SSL detection rate RR 2.04; 
95% CI: 1.18–3.54; P=0.01 and mean SSLs per patient 0.03 
vs. 0.024; P<0.001) (35). 

Studies comparing current generation NBI with CC 
are limited. Lynch syndrome represents the most common 
cause of genetic CRC and is typified by rapid adenoma to 
carcinoma progression with the implication that detection 
and removal of even diminutive adenomas is important (36). 
The evaluation of detection techniques and technologies 
in this setting are therefore informative. While both CC 
and NBI have demonstrated superior adenoma detection 
over WL in Lynch patients, even the current generation 
of bright NBI appears inferior to conventional HD  
CC (28,37,38).

Overall NBI appears to improve adenoma and SSL 
detection though in Lynch patients falls short of CC 
detection rates.

FICE

Flexible spectral imaging colour enhancement (FICE) is a 
post-processor technology available on Fujifilm systems. In 
contrast to NBI, which uses optical light filters, FICE is an 
image processing technique to select particular wavelengths 
from an image which is then reconstructed. Similar to NBI, 
data from the red light bandwidth can be discarded and the 
image can be created with a narrowed spectrum of green 
and blue light (5). In 2014, a systematic review and meta-
analysis was published which reported no greater yield of 
adenomas with FICE when compared to HD-WLE (RR 
1.09; 95% CI: 0.97–1.23) (39).

BLI and LCI

Blue laser imaging (BLI) and linked colour imaging (LCI) 
were developed by Fujifilm in 2012. Unlike NBI which 
uses optical light filters, the BLI and LCI imaging modes 
are generated by two lasers with wavelengths of 410 and 

450 nm (40). White light endoscopy is achieved through 
irradiation of phosphor by the 450 nm-wavelenght laser. 
BLI is proposed to facilitate characterization of mucosal 
vessels and structures and LCI to increase detection by 
improving contrast between red coloured lesions and white 
mucosa (Figure 3).

There have been several randomised control trials for 
the utility of BLI and LCI in polyp detection (41-44). BLI 
was associated with a higher number of adenomas per 
patient than WL and in a tandem colonoscopy study BLI 
followed by WL, had a lower polyp miss rate of 1.6% vs. 
10.0% miss rate in the WLE-BLI group (42). More recent 
studies have focused on LCI for detection as it appears to 
provide superior polyp “visibility” over BLI (45). A number 
of RCTs have demonstrated an increased ADR for LCI over 
WL, 37% vs. 28% [95% (2.39–19.41%)] (43). LCI also has 
demonstrated lower adenoma miss rates in the proximal 
colon than WL (30.6% vs. 11.8% P=0.02) (44). However 
neither a significant SSL detection rate nor reduced SSL 
miss rate were observed in these studies (44,46). In contrast 
a recent small tandem RCT of 44 patients demonstrated 
substantially superior SSL detection for LCI ( 21.6% vs. 
3.2%, P=0.02) (47).

F e w  s t u d i e s  h a v e  d i r e c t l y  c o m p a r e d  V C C 
technologies. A recent tandem RCT compared current 
generation NBI and LCI demonstrating a higher 
polyp detection rate (71.3% vs. 55.9%, P=0.008) and 
serrated polyp detection rate (34.6% vs. 22.1%, P=0.02) 
for NBI, however the difference in ADR did reach 
statistical significance (51.5% vs. 39.7%, P=0.05) (48).  
NBI withdrawals were longer, the cause of which is unclear, 
however as longer withdrawal times were also associated 
with detection gains further comparative studies are 
required (48).

Overall LCI appears to improve adenoma detection. 
Data to support increased detection of SSLs is limited.

I-Scan

Available on Pentax systems, i-Scan is a post-processing 
technology with three image enhancement features: surface 
enhancement, contrast enhancement and tone enhancement. 
Like FICE, a white-light image can be deconstructed then 
reconstructed with the aid of software algorithms allowing 
further modifications as specified by the endoscopist (5)  
(Figure 4). Initial support for i-Scan technology was based 
on studies comparing HD i-Scan colonoscopy SD WL 
colonoscopy (49). Polyp detection rates (67.9% vs. 48.1%, 
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P≤0.0001) and flat polyp detection (27.8% vs. 9.9%; 
P=0.04) were higher in the HD i-Scan group (50). However 
combining HD with VCC and comparing to SD limits 
the capacity to determine the relative benefit of the VCC 

technology. A more recent tandem RCT compared HD 
i-Scan and HD WL colonoscopy in 740 patients with an 
i-Scan demonstrating a higher ADR for i-Scan (47.2% vs. 
37.7% P=0.01) (51). No difference in SSL detection was 

Figure 3 Normal colonic mucosa viewed with high definition white light (HD WL) (A) and linked colour imaging (LCI) (B). Diminutive  
3 mm flat (Paris 0-IIa) adenoma visualized with HD WL (C) and LCI (D).

Figure 4 Normal colonic mucosal vascular pattern viewed with I-Scan OE mode 2 (A). A large flat (Paris 0-IIa) sessile serrated lesion with 
disruption of background colonic mucosal vascular pattern viewed with high definition white light (B) and I-Scan OE mode 2 (C). OE, 
optical enhancement.

A B

C D

A B C
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seen. In a tandem RCT involving a Lynch patient cohort 
i-Scan demonstrated substantially lower adenoma miss rate 
than HD WL (12% vs. 62%, P=0.007) without difference in  
ADR (52).

Overall i-Scan appears to improve the detection of 
adenomas. Data supporting detection of SSLs is limited.

Autofluorescence imaging (AFI)

AFI is an image enhancing technology that highlights 
endogenous fluorescence generated from tissue by excitation 
light (53,54). A proposed advantage of AFI beyond detection 
is the role of novel characterization; the emitted natural 
fluorophores of benign and malignant lesions differ hence 
AFI does not require morphological assessment to assess a 
lesion (55). Efficacy data for AFI detection is inconsistent 
as presented in a systematic review and meta-analysis of 
five tandem studies comparing ADR, PDR, adenoma miss  
rates (53). There was no difference in ADR and PDR, 
however the adenoma miss rate (OR 0.62; 95% CI: 0.44–0.86; 
P=0.004) was lower with AFI than WL. A more recent 
multicentre RCT of 802 patients similarly did not show a 
difference in ADR but did reveal superior flat polyp detection 
with AFI (0.87; CI 0.78–0.97 vs. 0.53 0.46–0.61) (53).

Overall the benefit of AFI appears limited to the research 
setting at present.

Computer-aided detection (CAD)

A substantial facet of the imperfection of colonoscopy 
is heterogenous human performance, reflected in the 
significant variability in adenoma and SSL detection rates 
between Colonoscopists (3,8). The majority of technologies 
introduced to date have aimed to improve or assist the 
Colonocopist in the recognition and detection of lesions. 
CAD challenges this paradigm, as while in practice it may 
assist the Colonoscopist with detection, conceptually it has 
the capacity to automate and replace the detection role of 
the Colonoscopist (56). Progression from research interest 
in computer assistance during endoscopy to present where 
the release of multiple real time systems is imminent, and 
has been permitted by improvements in computing power 
and the evolution in machine learning from “hand-crafted” 
to artificial intelligence “deep learning” (7,56,57). 

High accuracy (76.5–96.4%) and sensitivity (>90%) has 
been demonstrated in deep learning CAD studies with a 
low rate of false positive findings at 7% (58,59). However 

these studies assessed CAD colonoscopy video recordings. 
A recent RCT of CAD during real-time HD colonoscopy 
in 1,058 patients demonstrated a significantly greater ADR 
(29.1% vs. 20.3%; P<0.001) and mean number of adenomas 
per patient with CAD (0.53 vs. 0.31; P=0.001) where the 
greatest yield was seen for diminutive adenomas (60). 

The major advantage of CAD may be in standardizing 
colonoscopy by improving low detectors’ rates. However 
further study of the impact of CAD on high and low 
detectors is required to confirm this. CAD also has potential 
for assistance with characterization of detected polyps which 
further supports inclusion into routine colonoscopy (7).  
Although CAD is promising a number potential limitations 
of this technology have been raised: (I) the rate of false 
positives, which could translate to the Colonoscopist 
having to interpret the additional images and therefore 
negatively impact colonoscopy efficiency; (II) the potential 
for deskilling Colonoscopists and finally (III) data security, 
hacking and the medico legal and regulatory issues as the 
automation component grows (7). There is no data on real 
time CAD detection for SSLs.

Overall CAD appears likely to have a role in adenoma 
detection support with more study required to define 
the best clinical setting for it use and the impact on SSL 
detection.

Conclusions

Despite marginal adenoma detection gains from available 
imaging technology advances over the last two decades there 
is cause for optimism. Many imaging advances are already 
available in daily use and have added benefits outside of 
detection. The advent of CAD has the significant potential 
to improve detection and raise the colonoscopy quality 
bar. SSL detection however can no longer be ignored and 
the impact on SSL detection must be evaluated in all new 
detection technologies. We also need consensus on the 
metrics of detection gain and what represents a clinically 
significant gain needed to help standardize research moving 
forward. 
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